
CASCON 2020 Proceedings

Sponsored By
IBM Centre for Advanced Studies
IBM Canada Lab

Edited By
Lily Shaddick - IBM Canada Ltd.
Guy-Vincent Jourdan – University of Ottawa
Vio Onut - IBM Canada Ltd.
Tinny Ng - IBM Canada Ltd.
Toronto, Ontario, Canada November 10 - November 13, 2020

Full papers are reproduced here from camera-ready copies prepared by the authors. Permission has been granted to IBM Canada
Ltd. and its related companies, and the Association for Computing Machinery, in each case without charge, to reproduce, distribute
and publish in any medium or distribution technology

i

Table of Contents
Message from the Conference Chair vii

Message from the Program Chair xi

Organizing Committee xiv

Most Influential Paper of 2010 2

Full Papers

Smart Cities and Health

Multiple Pedestrian Tracking System Based On Modified Mask R-Cnn And
Enhanced Particle Filter Using An Adaptive Information Driven Motion
Model For Video Surveillance

Mufleh Al-Shatnawi, Amir Asif, Vida Movahedi, Aijun An, Yonggang Hu and Junfeng Jf Liu

4

Understanding Brain Dynamics for Color Perception using Wearable EEG
headband

Mahima Chaudhary, Sumona Mukhopadhyay, Marin Litoiu, Lauren E Sergio and Meaghan
S Adams

13

Towards Interpretable and Maintainable Supervised Learning Using
Shapley Values in Arrhythmia

Sanjena Krishnakumar and Tamer Abdou

23

Efficient Location-Level Risk Analytics
Neil Burke, Oliver Baltzer and Norbert Zeh

33

Security

Investigation of Encrypted and Obfuscated Network Traffic Utilizing
Machine Learning
 Kay Boldt, Kenneth Kent and Rainer Herpers

43

54 An Approach to Represent and Transform Application Specific
Constraints for an Intrusion Detection System

Ayesha Barbar, Fahim Imam, Thomas Dean and Jose Fernandez

53

63

ii

Blockchain based security for heterogeneous IoT systems
 Kale Yuzik and Dwight Makaroff

A Survey of Security Vulnerabilities in Ethereum Smart Contracts
 Noama Fatima Samreen and Manar Alalfi

73

Cloud and Database Systems

Towards Topology Aware Elastic Job Scheduling with Deep Reinforcement
Learning

Bon Ryu, Aijun An, Zana Rashidi, Junfeng Liu and Yong Gang Hu

83

Pred-Cache: A Predictive Caching Method in Database Systems
 Omar El Zarif, Safwat Hassan, Ying Zou, Calisto Zuzarte, Vincent Corvinelli and Mohammed
Al Hamid

93

Software Evaluation Methodology of Node.js Parallelism under Variabilities
in Scalable Systems
 Maria Patrou, Jacob Baird, Kenneth Kent and Michael Dawson

103

The Weakest Link: Revealing and Modeling the Architectural Patterns of
Microservice Applications
 Vladimir Podolskiy, Maria Patrou, Panos Patros, Michael Gerndt and Kenneth Kent

113

Software and Systems Engineering

Report on Evaluation Experiments Using Different Machine Learning
Techniques for Defect Prediction
 Marios-Stavros Grigoriou, Kostas Kontogiannis, Alberto Giammaria and Chris Brealey

123

Moving from Cross-Project Just-In-Time Defect Prediction to
Heterogeneous Just-In-Time Defect Prediction: A Partial Replication Study
 Hadi Jahanshahi, Mucahit Cevik and Ayse Basar

133

Identifying External Cross-References Using Natural Language Processing
 Elham Rahmani, Nazim H Madhavji and Ibtehal Noorwali

143

Time Series Sampling for Probabilistic Forecasting
 Nicholas Prayogo, Mucahit Cevik and Merve Bodur

153

Compilers and Optimizations

Insights into WebAssembly: Compilation Performance and Shared Code
Caching in Node.js
 Tobias Nießen, Kenneth B. Kent, Michael Dawson and Panos Patros.

163

iii

Position Paper: An ELF-based Storage Option for the Eclipse OMR Ahead-
of-Time Compiler

Damian Diago D'Monte, Georgiy Krylov, Daryl Maier, Gerhard W. Dueck and Kenneth B.
Kent

173

MicroJIT: A Case for Templated Just-in-Time Compilation in Constrained
Environments

Eric Coffin, Scott Young, Harpreet Kaur, Julie Brown, Marius Pirvu and Kenneth B. Kent

179

Designing and Evaluating New Instructions that Accelerate Sigmoid-Based
Machine Learning

Lucas Dutton, Curtis D’ Alves, Wolfram Kahl, Robert Enenkel and Christopher K. Anand.

189

Natural Language Processing

The Effectiveness of Static Word Embeddings on the Classification of IT
Support Tickets

Yasmen Wahba, Nazim Madhavji and John Steinbacher

198

Deep learning approaches to classify the relevance and sentiment of news
articles to the economy

Jingli Wang, Ashok Bhowmick, Mucahit Cevik and Ayse Basar

207

Voting for Authorship Attribution Applied to Dark Web Data
 Britta Sennewald, Rainer Herpers, Marco Hülsmann and Kenneth B. Kent

217

Blockchain, Cryptography, Quantum Computing

Experience Report: Dynamic Reconfiguration of Consensus Protocol for
IoT Data Registry on Blockchain

Mohammadreza Rasolroveicy and Marios Fokaefs.

227

Parallel Window Method for Scalar Multiplication in Elliptic Curve
Cryptography

 Tanya Bouman, Yusra Irfan, James You and Christopher K. Anand

237

Hybrid Quantum-Classical Problem Solving in the NISQ Era
Prashanti Priya Angara, Ulrike Stege, Hausi A Muller and Mehdi Bozzo-Rey

247

iv

Workshops

AI & Blockchain & Robotics

1st Workshop on AIOps and System Compliance
Marios Grigoriou, Kostas Kontogiannis, Chris Brealey and Alberto Giammaria 254

Automation, Control, and Analysis of Knowledge-intensive Processes
Arik Senderovich, Eric Yu, Hajo Reijers, Allen Chen and Sebastian Carbajales 256

Deploying a Collaborative Framework for Crowd Sourcing the Evaluation
of AI Model Effectiveness

Sarah Packowski and Joshua Allard
259

How has COVID-19 changed the development and adoption of data
science across firms and industries?

Michelle Alexopoulos, Kelly Lyons, Rohan Alexander, Aije Egwaikhide and Robert Frost

260

Cloud Computing

4th Workshop on Advances in Open Runtimes and Cloud Performance
Technologies

Daryl Maier, Vijay Sundaresan and David Bremner

262

Jumpstart your application into a reactive event-centric world
Grace Jansen, Yk Chang, Gilbert Kwan and Meswan Bhaugeerutty

263

Systems & Innovations

morPOP: A fast and granular agent-based model of COVID-19 to examine
school mitigation strategies in Newfoundland & Labrador

Dionne Aleman, Benjamin Tham, Sean Wagner, Justin Semelhago, Asghar Mohammadi,
Paul Price, Jordan Bradfield, Randy Giffen and Proton Rahman

285

Novel hardware & software design for mathematical and AI acceleration
Robert Enenkel, Christopher K. Anand, Silvia M Mueller and Jose Moreira

268

Z Modernization Open Tools Showcase
Nitika Sharma, Steve Shao and Stephanie Kuan

270

IoT & Smart Cities

Smart Cities with Smart AI to fight back COVID19 262
Hina Sharma

272

v

Quantum Computing

Quantum Computing: Synergies and Opportunities
Mehdi Bozzo-Rey, Robert Loredo, Ulrike Stege and Hausi Muller

275

IBM Advanced Studies CASCON 278

vi

Message from the Conference Chair
CASCON x EVOKE 2020

vii

Message from the Conference General Chair

Welcome to CASCON x EVOKE 2020!

Happy 30th Anniversary!

For the past 30 years, IBM Centre for Advanced Studies (CAS) has been hosting the
Annual International Conference on Computer Science and Software Engineering. This
conference is a testimony to our commitment to Academia and Applied Research in
Canada. In 2019 we joined forces with the EVOKE conference, which created a unique
Industry-Academic conference. Through this partnership, we can bring together the
worlds of academia, research, development, and every industry for a four-day marathon
to discuss research and technology, exciting challenges, achievements and success
stories. We continue this journey in 2020 and beyond.

Our conference follows all the academic rigour of selecting and screaming its
content, including academic talks, industry talks, workshops, networking, and the Expo.
In 2020 we have four keynote speakers, 26 academic talks, 64 industry talks, 29
workshops, and 47 expo presentations contributed by 143 university researchers
and 180 industry professionals. As with previous years, the proceedings, including
the technical papers, position papers, and detailed workshop abstracts, are also
available online in the ACM Digital Library.

Whether we are coming from industry or academia, we all have a common goal and
interest in technology. Technology breakthroughs are what we strive for, the technology
that can make a difference, that is innovative, unique, solve unsolved problems and
establishes us as leaders.

This year’s theme, VISION, UNITY, INNOVATION, couldn’t be timelier. With the new
world-wide pandemic crisis that hit hard on industry and academia, the need for
innovation is even more acute. With this new challenge, the society had to adapt to
social distancing and new virtual environments that will continue to be the real norm for
at least a while. While CASCON x EVOKE participants will not be able to participate
in person this year, we see an opportunity to create a higher digital footprint for our
conference, to reach an audience across Canada and the world that is a click of a
button away from us. Looking at 2021 and beyond, we believe that a hybrid approach
will become the norm for our conference. We know our community values an in-person
event. Unfortunately, we can not offer that this year; however, we are committed to
providing alternative virtual networking sessions and an engaging online environment
that will foster serendipitous and spontaneous technical discussions.

viii

We packed full a four-day schedule with six parallel tracks on eight main technological
themes: Cloud Computing; Everything Data, IoT & Smart Cities; Security & Privacy;
Quantum; Systems & Innovations; Compilers, Languages, Runtimes; AI; and Software
Engineering. I am confident that you will find the technical content exciting and engaging.

None of these would be possible without our dedicated community of academics, IBMers
and partners. As Conference General Chair, I am fortunate to be immersed in an
exceptional team of professionals that make that vision come true. I want to start by
thanking the Canada Lab Director, Mr. Steven Astorino, for his thought leadership and
his aspiration to create one of Canada’s best industry-academic conference. The
partnership with the EVOKE conference is now in his second year and growing stronger
because of him. Equally important is the support and leadership of Mr. Marcellus Mindel,
Head of IBM Canada Advanced Studies, whose understanding and direction significantly
impact the conference.

A robust academic conference relies upon the expertise and guidance of a Steering
Committee. Big thank you to the CASCON Steering Committee members (Prof. Guy-
Vincent Jourdan, Prof. Hausi Müller, Mr. Joe Wigglesworth, Prof. Ken Wong, Prof.
Kenneth Kent, Mr. Marcellus Mindel, Prof. Marin Litoiu, Dr. Robert Enenkel, and Mrs.
Tinny Ng)

Prof. Julia Rubin, University of British Columbia, acted this year as Conference Program
Chair. She has positively impacted the content this year, working tirelessly to orchestrate
the paper submissions, revisions, and paper awards for our conference. A big thank you
to the 86 Program Committee members who diligently peer-reviewed the papers and
selected the top candidates.

Prof. Guy-Vincent Jourdan, Publication Chair, and Ms. Lily Shaddick, Conference
Proceedings Editor, diligently took care of our proceedings and ensured that all content
was filtered, approved and published in the ACM Library.

For the first time in our conference history, we have the Industry track shaped by Chairs.
Mr. Joe Wigglesworth and Dr. Michael Kwok raised to the challenge and formed the
Industry Talks Agenda. Special thanks go to the EVOKE Foundation team for their
invaluable expertise, enabling us to have a solid Industry Track: Mr. Patrick Kasebzarif,
Executive Producer, Ms. Loren Amaral, Creative Lead, Mr. Matthew Di Liddo, Program
Lead and Mr. Andrew Kelly, Partnership Lead.

For the third year in a row, we have the privilege of having Mrs. Tinny Ng, IBM, joined this
year by Prof. Ken Wong from the University of Alberta acting as Workshop Co-Chairs. I
want to thank them both for preparing a rich program consisting of top workshops. I extend
this thank you note to the Workshop Selection Committee members for making sure that
the best workshops are accepted.

ix

CASCON Technology Expo is the collaboration hub of the conference. With 47 technical
exhibits and new content that is changing daily. Accomplished under the leadership of
our Expo co-chairs Prof. J. Nelson Amaral from the University of Alberta and Dr. Kit
Barton, IBM.

Special thanks to our IBM CAS Canada Team for all the heavy lifting that goes behind
the scenes and often is unnoticed but without which nothing is possible: Mr. Dennis
Buttera, Mrs. Jennifer Collins, Ms. Maria Gallaher, Mrs. Tinny Ng, and for our exceptional
group of interns Ms. Aysha Anwar, Ms. Maxine Arbez Cheung, Mr. Sandy Bagga, Mr. Ali
Hosny Hamdy, Mr. Gursehaj Harika, Mr. Alexander Mah, Ms. Alix Mailhot, Ms. Tima
Pakfetrat, Ms. Maria Katrina Ronquillo, Ms. Lily Shaddick, and Mr. Kevin Yu.

I want to thank all the volunteers and Prof. Marin Litoiu (Volunteer Chair) for all the
conference support. Big thank you to our Virtual Platform Admin team who made the
virtual experience possible: Ms. Katina Kelly, Mr. Matthew Luzius, Mr. Chris Kale, Ms.
Christine Gokool, Ms. Corey Gray, Ms. Diane Beauvais, Mr. Madni Ahmed, Mr. Michael
Keillor, Ms. Sonia Singh, Mr. Ali Hosny Hamdy, Mr. Gursehaj Harika, Mr. Kevin Yu, Ms.
Aysha Anwar and Ms. Lily Shaddick.

Finally, I would personally like to thank all the persons that submitted content to
our conference and all our CAS Collaborators for promoting and contributing to this
event. Finally, a big thank you to all CASCONxEVOKE participants for all the idea
exchanges and thoughtful discussions during the conference.

I wish you all a wonderful and productive time at CASCONxEVOKE 2020!

Iosif-Viorel (Vio) Onuț, Ph.D.,

Conference General Chair | CASCON 2020
Principal R&D Strategist | Centre for Advanced Studies | IBM Canada Lab
Adjunct Professor | University of Ottawa

x

Message from the Program Chair
CASCON x EVOKE 2020

xi

xii

Message from the Program Chair
CASCON x EVOKE 2020

Welcome to CASCON x EVOKE 2020, the 30th Annual International Conference on Com-
puter Science and Software Engineering hosted by the IBM Centre for Advanced Studies
(CAS) and EVOKE Foundation!

The theme of CASCON x EVOKE 2020 is VISION, UNITY, INNOVATION. This year we re-
ceived a total of 65 technical paper submissions. Each paper was rigorously reviewed by at
least three members of the Program Committee. In the end, the Program Committee mem-
bers decided to accept 26 papers (40% acceptance rate). The Program Committee also se-
lected the papers that received the Best Paper and the Best Student Paper awards. The
CASCON x EVOKE 2020 Best Paper Award goes to authors Britta Sennewald, Rainer Her-
pers, Marco Hülsmann, and Kenneth B. Kent for their paper, Voting For Authorship Attribu-
tion Applied To Dark Web Data. The Best Student Paper Award goes to student author San-
jena Krishnakumar for the paper, Towards Interpretable And Maintainable Supervised Learn-
ing Using Shapley Values In Arrhythmia, co-authored with supervisor Tamer Abdou.

We are extremely happy to have four fantastic keynote speakers, Andrew Pelling from the
University of Ottawa; Alexandre Blais, form the Universitaire de Sherbrooke; Nicolas Paper-
not from the University of Toronto; and Niina Haiminen from T.J. Watson IBM Research Lab,
USA, who will talk about cutting-edge work in biomaterial, quantum computing, security, and
computational biology. Thank you for your thought-provoking talks!

The program of the conference is organized into eight tracks: Cloud Computing; Everything
Data, IoT & Smart Cities; Security & Privacy; Quantum; Systems & Innovations; Compilers,
Languages, Runtimes; AI; and Software Engineering. As in previous years of CASCON, the
CASCON x EVOKE 2020 proceedings are archived in the ACM Digital Library for ease of
access.

One highlight of the conference planning process is the selection of the Most Influential Pa-
per, which is awarded to a paper published a decade earlier at CASCON, in order to recog-
nize the lasting contributions and impact of such paper to theory and practice. Selecting the
Most Influential Paper is a process that takes into account several factors. These factors in-
clude the impact the paper and its corresponding research had in the subject area, the evolu-
tion and significance of the topics discussed in the paper during the past decade, and the
consequent work spawned by the paper.

The CASCON x EVOKE 2020 Most Influential Paper of 2010 was selected by the MIP Selec-
tion Committee, consisting of Ettore Merlo, École Polytechnique de Montréal; Joe Wiggles-
worth, IBM Canada; Hausi Muller, University of Victoria; Kostas Kontogiannis, Western Uni-
versity; Robert Enenkel, IBM Canada; and Julia Rubin, University of British Columbia (chair).

xiii

The committee followed a selection process similar to that established in previous years of
CASCON: first, a list of CASCON 2010 papers, with their citation counts, types of citations,
related work conducted during the past decade, and evolution and significance of the areas
each, were collected and six papers were short-listed. Each committee member reviewed the
short-listed papers and then the members conferred to discuss and debate each candidate
paper.

After the detailed discussion, the committee selected the Most Influential Paper for this year,
which was awarded to the paper “Improving Program Navigation With an Active Help Sys-
tem” by Petcharat Viriyakattiyaporn and Gail C. Murphy. The committee considered the pa-
per visionary and paving the way for other researchers to work in the area of recommender
systems. This work also provided foundations for future DevOps and AI-Ops tools. I would
like to congratulate the authors for their outstanding contribution and thank the MIP Award
Committee for their work reviewing and deliberating candidates for the award.

I am also immensely grateful to the many people who helped and supported us in organizing
CASCON x EVOKE 2020. I would like to thank all the authors of technical papers and the
hard-working members of the Program Committee for their dedication to excellence in com-
pleting the reviews and engaging in online discussion of the submissions. A special thank
you goes to the CASCON x EVOKE 2020 organizing team, including Vio Onut, the general
chair of the conference; Tinny Ng and Ken Wong, who coordinated the workshop selection;
Kit Barton and J. Nelson Amaral, who orchestrated the technology expo selection; Joe Wig-
glesworth and Michael Kwok, who coordinated the industry talks; Guy-Vincent Jourdan, who
assembled the proceedings; Marin Litoiu who organized the student volunteers; Lily Shad-
dick, who was the publication lead; and Tinny Ng, who kept the conference website up-to-
date. Finally, I would like to thank the CASCON Steering Committee for their valuable sup-
port towards compiling this year’s program.

Even though CASCON x EVOKE 2020 is a fully online event this year, we plan on plenty of
inspiring discussions, networking events, and interactions. I wish you a wonderful experience
at the conference.

Welcome to CASCON x EVOKE 2020!

Julia Rubin
The University of British Columbia, Vancouver, Canada
CASCON x EVOKE | 2020 Program Chair

Organizing Committee
CASCON x EVOKE 2020

xiv

Organizing Committee

Conference Chair
Iosif Viorel Onut IBM Canada Ltd.

Conference Program Chair
Julia Rubin University of British Columbia

Workshops Co-Chairs
Ken Wong
Tinny Ng

Exhibits Co-Chairs
Kit Barton

J. Nelson Amaral

University of Alberta

IBM Canada Ltd.

IBM Canada Ltd.

University of Alberta

Finance and Registration Chair
Marcellus Mindel IBM Canada Ltd.

Website Chair
Tinny Ng IBM Canada Ltd.

Industry Talks Co-Chairs

Joe Wigglesworth
Michael Kwok

IBM Canada Ltd.
IBM Canada Ltd.

Volunteer Chair
Marin Litoiu York University

Publication Chair
Guy-Vincent Jourdan University of Ottawa

Conference Proceedings Editor
Lily Shaddick IBM Canada Ltd.

xv

Evoke Canada

Evoke Canada

Evoke Canada

Evoke Canada

IBM Canada Ltd.

York University

IBM Canada Ltd.

University of Victoria

IBM Canada Ltd.

IBM Canada Ltd.

IBM Canada Ltd.

University of Alberta

IBM Canada Ltd.

University of Ottawa

University of New Brunswick

xvi

 University of British Columbia, Program Chair

University of Alberta

McMaster University

Executive Producer
Patrick Kasebzarif

Program Lead
Matthew Di Liddo

Partnership Lead
Andrew Kelly

Creative Co-Lead
Loren Amaral

Sandy Bagga

Steering Committee

Marin Litoiu

Marcellus Mindel

Hausi Müller

Tinny Ng

Iosif Viorel Onut

Joe Wigglesworth

Ken Wong

Robert Enenkel

Guy-Vincent Jourdan Kenneth

Kent

Program Committee

Julia Rubin

Jose Nelson Amaral

Christopher K. Anand Giuliano

Antoniol École Polytechnique de Montréal

Akramul Azim University of Ontario Institute of Technology

Ebrahim Bagheri Ryerson University

Ayse Bener Ryerson University

Jeremy Bradbury University of Ontario Institute of Technology

Paula Branco University of Ottawa

David Bremner University of New Brunswick

Sebastian Carbajales IBM Canada Ltd

Allen Chan IBM Canada Ltd

Yee-Kang Chang IBM Canada Ltd

Alexander Chatzigeorgiou University of Macedonia

Marsha Chechik University of Toronto

Tse-Hsun Peter Chen Concordia University

Mark Chignell University of Toronto

Andrew Craik IBM Canada Ltd

Eyal De Lara University of Toronto

Renato De Mori McGill University

Thomas Dean Queen's University

Frank Dehne Carleton University

Chen Ding University of Rochester

Juergen Dingel Queen's University

Gerhard Dueck University of New Brunswick

Ghizlane El Boussaidi École de technologie supérieure

Robert Enenkel IBM Canada Ltd

Marios Fokaefs École Polytechnique de Montréal

James Green Carleton University

Hadi Hemmati University of Calgary

Reid Holmes University of British Columbia

Daqing Hou Clarkson University

Guy-Vincent Jourdan University of Ottawa

Wolfram Kahl McMaster University

Foutse Khomh École Polytechnique de Montréal

Kostas Kontogiannis University of Western Ontario

Diwakar Krishnamurthy University of Calgary

Michael Kwok IBM Canada Ltd

xvii

Alexei Lapouchnian University of Toronto

Diana Lau IBM Canada Ltd

Timothy Lethbridge University of Ottawa

Jin Li PointClickCare

Sam Lightstone IBM Canada Ltd

Ramiro Liscano University of Ontario Institute of Technology

Marin Litoiu York University

Hanan Lutfiyya University of Western Ontario

Kelly Lyons University of Toronto

Nazim Madhavji University of Western Ontario

Daryl Maier IBM Canada Ltd

Ettore Merlo École Polytechnique de Montréal

Piotr Mierzejewski IBM Canada Ltd

James Miller University of Alberta

Andriy Miranskyy Ryerson University

Marc Moreno Maza University of Western Ontario

Hausi Müller University of Victoria

John Mylopoulos University of Toronto

V. Krishna Nandivada IIT Madras

Maleknaz Nayebi École Polytechnique de Montréal

Manos Papagelis York University

Panos Patros University of Waikato

Fred Popowich Simon Fraser University

Shaikh Quader IBM Canada Ltd

Suprio Ray University of New Brunswick

Tony Renaud IBM Canada Ltd

Juergen Rilling Concordia University

Chanchal K. Roy University of Saskatchewan

Mohammad Sadoghi University of California

Ken Salem University of Waterloo

Vivek Sarkar Georgia Institute of Technology

Mohammed Sayagh Queen's University

Jun Shirako Georgia Institute of Technology

Michael Smit Dalhousie University

xviii

École Polytechnique de Montréal

University of Victoria

IBM Canada Ltd.

University of British Columbia

IBM Canada Ltd.

Western University

ff

University of Victoria

IBM Canada Ltd

IBM Canada Ltd

University of Ontario Institute of Technology

University of Waterloo

University of Victoria

IBM Canada Ltd

Universidad Icesi

University of Waterloo

IBM Canada Ltd

Carleton University

Ryerson University

Queen's University

Ulrike Stege

Mark Stoodley

Vijay Sundaresan

Jaroslaw Szlichta

Ladan Tahvildari

Alex Thomo

Whitney Tsang

Norha M. Villegas

Paul Ward

Joe Wigglesworth

Murray Woodside

Morteza Zihayat

Farhana Zulkernine

Calisto Zuzarte

MIP Selection Committee
Ettore Merlo
Hausi Muller
Joe Wigglesworth
Julia Rubin
Robert Enenkel
Kostas Kontogiannis

IBM Canada Ltd

xix

Most Influential Paper of 2010
CASCON x EVOKE 2020

1

Improving Program Navigation with an Active Help System

Petcharat Viriyakattiyaporn and Gail C. Murphy
Department of Computer Science
University of British Columbia

Abstract
When performing software change tasks, software developers spend a substantial amount of their time
navigating dependencies in the code. Despite the availability of numerous tools to aid such naviga-tion,
there is evidence to suggest that developers are not using these tools. In this paper, we intro-duce an
active help system, called Spyglass, that suggests tools to aid program navigation as a devel-oper works.
We report on the results of a laboratory study that investigated two questions: will develop-ers act upon
suggestions from an active help sys-tem and will those suggestions improve developer behaviour? We
found that with Spyglass we could make developers as aware of navigational tools as they are when
requested to read a tutorial about such tools, with less up-front effort. We also found that we could
improve developer behaviour as de-velopers in the Spyglass group, after being given recommendations
in the context of their work, nav-igated programming artifacts more efficiently than those in the tutorial
group.

Find the full paper at https://dl.acm.org/doi/10.1145/1923947.1923951

Copyright c© 2010 Petecharat Viriyakattiyaporn and Gail C. Murphy. Permission to copy is hereby granted provided the
original copyright notice is reproduced in copies made.

2

Full Papers
CASCON x EVOKE 2020

3

Multiple Pedestrian Tracking Based on Modified Mask R-CNN
and Enhanced Particle Filter using an Adaptive Information

Driven Motion Model
Mufleh Al-Shatnawi

Amir Asif
mufleh@eecs.yorku.ca
asif@eecs.yorku.ca
York University

Toronto, Ontario, Canada

Vida Movahedi
Aijun An

vida@eecs.yorku.ca
aan@eecs.yorku.ca
York University

Toronto, Ontario, Canada

Yonggang Hu
Junfeng Liu

yhu@ca.ibm.com
jfliu@ca.ibm.com
IBM Canada Ltd

Markham, Ontario, Canada

Figure 1: The motion of some pedestrians from PETS2009S2L1-View1 [13] and EPFL-terrace [14] datasets where the trajectory
for each pedestrian marked by different color. This figure shows that the motion of pedestrians is highly dynamic, as they are
often stopping, moving backward, or turning in circles.

ABSTRACT
In the recent years, multiple pedestrian tracking (MPT) has been one
of the most important components in a wide range of applications
in computer vision, such as video surveillance, traffic monitoring,
and sports analysis, to name a few. In these applications, the scene
is in continuous motion hence typical tracking systems that are
using background modeling and handcrafted features fail to detect
pedestrians efficiently. Furthermore, the scene in these applications
shifts between random and continuous pedestrian motion. Most of
the existing MPT algorithms based on particle filters assume that
the motion of pedestrians is mostly or piecewise linear and pre-
dictable. Hence, these tracking algorithms adopt a linear constant
velocity motionmodel for pedestrian tracking. However, the motion
of some pedestrians is highly dynamic, as they are often stopping,
moving backward, or turning around in real-world surveillance
video. To overcome these problems, we propose an approach for
multiple pedestrian tracking that can be divided into two main
components: detection and tracking. For the detection component,
we combine novel post-processing steps with the Mask Region
Convolutional Neural Network (Mask R-CNN) to identify multiple
pedestrians in a given video frame. For the tracking component, we

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CASCON’20, November 10–13, 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

propose a robust MPT algorithm using enhanced particle filtering
with an adaptive information driven motion model and resampling
scheme. The proposed tracking algorithm is suitable for online
and real-time applications. Since data association is a key issue
in tracking-by-detection schemes, we propose a combination be-
tween an efficient adaptive information driven motion model and a
new resampling scheme that retains information pertaining to the
weighted particles during the particle propagation and resampling
steps. Experimental results show the benefits of using the proposed
post-processing steps and the adaptive information driven motion
model for detecting and tracking pedestrians with unpredictable
movements. Moreover, the tracking accuracy and precision are sig-
nificantly improved, and the number of tracker identification (ID)
switches is reduced simultaneously.

CCS CONCEPTS
• Computing methodologies → Tracking; Object detection;
Object identification.

KEYWORDS
Multiple pedestrian tracking, particle filter, tracking-by-detection,
data association, resampling.

ACM Reference Format:
Mufleh Al-Shatnawi, Amir Asif, Vida Movahedi, Aijun An, Yonggang Hu,
and Junfeng Liu. 2020. Multiple Pedestrian Tracking Based on Modified Mask
R-CNN and Enhanced Particle Filter using an Adaptive Information Driven
Motion Model. In CASCON’20 Novem-ber 10–13, 2020, Toronto, ON . , 9
pages.

4

CASCON’20, November 10–13, 2020, Toronto, Canada Al-Shatnawi and Asif, et al.

1 INTRODUCTION
Multiple Pedestrian tracking (MPT) system is an important com-
ponent in a wide range of applications in computer vision, such as
video surveillance, traffic monitoring, and sports analysis, to name
a few. Visually, it is quite easy and intuitive for humans to see other
humans, recognize or track their actions. However, designing and
building an automatic MPT system without any human interven-
tion is a challenging task. There are many sources of uncertainty
that effect MPT systems, such as irregular pedestrian motion, clut-
ter, changing backgrounds, significant occlusions, and pedestrians
being identical in their appearance.

In MPT systems, tracking-by-detection is regarded as a most
popular tracking paradigm wherein the tracking performance is
dependent on the detection quality. Despite efforts to generate
accurate and reliable pedestrian detections, it is still a challeng-
ing task for researchers to develop a perfect Multiple Pedestrian
Detector (MPD). Normally, MPDs produce both a bounding box
and confidence score for each detected pedestrian in a given video
frame. The confidence score represents the confidence level of the
detector in affirming that the object enclosed by the bounding box
is a person/pedestrian.

The traditional approach for pedestrian detection is based on
background-subtraction [3, 8, 23, 33]. In this approach, pedestrians
are detected in every frame by segmenting the moving objects
out of the background, while taking into account pixel-wise time
consistency. However, the background-subtraction methods are
unreliable and error-prone in noisy video sequences. For instance,
the background-subtraction methods detect all moving objects in
the scene even these that are not pedestrians [3, 8, 23, 33]. In recent
years, multiple pedestrian detection (MPD) methods have been
developed either by using a deep Convolutional Neural Network
(CNN), or by building a specific pedestrian detector added to these
networks [18, 19, 28, 39, 40]. These CNN MPD methods are able to
learn discriminative features directly from raw pixels of an image,
and they are producing a confidence score between zero and one
for the detected pedestrians. Hence, these methods have notable
performance gains over the background-subtraction methods, and
they normally provide a high detection accuracy [40].

Given the initial state (e.g., position and size) of a target pedes-
trian in the reference video frame, the objective of a tracking algo-
rithm is to build a posterior probability distribution for the state of
the tracked target using noisy detections (observations). Although
many tracking algorithms have been developed over the years, the
particle filter (PF) [17] based MPT approaches [6, 15, 16, 24, 29,
31, 34, 36, 38] have shown more promise. The PF operates on the
principle of approximating the posterior state distribution by a set
of weighted samples, also referred to as particles [4]. Traditional
PF approaches suffer from the degeneracy problem [17], wherein
after a few iterations, except for a few particles all the others have
negligible weights. This problem is overcome using the resampling
procedure, which represents the posterior by a new set of parti-
cles [4, 9, 22, 25, 30]. Consequently, the PF has also been termed as
the sequential importance resampling (SIR) filter.

(a) (b) (c)

Figure 2: Three consecutive frames: (a) Frame 708, (b) Frame
709, and (c) Frame 710 as taken from the MOT17-05 video se-
quence [27]. TheKDNT [39] detector detects the same pedes-
trian with three different confidence scores in successive
frames.

2 RELATEDWORK
2.1 CNN For MPD Methods
In recent years, multiple pedestrian detection (MPD) methods have
been developed either by using a deep Convolutional Neural Net-
work (CNN), or by building a specific pedestrian detector added
to these networks [18, 19, 28, 39, 40]. In [28], a pedestrian detec-
tor is proposed by using the Faster Region Convolutional Neural
Network (Faster-RCNN). The Faster-RCNN can be represented as
an end-to-end framework that consists of two sub-CNN networks.
The first network extracts features and proposes regions for the
second network which in turns classifies the object in the proposed
relevant regions. The Faster-RCNN parameters are shared between
these two networks and constitute an efficient framework for object
detection in general. Furthermore, the Faster R-CNN can be viewed
as a CNN based MPD without using any hand-crafted features.
The confidence scores of the reported pedestrian detections were
between 0.05 and 1.0. In [39], another MPD based approach is devel-
oped by using a combination of an additional convolutional neural
network and the Faster R-CNN [28]. The additional network is
used to calculate the appearance descriptor value for each detected
bounding box. The calculated value is then used to determine the
data association metric for later stages. The confidence scores of
the reported pedestrian detections were between 0.0990 and 0.9998.

In [18], a flexible and efficient framework for instance segmen-
tation and object detection is developed using Mask R-CNN. The
Mask R-CNN [18] adds a branch to predict segmentation masks in
parallel to the existing branches in Faster R-CNN [28] for classifi-
cation and bounding box regression. Therefore, the Mask R-CNN
consists of three parts: feature pyramid network (FPN), regional
proposal network (RPN), and detection. Hence, the Mask R-CNN
can perform three tasks: object recognition, detection, and segmen-
tation.

In general, MPDs apply some constraints on the reported bound-
ing boxes to improve the performance (i.e. accuracy and precision).
The two most common constraints are the bounding box area/size

5

MPT Based on Modified Mask R-CNN and Enhanced PF using an AIDM Model CASCON’20, November 10–13, 2020, Toronto, Canada

(a) (b) (c)

Figure 3: Same as Figure 2 except for the detection of a dif-
ferent pedestrian using the FRCNN [28] detector. Three con-
secutive frames: (a) Frame 666, (b) Frame 667, and (c) Frame
668 as taken from theMOT17-05 video sequence [27]. As was
the case for the KDNT detector, the FRCNN detector detects
the same pedestrian with three different confidence scores
in successive frames.

and the bounding box confidence score. In [5], CNN MPD is used
to detect pedestrians in a given video frame, wherein the detected
bounding boxes with confidence score greater than 0.5 are accepted
as true positive. In [7], a fixed threshold for upper confidence is
used to create a confidential detection set, wherein detections with
low confidence scores are removed from the original detection set
at first step. In [10], fixed thresholds for upper and lower confidence
scores are used and a sparse optical flow filter is applied to enhance
the quality of detections, wherein the upper and lower confidence
score thresholds are fixed for all frames in a given video.

In contrast, applying a lower confidence threshold on the re-
ported bounding boxes to detect all existing pedestrians in the
video frames at the cost of increasing the number of false positive
detections. This is the case for KDNT [39] and FRCNN [28] where
all detected bounding boxes are reported. It should be noted that
the same person can appear very differently during its presence in
a given video depending on the changes in the background, local
illumination, contrast, etc. Thus, the same person may be detected
with different confidence scores in two consecutive frames. There-
fore, applying upper or lower confidence score thresholds is not a
desirable a approach, because the threshold value may vary during
a given video or over different videos. Furthermore, most of the
CNN MPD methods, mentioned above, and some other MPDs gen-
erate pedestrian detections for each frame independently, ignoring
inter-frame relationships that exist between consecutive frames. It
should be noted that if a pedestrian is present in a frame at time
𝑡 − 1 with a high confidence score it will most likely be present in
the next frame at time 𝑡 . For the purpose of illustration, Figure 2
shows that KDNT [39] detects the same pedestrian with three differ-
ent confidence scores in three consecutive frames. Figure 3 shows
similar example for the FRCNN [28] detector. In addition, Figure 4
shows that the Mask R-CNN [18] detects two different pedestrians
with single bounding box at a middle frame given that it was able
to detect them correctly before and after that middle frame. In this
paper, for pedestrian detection component, we develop an efficient

(a) (b) (c)

Figure 4: Three consecutive frames: (a) Frame 311, (b) Frame
312, and (c) Frame 313 are taken from PETS2009S2L1-View1
video sequence. In (b), the Mask R-CNN [18] detects two
pedestrians with single bounding box despite the fact that
it detects them correctly before (in (a)) and after (in (c)).

online method to detect multiple pedestrians from a video stream
by integrating the Mask R-CNN [18] with the post-processing steps
proposed in [2] to improve the performance of the Mask R-CNN
for multiple pedestrian detections.

2.2 Particle Filter For MPT Algorithms
Many tracking algorithms have been developed over the years, the
particle filter (PF) [17] based MPT approaches [6, 15, 16, 24, 29,
31, 34, 36, 38] have shown more promise. The PF operates on the
principle of approximating the posterior state distribution by a set
of weighted samples, also referred to as particles [4].

Theoretically, the PF should carry out the ideal prediction (or
sampling) step using the actual posterior probability distribution
𝑝 (𝒙𝑘 |𝒛1:𝑘), where 𝒙𝑘 is the state of tracked target at time instant
𝑘 , and 𝒛1:𝑘 represents all the observations up to time instant 𝑘 .
However, the actual 𝑝 (𝒙𝑘 |𝒛1:𝑘) is unknown, and it does not have
a closed-form solution in nonlinear non-Gaussian environment
such as MPT system. Alternatively, the SIR filter used a suboptimal
probability distribution, called the proposal distribution function,
𝑞(𝒙𝑘) = 𝑝 (𝒙𝑘 |𝒙𝑘−1, 𝒛1:𝑘−1), which does not consider the latest
observation, 𝒛𝑘 , in the process of sampling, whereas it includes
the state transition distribution form previous state to next state
given all previous observations except 𝒛𝑘 [17]. Thus, the SIR filter
employs the information in the latest observation, 𝒛𝑘 , by updating
the weight of the sampled particles using the likelihood function
𝑝 (𝒛𝑘 |𝒙𝑘). Then, the SIR filter carries out a resampling procedure
over the reweighted particles to solve the degeneracy problem and
generate a new set of particles that approximate the actual posterior
probability distribution 𝑝 (𝒙𝑘 |𝒛1:𝑘).

Many recent approaches have been proposed for developing a
better resampling scheme and choosing an appropriate proposal
distribution function, 𝑞(𝒙𝑘), that matches the actual posterior dis-
tribution as much as possible in order to avoid degeneracy problem
and accurately track the target [11, 26, 32, 37]. In [11, 26], layered
or heretical multiple resampling schemes are used to determine
different proposal distributions. In [37], a feedback PF is proposed

6

CASCON’20, November 10–13, 2020, Toronto, Canada Al-Shatnawi and Asif, et al.

(a) (b) (c) (d)

Figure 5: Consecutive pairs of frames: (a)-(b) Frames 32
and 33, (c)-(d) Frames 189 and 190 from the PETS2009S2L1–
View5 video. The MPT-LCVMPF failed to track pedestrian
moving forward with nonlinear nonconstant velocity. In (a)
and (b), 𝐼𝐷 = 3 of the pedestrian switched to 4. In (c) and (d)
𝐼𝐷 = 20 switched to 23.

wherein a resampling scheme focusing only on the observations
to reweight the particles. In [32], a likelihood-free PF is proposed
wherein particles are reweighted without using the likelihood func-
tion. However, in tracking scenarios involving multiple pedestrians
the above mentioned approaches weaken the impact of the propa-
gated particles using the state transition model on the resampling
procedure of the SIR filter [36]. In spite of considerable research and
efforts that have recently been deployed for improving the perfor-
mance of MPT algorithms based on particle filters, finding a balance
between using the informative observations and the propagated
particles by the state transition model to accurately approximate
the actual posterior probability distribution is still a challenging
problem [24, 36].

In tracking scenarios involving multiple pedestrians, some pedes-
trians in the video may move with different and non-uniform ve-
locities for periods of time. Hence, the motion of some pedestrian
is highly dynamic, as they often stop, move backward, or turn
around. Most of the existing MPT algorithms based on particle
filters [6, 15, 16, 24, 29, 31, 34, 36, 38] assume that the motion of
pedestrians is often linear and predictable. Hence, these tracking
algorithms adopt the linear constant velocity motion (LCVM)model
for their state transition model, and they use the state transition
distribution 𝑞(𝒙𝑘) = 𝑝 (𝒙𝑘 |𝒙𝑘−1) as the proposal distribution func-
tion. Therefore, a major problem facing these tracking algorithms
is that its LCVM model fails to propagate particles accurately when
a given tracked pedestrian moves with nonlinear nonconstant ve-
locity [36]. Consequently, these MPT tracking algorithms based on
particle filter report a high number of ID switches in their tracking
results [6, 15, 16, 24, 29, 31, 34, 36, 38]. In addition, they fail to pre-
dict pedestrian trajectory correctly. In this paper, we refer to a MPT
algorithm implemented using a particle filter with a linear constant
velocity motion model as MPT-LCVMPF. For the purpose of illus-
tration, we implemented a MPT-LCVMPF, and we selected a single
pedestrian tracking result to demonstrate the effect of using LCVM
as a state transition model on ID switches (IDSW). The IDSW ef-
fects can be seen when the MPT algorithm is changing the assigned
identity of a given pedestrian. Figure 5 shows that MPT-LCVMPF
fails to track a pedestrian with the same identification (ID) in two

(a) (b) (c) (d) (e)

Figure 6: Same as Fig. 5. (a)-(b) Frames 71 and 72, (c)-(d)
Frames 74 and 75 from the PETS2009S2L1–View7 video. In
(a) and (b), pedestrian’s 𝐼𝐷 = 6 switched to 7. In (c) and (d),
𝐼𝐷 = 7 switches to 8. In (e), Frames79 shows that pedestrian’s
𝐼𝐷 = 8 switches to 9.

consecutive frames. The ID is changed in the next frame. Figure 6
illustrates a similar situation for a different video sequence.

In this paper, for pedestrian tracking component, we focus on
motion model and resampling procedure to improve the tracking
abilities of the particle filter. Since data association is a key issue
in tracking-by-detection scheme, we propose an efficient adaptive
information driven motion (AIDM) model that retains information
contained in the particles with higher weights associated with a
pedestrian and injects new particles generated from associated
pedestrian detection with this tracker. Hence, the proposed MPT
algorithm based on the particle filter with an adaptive information
driven motion model (referred to as MPT-AIDMPF) can accurately
track pedestrians with unpredictable movements and adapted to the
motion of the scene. In a video surveillance network, a distributed
particle filtering comprised of several localized particle filters (one
for each subset of neighboring video cameras) and that the MPT-
AIDMPF is a step in that direction. An accurate MPT is essential for
any distributed particle filtering. Otherwise. individual localized
particle filtering errors would accumulate in the overall tracking
estimate formed by combining the outputs of localized particle
filters.

We present here a novel multiple pedestrian tracking system
based onmodifiedMask R-CNN and enhanced Particle Filter (PF) us-
ing an adaptive information driven motion model for video surveil-
lance. In particular, the main contributions of this paper are:

(1) Develop an efficient online method to detect multiple pedes-
trians from a video stream by integrating theMask R-CNN [18]
with the post-processing steps proposed in [2] to improve
the performance of the Mask R-CNN for multiple pedestrian
detections.

(2) Improve the resampling scheme for MPT algorithm using
the particle filter by retaining information contained in the
propagated particles and injecting new particles generated
from the informative observations.

(3) Propose a MPT algorithm based on the particle filter with a
novel adaptive information driven motion model (referred
to as MPT-AIDMPF) that can accurately track pedestrians
with unpredictable movements and adapte to the motion of
the scene.

7

MPT Based on Modified Mask R-CNN and Enhanced PF using an AIDM Model CASCON’20, November 10–13, 2020, Toronto, Canada

Input Video Pedestrian Detections at time ��

������������	
���������������������	����	
�������	�
��

Analysis the bounding box area distribution and set ���
� ��

� �� 	
�� and ��
� �� � ��
�� .

Mask R-CNN

������������	
������������������������	�����
�	��
����������	�
�

������	�
�����������	�����������

Sort the bounding box confidence scores and set���
� �� �� and ��

� �� ��.

� �

�

Final Pedestrian

Detections at

time ��

Figure 7: Block diagram of the proposed MPD method. The
diagram shows the sequence of post-processing steps, where
𝛼𝑡
𝐻
and 𝛼𝑡

𝐿
represent the upper and lower confidence thresh-

old values for each frame, respectively. 𝑄3 is the third quar-
tile which is themedian of the upper half of the data set, and
𝑄1 is the first quartile which is the median of the lower half
of the data set.

3 THE PROPOSED MPD METHOD
The proposed method is described in terms of the proposed post-
processing steps. These post-processing steps enable MPDs to be
more accurate, precise and tolerant to false positive detections in
generating pedestrian detections [2]. In [2], an adaptive approach
has been used to set both area and confidence score constraints.
The proposed method block diagram is depicted in Figure 7.

For Post-Processing Step 1, we calculate the area of the detected
bounding boxes and analyze the area distribution in each frame.
For frame at time 𝑡 , the bounding boxes with associated area less
than the lower area threshold, denoted by 𝜃𝑡

𝐿
, will be removed. Also,

the bounding boxes with associated area greater than the upper
area threshold, denoted by 𝜃𝑡

𝐻
, will be removed. For each frame,

we calculate both mean, denoted by 𝜇𝐴 , and standard deviation,
denoted by 𝜎𝐴 , for the area distribution. We remove outlier pedes-
trian detections for each frame by assigning 𝜃𝐿 = (𝜇𝐴 − 2𝜎𝐴) and
𝜃𝐻 = (𝜇𝐴 + 2𝜎𝐴) [2].

For Post-Processing Step 2, we follow Algorithm 1 in [2] to prop-
agate the high confidence pedestrian detections from the previous
frame, and create the final detection set for the current frame. It
should be noted that using the Mask R-CNN [18] with the post-
processing steps proposed in [2], wherein an adaptive approach
to determine both area and confidence scores, generate more ac-
curate pedestrian detection results compared to using the Mask R-
CNN [18] alone. Figure 8(b) shows that the proposed MPD method
is able to correctly detect the two pedestrians compared to the Mask
R-CNN [18] in Figure 4(b).

4 THE PROPOSED MPT-AIDMPF TRACKING
ALGORITHM

The proposedMPT algorithm consists of multiple pedestrian tracker
and data association components. The proposed pedestrian tracker
uses PFwith an efficient adaptive information drivenmotion (AIDM)

Algorithm 1 MPT-AIDMPF over a Single Camera

Input: 𝑫𝑘 =

{
𝑑𝑘1 , 𝑑

𝑘
2 , · · · , 𝑑

𝑘
𝑀

}
, 𝑻𝑘−1 =

{
𝜏𝑘−11 , 𝜏𝑘−12 , · · · , 𝜏𝑘−1

𝐿

}
Output: 𝑻𝑘

LOOP Process
1: for every 𝜏𝑘−1 ∈ 𝑻𝑘−1 do
2: state prediction by particle filter
3: end for
4: 𝑻𝑘 ← DataAssociation(𝑻𝑘−1,𝑫𝑘)

LOOP Process
5: for every 𝜏𝑘 ∈ 𝑻𝑘 do
6: if (𝜏𝑘 does not represent a new pedestrian) then
7: Update the associated tracker by using the adaptive infor-

mation driven motion model
8: end if
9: end for

(a) (b) (c)

Figure 8: Same frames as Figure 4. (b) illustrates that the pro-
posedMPDmethod is able to identify and recover the pedes-
trians as a true positive detections even if they are detected
with single bounding box by the Mask R-CNN [18] in Fig-
ure 4(b).

model and a new resampling procedure to retain information con-
tained in the highly weighted particles of a given pedestrian tracker
and injects new particles generated from the associated pedestrian
detection with this tracker. The combination between PF and the
AIDM model allows the pedestrian tracker to track pedestrians
having unpredictable motions with higher tracking accuracy and
lower ID switches.

4.1 Outline of the Algorithm
The overview of the algorithm is presented in Algorithm 1. For
each new frame 𝑓𝑘 captured by a single camera at time step 𝑘 ,
the previous trackers, 𝑻𝑘−1 =

{
𝜏𝑘−11 , 𝜏𝑘−12 , · · · , 𝜏𝑘−1

𝐿

}
, and current

pedestrian detection list, 𝑫𝑘 =

{
𝑑𝑘1 , 𝑑

𝑘
2 , · · · , 𝑑

𝑘
𝑀

}
, are used for track-

ing. The data association component is used to construct the sim-
ilarity matrix to find the association between existing trackers,
𝜏𝑘−1 ∈ 𝑻𝑘−1, and detections, 𝑑𝑘 ∈ 𝑫𝑘 , at time 𝑘 . Furthermore, it
controls the initialization and termination status of the trackers,
and supports the tracker with key-particles from associated detec-
tion. In this paper, the target state 𝒙 consists of two-dimensional

8

CASCON’20, November 10–13, 2020, Toronto, Canada Al-Shatnawi and Asif, et al.

(a) (b) (c) (d)

Figure 9: Consecutive frames: (a)-(b) Frames 71 and 72, (c)-
(d) Frames 189 and 190 from the PETS2009S2L1–View5 video.
The proposed MPT-AIDMPF algorithm correctly tracks the
pedestrian without any ID switch. Frames (a) and (b) show
pedestrian with the same 𝐼𝐷 = 3. Similarly, (c) and (d) show
pedestrian with 𝐼𝐷 = 8. Note: The pink particle cloud repre-
sents the newly generated particles added to the original set
of particles. The complete video is available at
https://youtu.be/jQCaMViCd8M

position (𝑥,𝑦), and velocity in direction of 𝑥 and 𝑦, (𝑥 ′, 𝑦′).

𝒙 =

[
𝑥,𝑦, 𝑥

′
, 𝑦
′]𝑇

4.2 Pedestrian Colour-based Appearance
Model

When people are walking with significant pose changes, the colour
information is considered to be the most trustworthy feature. How-
ever, extracting colour information from occluded pedestrian is
unreliable. So, we only update the pedestrian appearance model
if a pedestrian does not overlap with another pedestrian. In our
experiment, the combination of RGB with 8 bins per channel and
Hue-Saturation (HS) with 12 bins per channel features yields the
best result. Also, we constantly update the pedestrian appearance
template as

𝑭𝑘
𝜏𝑘
𝑖

= 𝛼𝑭𝑘
𝑑𝑘
𝑗

+ (1 − 𝛼) 𝑭𝑘−1
𝜏𝑘−1
𝑖

(1)

where 𝑭𝑘
𝜏𝑘
𝑖

represents the colour feature for tracker 𝜏𝑖 at time 𝑘 ,

parameter 𝛼 specifies the learning (or updating) rate between the
last and current features given by 𝑭𝑘

𝑑𝑘
𝑗

. In this paper, 𝛼 = 0.05.

4.3 Data Association
In this paper to link detections to trackers, the similarity matrix 𝑺𝑘
between 𝜏𝑘−1

𝑖
and 𝑑𝑘

𝑗
at time step 𝑘 is defined as

𝑺𝑘 (𝜏𝑘−1𝑖 , 𝑑𝑘𝑗) = 𝐴(𝜏𝑘−1𝑖 , 𝑑𝑘𝑗) ∗𝑂 (𝜏
𝑘−1
𝑖 , 𝑑𝑘𝑗) (2)

where 𝐴(𝜏𝑘−1
𝑖

, 𝑑𝑘
𝑗
) measures both the appearance similarity us-

ing Bhattacharyya coefficient [1, 20] and Euclidean distance be-
tween tracker 𝜏𝑘−1

𝑖
and detection 𝑑𝑘

𝑗
in the logarithmic scale. The

𝑂 (𝜏𝑘−1
𝑖

, 𝑑𝑘
𝑗
) is the intersection-over-union of the bounding boxes

of tracker 𝜏𝑘−1
𝑖

and detection 𝑑𝑘
𝑗
in the logarithmic scale. We com-

pute the intersection-over-union score based on the PASCAL VOC

(a) (b) (c) (d) (e)

Figure 10: Same as Fig. 9 except for a different pedestrian.
Consecutive frames: (a)-(b) Frames 71 and 72, (c)-(d) Frames
74 and 75 from the PETS2009S2L1–View7 video. In (e), Frame
79 shows that pedestrian hold his ID 6. The complete video
is available at
https://youtu.be/2u1sLMlaUCM

criterion [12]. The proposed similarity matrix, 𝑺𝑡 , avoids updating
a given pedestrian tracker with confusing nearby detection because
it incorporates the proposed pedestrian colour-based appearance
model(Section 4.2). In this paper, we compute the appearance simi-
larity measure between the colour feature of 𝑭𝑘

𝑑𝑘
𝑗

and 𝑭𝑘−1
𝜏𝑘−1
𝑖

using

the popular Bhattacharyya coefficient [1, 20]. Finally, the assign-
ment between a detection and a tracker is solved optimally using
the well-known Hungarian algorithm [21].

The outputs of the data association step are matched trackers,
unmatched trackers, and unmatched detections. For unmatched
trackers, we used an age threshold 𝑇𝑎𝑔𝑒 to terminate these trackers
if they are not updated for at least 𝑇𝑎𝑔𝑒 frames. This prevents an
unbounded growth in the number of unmatched trackers. For un-
matched detections, we create a new tracker. For matched tracker,
we used the proposed adaptive information driven motion model
described next.

4.4 Adaptive information driven motion model
and resampling scheme

Given the current particle set at time step 𝑘 , {𝒙𝑖
𝑘
,𝑤𝑖

𝑘
}𝑁
𝑖=1, obtained

by applying the resampling technique of the particle filter, the
matched pedestrian detection is used to update the propagated
particles of a given pedestrian tracker. It should be noted that the
weights for these particles are normalized so they sum to 1. The
new adaptive information driven motion model (AIDM) starts by
sorting the current particle set in descending order. Then, selecting
the highest weighted particles based on resampling proportion
coefficient, 𝛽 , 0 ≤ 𝛽 ≤ 1, the number of selected particles will
be equal to (𝛽) (𝑁), where 𝑁 is the total number of particles that
are used for a pedestrian tracker. After that we use the matched
pedestrian detection to generate (1 − 𝛽) (𝑁) new particles with
equal weights.

We adopt a dynamic approach to set the resampling proportion
coefficient value for the frame at time 𝑘 , which is denoted by 𝛽𝑘 .
In each frame, we analyze the distribution of the weight scores

9

MPT Based on Modified Mask R-CNN and Enhanced PF using an AIDM Model CASCON’20, November 10–13, 2020, Toronto, Canada

Table 1: Quantitative comparison between proposed
MMaskRCNN algorithm and the original Mask R-CNN
algorithm. The best results are shown in bold.

MPD algorithm MODA MODP
MMaskRCNN (ours) 73.1% 81.90%
Mask R-CNN [18] 68.15% 77.81%

{𝑤𝑖
𝑘
}𝑁
𝑖=1 for a pedestrian tracker, and we use the third quartile

value to set the resampling proportion coefficient value [2]. The
third quartile, denoted by 𝑄3 , is the median of the upper half of
the data set. Then, we generate a new particle set, (1 − 𝛽) (𝑁),
from a multivariate Gaussian distribution with means equal to the
central coordinates and standard deviations proportional to the
height and width of the pedestrian detection, respectively. Finally,
we combine the two sets, the propagated particles and the newly
generated particles, to create the final set of particles. The weights
of the final particle set are normalized so when these particles are
reused in the subsequent time step, they accurately describe the
previous particles’ influence on the tracker. Moreover, the proposed
AIDM and resampling scheme have used both the informative
observations (pedestrian detections) and the propagated particles to
accurately approximate the actual posterior distribution 𝑝 (𝒙𝑘 |𝒛1:𝑘).

5 EXPERIMENTAL RESULTS
We evaluated and tested the proposed MPT system on nine chal-
lenging video sequences taken from two publicly available datasets:
View1, View5, View6, View7 andView8 from the PETS2009S2L1 [13],
and Camera0, Camera1, Camera2, and Camera3 from the EPFL-
terrace video sequence [14]. The PETS2009S2L1 is a very challeng-
ing video dataset because the pedestrians often change direction
and groups form and split frequently. Moverover, the PETS2009S2L1
is widely used in evaluating MPT tracking algorithms. The EPFL-
terrace sequence is outdoor sequence consisting of up to nine people
appearing one after the other and walking in front of the cameras.
It tests the ability of our algorithm to cope with crowded environ-
ment. For this purpose, three performance comparisons are taken
into consideration. First, we compare the performance of the pro-
posed MPD algorithm (referred to as MMaskRCNN) with that of
the original Mask R-CNN algorithm. Second, we compare the per-
formance of the proposed MPT-AIDMPF algorithm with that of
the MPT-LCVMPF algorithm. The MPT-LCVMPF represents any
tracking algorithm based on PF that adopts the linear constant
velocity motion (LCVM) model for its state transition model. Then,
we compare the performance of the proposed MPT-AIDMPF with
that of other state-of-the-art MPT algorithms [15, 16, 38], which
use particle filters in their online MPT algorithm.

5.1 Evaluation metrics
We follow the most frequently used criteria, the CLEAR MOT [35]
metrics, i.e., multiple object detection accuracy (MODA), multiple
object detection precision (MODP), multiple object tracking ac-
curacy (MOTA), multiple object tracking precision (MOTP), and
identity switches (IDSW) to evaluate the performance of both the
proposed MPD and MPT algorithms. The MOTA score combines
three types of errors: false positive (FP), missed targets (FN), and

identity switches (IDSW). The MOTP score shows spatiotemporal
overlap between the ground truth tracks and the proposed MPT
algorithm output tracks. Finally, the IDSW score shows the number
of times the reported identity of a ground-truth track changes.

5.2 Results
For the purpose of illustration, we selected a single pedestrian
tracking result to demonstrate the effect of using the proposed MPT-
AIDMPF on ID switches. Figure 9 and 10 show that the proposed
MPT-AIDMPF algorithm tracks pedestrians without any ID switch
as compared to the outputs of MPT-LCVMPF shown in Figure 5
and Figure 6, respectively. Furthermore, Figure 9 and 10 show that
the proposed MPT-AIDMPF algorithm accurately predicts the size
of bounding box (which fits the pedestrian) as compared to MPT-
LCVMPF shown in Figure 5 and Figure 6, respectively.

Table 1 shows the average quantitative evaluations for the perfor-
mance of the proposedMPD algorithm (referred to asMMaskRCNN)
with that of the original Mask R-CNN algorithm [18] for the two
datasets.

Table 2 compares the performance of our MPT-AIDMPF algo-
rithm with MPT-LCVMPF for all nine video sequences in term
of identity switches (IDSW). Table 2 shows that our proposed
MPT-AIDMPF algorithm reduces the number of ID switches to
zero for most of the video sequences. To further verify the effec-
tiveness of the proposed MPT-AIDMPF algorithm, a comparative
experiment is carried out on the PETS2009S2L1–View1 video se-
quence using the pedestrian detections provided by the website1. It
should be noted that the PETS2009S2L1–View1 video sequence is
the most commonly used for comparing the performance of MPT
algorithms [24]. The PETS2009S2L1–View1 video sequence shows
pedestrians walking across an intersection in various directions
at variable speed [13]. Table 3 shows the quantitative comparison
of the proposed MPT-AIDMPF with other state-of-the-art MPT
algorithms. It can be seen that compared with the other MPT al-
gorithms, the proposed MPT-AIDMPF algorithm achieves the best
performance in MOTA, MOTP and IDSW scores. The reason for
the improved performance is because the proposed MPT-AIDMPF
algorithm uses both the informative observations (pedestrian detec-
tions) and the propagated particles to accurately track pedestrians.

6 CONCLUSION
In this paper, we improve the performance of the Mask R-CNN for
multiple pedestrian detection by using the post-processing steps.
Furthermore, we presented a robust adaptive information driven
motion model for multiple pedestrian tracking particle filter, MPT-
AIDMPF, which enhances the tracking accuracy and precision as
well as reduces the number of tracker ID switches in tracking-
by-detection approaches. The proposed MPT-AIDMPF algorithm
uses an efficient adaptive information driven motion model that
retains information contained in the highly weighted particles of a
given pedestrian tracker and injects new particles generated from
the associated pedestrian detection with the tracker. The proposed
MPT-AIDMPF algorithmwas evaluated onmultiple video sequences
taken from two publicly available datasets, where it achieves supe-
rior performance as compared to the MPT-LCVMPF algorithm and
1http://www.milanton.de/

10

CASCON’20, November 10–13, 2020, Toronto, Canada Al-Shatnawi and Asif, et al.

Table 2: The identity switches (IDSW) score for the proposed MPT-AIDMPF and MPT-LCVMPF algorithms.

Method PETS2009S2L1 EPFL-Terrace
View1 View5 View6 View7 View8 Camera0 Camera1 Camera2 Camera3

MPT-LCVMPF 8 48 96 47 71 2 4 5 0
MPT-AIDMPF 0 2 1 0 1 0 0 0 0

Table 3: Quantitative comparison between proposed MPT-
AIDMPF algorithm and different MPT algorithms on the
PETS2009S2L1–View1 video sequence. The best results are
shown in bold.

MPT algorithm MOTA↑ MOTP↑ IDSW↓
Gomez [16] 51.1% 75.0% 27
Yoon [38] 66.6% 57.4% 34
GSDL [15] 80.3% 61.5% 33
MPT-AIDMPF 92.0% 81.20% 12
Evaluation metrics with symbol (↑) indicates higher
score is better; while for evaluation metrics with
symbol (↓) indicates lower score is better

other state-of-the-art MPT algorithms. Moreover, it was shown that
considering adaptive information driven motion (AIDM) model is
important to improve the performance of MPT algorithm in video
surveillance applications.

7 ACKNOWLEDGMENTS
This research is supported in part by Natural Science and Engi-
neering Research Conference (NSERC), Canada through the Create
grant entitled CreateDAV: Data Analytics and Visualization. The
authors would like to acknowledge support from IBM in carrying
out the project. Computations were performed on the SOSCIP Con-
sortium’s [Parallel-CPU, GPU and/or Cloud Analytics] computing
platform(s). SOSCIP is funded by FedDev Ontario, IBM Canada Ltd.
and Ontario academic member institutions.

REFERENCES
[1] Frank J. Aherne, Neil A. Thacker, and Peter I. Rockett. 1998. The Bhattacharyya

Metric as an Absolute Similarity Measure for Frequency Coded Data. Kybernetika
34 (1998), 363–368.

[2] M. Al-Shatnawi, V. Movahedi, A. Asif, and A. An. 2018. Improving Real-Time
Pedestrian Detection Using Adaptive Confidence Thresholding and Inter-Frame
Correlation. In 2018 IEEE 20th International Workshop on Multimedia Signal Pro-
cessing (MMSP). 1–5. https://doi.org/10.1109/MMSP.2018.8547103

[3] M. Andriluka, S. Roth, and B. Schiele. 2008. People-Tracking-by-Detection and
People-Detection-by-Tracking. In 2008 IEEE Conference on Computer Vision and
Pattern Recognition. 1–8. https://doi.org/10.1109/CVPR.2008.4587583

[4] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. 2002. A Tutorial on
Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE
Transactions on Signal Processing 50, 2 (Feb. 2002), 174–188. https://doi.org/10.
1109/78.978374

[5] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft. 2016. Simple Online and
Realtime Tracking. In 2016 IEEE International Conference on Image Processing
(ICIP). 3464–3468. https://doi.org/10.1109/ICIP.2016.7533003

[6] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. Van Gool. 2011.
Online Multiperson Tracking-by-Detection from a Single, Uncalibrated Camera.
IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 9 (Sept. 2011),
1820–1833. https://doi.org/10.1109/TPAMI.2010.232

[7] J. Chen, H. Sheng, Y. Zhang, and Z. Xiong. 2017. Enhancing Detection Model for
Multiple Hypothesis Tracking. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW). 2143–2152. https://doi.org/10.1109/
CVPRW.2017.266

[8] P. Dollar, C. Wojek, B. Schiele, and P. Perona. 2009. Pedestrian Detection: A
Benchmark. In 2009 IEEE Conference on Computer Vision and Pattern Recognition.
304–311. https://doi.org/10.1109/CVPR.2009.5206631

[9] R. Douc and O. Cappe. 2005. Comparison of Resampling Schemes for Particle
Filtering. In ISPA 2005. Proceedings of the 4th International Symposium on Image
and Signal Processing and Analysis, 2005. 64–69. https://doi.org/10.1109/ISPA.
2005.195385

[10] V. Eiselein, E. Bochinski, and T. Sikora. 2017. Assessing Post-Detection Filters for
a Generic Pedestrian Detector in a Tracking-by-Detection Scheme. In 2017 14th
IEEE International Conference on Advanced Video and Signal Based Surveillance
(AVSS). 1–6. https://doi.org/10.1109/AVSS.2017.8078484

[11] Víctor Elvira, Luca Martino, David Luengo, andMónica F. Bugallo. 2016. Heretical
Multiple Importance Sampling. IEEE Signal Processing Letters 23, 10 (Oct. 2016),
1474–1478. https://doi.org/10.1109/LSP.2016.2600678

[12] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and
Andrew Zisserman. 2010. The Pascal Visual Object Classes (VOC) Challenge.
International Journal of Computer Vision 88, 2 (June 2010), 303–338. https:
//doi.org/10.1007/s11263-009-0275-4

[13] J. Ferryman and A. Shahrokni. 2009. PETS2009: Dataset and Challenge. In 2009
Twelfth IEEE International Workshop on Performance Evaluation of Tracking and
Surveillance. 1–6. https://doi.org/10.1109/PETS-WINTER.2009.5399556

[14] F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua. 2008. Multicamera People Tracking
with a Probabilistic Occupancy Map. IEEE Transactions on Pattern Analysis and
Machine Intelligence 30, 2 (Feb. 2008), 267–282. https://doi.org/10.1109/TPAMI.
2007.1174

[15] Zeyu Fu, Pengming Feng, Federico Angelini, Jonathon Chambers, and
Syed Mohsen Naqvi. 2018. Particle PHD Filter Based Multiple Human Track-
ing Using Online Group-Structured Dictionary Learning. IEEE Access 6 (2018),
14764–14778. https://doi.org/10.1109/ACCESS.2018.2816805

[16] David Gerónimo Gomez, Frédéric Lerasle, and Antonio M. López Peña. 2012.
State-Driven Particle Filter for Multi-Person Tracking. In Advanced Concepts for
Intelligent Vision Systems, 14th International Conference) (Ed.). Springer, Berlin,
Heidelberg, 467–478. https://doi.org/10.1007/978-3-642-33140-4_41

[17] N. J. Gordon, D. J. Salmond, and A. F. M. Smith. 1993. Novel Approach to
Nonlinear/Non-Gaussian Bayesian State Estimation. IEE Proceedings F (Radar
and Signal Processing) 140, 2 (April 1993), 107–113. https://doi.org/10.1049/ip-f-
2.1993.0015

[18] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. 2017. Mask
R-CNN. In Proceedings of the IEEE International Conference on Computer Vision.
2961–2969.

[19] JanHosang,MohamedOmran, Rodrigo Benenson, and Bernt Schiele. 2015. Taking
a Deeper Look at Pedestrians. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 4073–4082.

[20] T. Kailath. 1967. The Divergence and Bhattacharyya Distance Measures in Signal
Selection. IEEE Transactions on Communication Technology 15, 1 (Feb. 1967),
52–60. https://doi.org/10.1109/TCOM.1967.1089532

[21] H. W. Kuhn. 2005. The Hungarian Method for the Assignment Problem. Naval
Research Logistics (NRL) 52, 1 (Feb. 2005), 7–21. https://doi.org/10.1002/nav.20053

[22] Tian-cheng Li, Gabriel Villarrubia, Shu-dong Sun, Juan M. Corchado, and Javier
Bajo. 2015. Resampling Methods for Particle Filtering: Identical Distribution,
a New Method, and Comparable Study. Frontiers of Information Technology &
Electronic Engineering 16, 11 (Nov. 2015), 969–984. https://doi.org/10.1631/FITEE.
1500199

[23] Xi Li, Weiming Hu, Chunhua Shen, Zhongfei Zhang, Anthony Dick, and Anton
Van Den Hengel. 2013. A Survey of Appearance Models in Visual Object Tracking.
ACM Trans. Intell. Syst. Technol. 4, 4 (Oct. 2013), 58:1–58:48. https://doi.org/10.
1145/2508037.2508039

[24] Wenhan Luo, Junliang Xing, Anton Milan, Xiaoqin Zhang, Wei Liu, Xiaowei
Zhao, and Tae-Kyun Kim. 2017. Multiple Object Tracking: A Literature Review.
arXiv:1409.7618 [cs] (May 2017). arXiv:1409.7618 [cs]

[25] L. Martino, V. Elvira, and F. Louzada. 2016. Weighting a Resampled Particle in
Sequential Monte Carlo. In 2016 IEEE Statistical Signal Processing Workshop (SSP).
1–5. https://doi.org/10.1109/SSP.2016.7551711

[26] L. Martino, V. Elvira, D. Luengo, and J. Corander. 2017. Layered Adaptive
Importance Sampling. Statistics and Computing 27, 3 (May 2017), 599–623.
https://doi.org/10.1007/s11222-016-9642-5

11

https://doi.org/10.1109/MMSP.2018.8547103
https://doi.org/10.1109/CVPR.2008.4587583
https://doi.org/10.1109/78.978374
https://doi.org/10.1109/78.978374
https://doi.org/10.1109/ICIP.2016.7533003
https://doi.org/10.1109/TPAMI.2010.232
https://doi.org/10.1109/CVPRW.2017.266
https://doi.org/10.1109/CVPRW.2017.266
https://doi.org/10.1109/CVPR.2009.5206631
https://doi.org/10.1109/ISPA.2005.195385
https://doi.org/10.1109/ISPA.2005.195385
https://doi.org/10.1109/AVSS.2017.8078484
https://doi.org/10.1109/LSP.2016.2600678
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1109/PETS-WINTER.2009.5399556
https://doi.org/10.1109/TPAMI.2007.1174
https://doi.org/10.1109/TPAMI.2007.1174
https://doi.org/10.1109/ACCESS.2018.2816805
https://doi.org/10.1007/978-3-642-33140-4_41
https://doi.org/10.1049/ip-f-2.1993.0015
https://doi.org/10.1049/ip-f-2.1993.0015
https://doi.org/10.1109/TCOM.1967.1089532
https://doi.org/10.1002/nav.20053
https://doi.org/10.1631/FITEE.1500199
https://doi.org/10.1631/FITEE.1500199
https://doi.org/10.1145/2508037.2508039
https://doi.org/10.1145/2508037.2508039
https://arxiv.org/abs/1409.7618
https://doi.org/10.1109/SSP.2016.7551711
https://doi.org/10.1007/s11222-016-9642-5

MPT Based on Modified Mask R-CNN and Enhanced PF using an AIDM Model CASCON’20, November 10–13, 2020, Toronto, Canada

[27] Anton Milan, Laura Leal-Taixe, Ian Reid, Stefan Roth, and Konrad Schindler. 2016.
MOT16: A Benchmark for Multi-Object Tracking. arXiv:1603.00831 [cs] (March
2016). arXiv:1603.00831 [cs]

[28] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN: To-
wards Real-Time Object Detection with Region Proposal Networks. In Advances
in Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett (Eds.). Curran Associates, Inc., 91–99.

[29] Ricardo Sanchez-Matilla, Fabio Poiesi, and Andrea Cavallaro. 2016. Online Multi-
Target Tracking with Strong and Weak Detections. In Computer Vision – ECCV
2016 Workshops (Lecture Notes in Computer Science). Springer, Cham, 84–99.
https://doi.org/10.1007/978-3-319-48881-3_7

[30] S. Santhoshkumar, S. Karthikeyan, and B. S. Manjunath. 2013. Robust Multiple
Object Tracking by Detection with Interacting Markov Chain Monte Carlo. In
2013 IEEE International Conference on Image Processing. 2953–2957. https://doi.
org/10.1109/ICIP.2013.6738608

[31] Guang Shu, Afshin Dehghan, Omar Oreifej, Emily Hand, and Mubarak Shah.
2012. Part-Based Multiple-Person Tracking with Partial Occlusion Handling. In
2012 IEEE Conference on Computer Vision and Pattern Recognition. 1815–1821.
https://doi.org/10.1109/CVPR.2012.6247879

[32] Fabian Sigges, Marcus Baum, and Uwe D. Hanebeck. 2017. A Likelihood-Free
Particle Filter for Multi-Obiect Tracking. In 2017 20th International Conference on
Information Fusion (Fusion). 1–5. https://doi.org/10.23919/ICIF.2017.8009796

[33] A. W. M. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. Dehghan, and
M. Shah. 2014. Visual Tracking: An Experimental Survey. IEEE Transactions on
Pattern Analysis and Machine Intelligence 36, 7 (July 2014), 1442–1468. https:
//doi.org/10.1109/TPAMI.2013.230

[34] Nan Song, Kezhi Li, and Wei Chen. 2018. Robust Visual Tracking Via Adap-
tive Structure-Enhanced Particle Filter. In 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). 1578–1582. https://doi.org/10.
1109/ICASSP.2018.8461727

[35] Rainer Stiefelhagen, Keni Bernardin, Rachel Bowers, John Garofolo, Djamel
Mostefa, and Padmanabhan Soundararajan. 2006. The CLEAR 2006 Evaluation.
In Multimodal Technologies for Perception of Humans (Lecture Notes in Computer
Science). Springer, Berlin, Heidelberg, 1–44. https://doi.org/10.1007/978-3-540-
69568-4_1

[36] Xuedong Wang, Tiancheng Li, Shudong Sun, and Juan M. Corchado. 2017. A
Survey of Recent Advances in Particle Filters and Remaining Challenges for
Multitarget Tracking. Sensors (Basel, Switzerland) 17, 12 (Nov. 2017). https:
//doi.org/10.3390/s17122707

[37] Tao Yang, Richard S. Laugesen, Prashant G. Mehta, and Sean P. Meyn. 2016.
Multivariable Feedback Particle Filter. Automatica (Journal of IFAC) 71, C (Sept.
2016), 10–23. https://doi.org/10.1016/j.automatica.2016.04.019

[38] J. H. Yoon,M. H. Yang, J. Lim, and K. J. Yoon. 2015. BayesianMulti-Object Tracking
Using Motion Context from Multiple Objects. In 2015 IEEE Winter Conference on
Applications of Computer Vision. 33–40. https://doi.org/10.1109/WACV.2015.12

[39] Fengwei Yu, Wenbo Li, Quanquan Li, Yu Liu, Xiaohua Shi, and Junjie Yan. 2016.
POI: Multiple Object Tracking with High Performance Detection and Appearance
Feature. In Computer Vision – ECCV 2016 Workshops (Lecture Notes in Computer
Science). Springer, Cham, 36–42. https://doi.org/10.1007/978-3-319-48881-3_3

[40] Zhong-Qiu Zhao, Peng Zheng, Shou-Tao Xu, and Xindong Wu. 2019. Object
Detection With Deep Learning: A Review. IEEE Transactions on Neural Networks
and Learning Systems 30, 11 (Nov. 2019), 3212–3232. https://doi.org/10.1109/
TNNLS.2018.2876865

12

https://arxiv.org/abs/1603.00831
https://doi.org/10.1007/978-3-319-48881-3_7
https://doi.org/10.1109/ICIP.2013.6738608
https://doi.org/10.1109/ICIP.2013.6738608
https://doi.org/10.1109/CVPR.2012.6247879
https://doi.org/10.23919/ICIF.2017.8009796
https://doi.org/10.1109/TPAMI.2013.230
https://doi.org/10.1109/TPAMI.2013.230
https://doi.org/10.1109/ICASSP.2018.8461727
https://doi.org/10.1109/ICASSP.2018.8461727
https://doi.org/10.1007/978-3-540-69568-4_1
https://doi.org/10.1007/978-3-540-69568-4_1
https://doi.org/10.3390/s17122707
https://doi.org/10.3390/s17122707
https://doi.org/10.1016/j.automatica.2016.04.019
https://doi.org/10.1109/WACV.2015.12
https://doi.org/10.1007/978-3-319-48881-3_3
https://doi.org/10.1109/TNNLS.2018.2876865
https://doi.org/10.1109/TNNLS.2018.2876865

Understanding Brain Dynamics for Color Perception Using
Wearable EEG Headband

Mahima Chaudhary
Lassonde School of Engineering
York University, Toronto, Canada

cmahima@yorku.ca

Sumona Mukhopadhyay
Lassonde School of Engineering
York University, Toronto, Canada

mukhopas@yorku.ca

Marin Litoiu
Lassonde School of Engineering
York University, Toronto, Canada

mlitoiu@yorku.ca

Lauren E Sergio
Faculty of Health

York University, Toronto, Canada
lsergio@yorku.ca

Meaghan S Adams
Faculty of Health

York University, Toronto, Canada
msadams@yorku.ca

ABSTRACT
The perception of color is an important cognitive feature of the
human brain. The variety of colors that impinge upon the human
eye can trigger changes in brain activity which can be captured us-
ing electroencephalography (EEG). In this work, we have designed
a multiclass classification model to detect the primary colors from
the features of raw EEG signals. In contrast to previous research,
our method employs spectral power features, statistical features as
well as correlation features from the signal band power obtained
from continuous Morlet wavelet transform instead of raw EEG, for
the classification task. We have applied dimensionality reduction
techniques such as Forward Feature Selection and Stacked Au-
toencoders to reduce the dimension of data eventually increasing
the model’s efficiency. Our proposed methodology using Forward
Selection and Random Forest Classifier gave the best overall accu-
racy of 80.6% for intra-subject classification. Our approach shows
promise in developing techniques for cognitive tasks using color
cues such as controlling Internet of Thing (IoT) devices by looking
at primary colors for individuals with restricted motor abilities.

KEYWORDS
Wearable computing, Machine learning, Brain Computer Interface

1 INTRODUCTION
The advancements in sensor technologies have facilitated the
growth of wearable headband devices for development in Brain-
Computer Interface (BCI) applications. One such device is the
Muse 2 headband 1 which is a portable non-invasive device that
allows capturing of EEG signals. In this work, we analyzed the rela-
tionship between EEG signals and color stimuli using the Muse 2
headband. The objective was to extract the information (features)
from EEG signals to classify or distinguish them based on the
red(R), green(G), and blue(B) colors that were used to stimulate

1https://choosemuse.com/

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honoured. For all other uses, contact the owner/author(s).
CASCON’20, November 10-13 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

the cortical activity. The classification result could be potentially
used in an integrated IoT environment where it could be used to
control appliances [28, 36]. One such application could be, where
people with restricted motor ability could switch on/off appli-
ances by looking at a particular color. The study that we do is a
proof of concept, it can be extended to other colors also. However,
the proposed application would require input and effort from spe-
cialists in other fields too. The work can also be expanded in the
healthcare field where it could be used to detect color blindness
[11].
Previously, classification tasks like these have been performed
[8, 13, 29] using sophisticated medical-grade EEG devices with
multiple sensors but in our work, we used a simple four-electrode/
channel consumer-friendly device to record the raw EEG signals.
The use of Muse headband allowed portability to our work and
its integration with IoT. Also contrary to previous approaches, in
our study, we used features like power, variance in power, various
pairwise cross-correlation features and several other statistical
features from the signal band power obtained from continuous
Morlet wavelet transform for classification task instead of raw EEG
signals or event-related potential (ERP) values. The raw EEG data
was preprocessed and features that were important to study the
effect of color stimuli on EEG were extracted from the data using
digital signal processing techniques.
We mainly focused on Alpha and Beta frequency bands, as these
are most likely to be stimulated when a person is alert, attentive,
or concentrating and not performing a high cognitive activity. We
employed various linear and non-linear Machine Learning (ML)
algorithms namely, K Nearest Neighbors, Support Vector Machine
(SVM), Logistic Regression, Random Forest, models like Artificial
Neural Networks, and boosting approaches like Gradient Boost-
ing, to perform the three-class classification task. We investigated
the classification performance of ML algorithms both on a single
person’s data (intra-subject) as well as on combining the data from
different people (inter-subject). We also applied dimensionality
reduction techniques like forward feature selection and stacked
autoencoders to increase the performance of the architecture. The
main research questions addressed in this paper are:

• Is it possible to distinguish EEG signals from a four-channel
wearable headband, produced by RGB color exposure, by
training ML models on features that account for statistical,
spectral and correlation properties of EEG?

1

13

CASCON’20, November 10-13 2020, Toronto, Canada C, Mahima, et al.

• Can feature reduction techniques like Forward-Feature Se-
lection(supervised) and Autoencoders (unsupervised) make
the ML algorithms for EEG classification more efficient?

• Does the performance of ML algorithms differ for inter-
subject and intra-subject classification?

The rest of the paper is organized as follows. Section 2 contains
the related work. In Section 3 we describe our proposed method-
ology. Section 4 presents our evaluation metrics followed by exper-
imental results in Section 5. Concluding remarks are presented in
Section 6.

2 RELATED WORK
In recent years, researchers have used wearable headbands to an-
alyze the response of EEG under different stimuli. K. Johannesen
et. al.[19] used SVM to derive useful EEG features in order to pre-
dict working memory performance in schizophrenia and healthy
adults. The authors in [9] used a regression model trained on data
gathered from cognitive tasks (collected from a 6-channel EEG
headset) in order to model mental workload using EEG features
for intelligent systems. In [3, 23] the EEG data has been used to
examine driver’s alertness during driving sessions.
Diane Aclo et al.[1] used a 14 channel EEG device to monitor the
effect of color stimuli on people. They used features like power
spectral density and waveform length for classification using an
Artificial Neural network. In [2] feature selection algorithm has
been investigated for EEG signal due to RGB colors using screw-
able gold EEG electrodes. Arnab Rakshit et al. [27] proposed the
use of a fuzzy space classifier to discriminate colors from EEG by
using a 10 electrode device. In [26], an Emotiv headset has been
used to study separation and classification of EEG response to
color stimuli by using SVM. Zhang et el. in [34] showed how alpha
and beta band powers are affected by stimuli from RGB colors. All
the above classification tasks have been conducted using com-
plicated EEG devices in contrast to our work. Furthermore, our
proposed method achieves a high accuracy using the Muse head-
band. Recently, the use of portable headband devices have gained
popularity due to their ease of use and accessibility. The authors in
[35, 36] have used G.tec’s MOBIlab four channel portable device in
a problem similar to ours. However, their method yielded a lower
accuracy of 58% in comparison to our proposed approach. A head-
band from Mindwave Neurosky has also been used [4] in a task
similar to our. However, the authors achieved a lower accuracy
of 53% with their method. Our results have shown significant im-
provement. In many studies, Muse has also been used to acquire
EEG signals for various classification tasks. EEG-based excitement
detection in immersive environments has been studied by Jason
et al in [30]. Krigolson et al. [21]used Muse headband to Assess
Human visual attention by assigning subjects an "oddball"task
wherein they saw a series of infrequently and frequently appearing
circles and were instructed to count the number of target circles
that they saw. However they did not apply any ML model in their
work. In [7] classification task has been performed to classify recre-
ational and instructional video sessions using Muse. They used
spectral power and connectivity features from raw EEG in their
work and got the best performance with SVM and Logistic Regres-
sion model.

3 PROPOSED METHODOLOGY
The main frequencies captured by EEG data are in form of spe-
cific human EEG signals namely Delta with frequency 3Hz or be-
low (Deep dreamless sleep), Theta with frequency from 3.5-8 Hz
(Deep meditation), Alpha with frequency 8-12 Hz (Calm relaxed
yet alert state), Beta with frequency 13-30 Hz (Active, busy think-
ing) and Gamma with a frequency greater than 41 Hz (Higher
mental activity)[20]. Each type of frequency band signal repre-
sents a different state of consciousness of mind ranging from sleep
to active thinking. We mainly focused on Alpha and Beta frequency
bands. The work in this paper has been accomplished in the follow-
ing five phases: data acquisition, data cleaning and preprocessing,
feature extraction, dimensionality reduction, and classification of
data into red, green, and blue. We shall explain each component
in detail.

3.1 Data Acquisition
Muse headband consists of four channels/electrodes namely AF7
and TP9 on the left and AF8 and TP10 on the right. These are
named and positioned according to the International 10-20 Sys-
tem 2, as shown in Figure 1. The sampling rate of Muse is 256Hz.
The data from all channels was collected. There were eight sub-
jects (aged 18-30yrs) who participated in the visual experiment.
The experiment was conducted using the University of Notting-
ham’s Psychopy 3 [25] toolbox. Five trials each four minutes long
were conducted for each participant at different times. In each
trial, a color from RGB was shown in a random order, twenty times
each, for a period of two seconds each, such that a black color was
shown for two seconds between each of the RGB colors to pro-
vide a baseline to the experiment. The experiment was conducted
in a dark room and the subjects were told to do minimum facial
movements and eye blinks. A similar protocol has been followed in
previous experiments too [1, 28, 31]. The time period of the stimu-
lus or the main color was kept small to only capture the effect of
color on the cortical excitability. The data from Muse headband
was collected using Muse SDK3 and a third party application for
Muse called Mind Monitor4. The Mind Monitor application indi-
cates potential jaw clenches and eye blinks in the EEG data. We
used this capability as a marker to get the starting timestamp of
the data. The experiment started with a jaw clench which was
captured by Mind Monitor and from that time stamp, the data was
separated according to the color stimuli. The architecture we used
is shown in Figure 2 and the detailed experimental setup is shown
in Figure 3.

FPZ
AF7

TP10

TP9

AF8

AF7

Channel

Reference

AF8

TP9 TP10

Figure 1: The 10-20 system of electrode placement for Muse

2https://en.wikipedia.org/wiki/10%E2%80%9320_system_(EEG)
3https://choosemuse.com/development/
4https://mind-monitor.com/

2

14

Understanding Brain Dynamics for Color Perception Using Wearable EEG Headband CASCON’20, November 10-13 2020, Toronto, Canada

Raw EEG data
for all 4 channels

Alpha and Beta band power
of all 4 channels from CWT

Wavelet
Transform

EEG data recorded
from muse

Spectral
Features

Correlation
Features

Statistical
Features

Dimensionality
reduction

Autoencoder Forward
selection

K Nearest
Neighbors

Data Cleaning

Support Vector
Machine

Logistic
Regression

Random Forest

Neural Network

Gradient Boost
Classifier

Red/Green/Blue

Red/Green/Blue

Red/Green/Blue

Red/Green/Blue

Red/Green/Blue

Red/Green/Blue

Feature Extraction

Features fed directly to
the classifier without

dimensionality
reduction

TP 10 Alpha and Beta Power

AF 7 Alpha and Beta Power

AF 8 Alpha and Beta Power

TP 9 Alpha and Beta Power

8

-10

0

10

-10

0

4

14

0

6

-14

0

1s 3.5s2.25s

1s 3.5s2.25s

1s 3.5s2.25s

1s 3.5s2.25s

760

800

840

Figure 2: The architecture used in the methodology.

Black Color
(2s)

Repeat 20 times

Color Stimuli
(2s)

Black Color
(2s)

Black Color
(2s)

Color Stimuli
(2s)

Color Stimuli
(2s)

Jaw Clench

Figure 3: The experiment protocol for data acquisition

3.2 Data cleaning and preprocessing
The raw EEG data is generally very noisy and it needs to be cleaned
and pre-processed in order to remove artifacts from it. In our
methodology, we cleaned the data in two steps. Firstly we ana-
lyzed the data using Matlab’s EEG lab software [5] and labeled
any visible unwanted spikes and noise manually from the data.
Secondly, we divided the data into small time windows of 50 ms
and computed the variance of data in each window, if it was more
than a selected threshold then the time window was flagged. We
also examined the individual subject’s data and used the trial that
has a minimum number of jaw clenches and eye blinks for further
experimentation.

3.3 Feature Extraction
Feature extraction is a very vital part of our problem. The use of raw
EEG data did not give good results in our experiment and so we
used Time-Frequency analysis to find frequency band coefficients
that were most relevant for our problem i.e. Alpha coefficients(8-
12Hz) and Beta coefficients(13-30Hz). In past works, [7, 10] Dis-
crete wavelet transform(DWT) has been used to extract the fre-
quency bands of interest. However in our case, we were not in-
terested in all the frequency bands, instead, we only considered
alpha and beta bands. The use of DWT would have given us an
improper breakdown of bands with the Alpha band in the range
of 8-16Hz and beta in range of 16-32Hz and therefore to avoid
this we used Continuous wavelet transform method as done in
[22, 32] to extract the bands of interest. The mother wavelet that
we used was the Morlet wavelet. The Morlet wavelet has a peak in
the center after which it tapers to the edges. The complex Morlet
wavelet can be obtained by the convolution of a Gaussian with a

sine wave and it is represented by the following equation:

w(t , f) = A∗exp(−t 2/2σ2
t)exp(2π f t) (1)

where t is time, A=(σt
p
π)−1/2, where σt is duration of the

wavelet and f is the frequency of wavelet. We extracted the power
of alpha and beta bands from our EEG signal by convolution of
Morlet wavelets of frequencies ranging from 8Hz to 30Hz along
the whole signal at each time point. This was done with the help
of Fast Fourier Transform (FFT). For each frequency, we first per-
formed FFT of the signal and then the FFT of the Morlet wavelet.
We then performed the convolution of the two transformed signals
and applied Inverse Fourier transform to get the time-domain rep-
resentation of data. The magnitude of the complex transformed
signal was then extracted and it was squared to obtain the power
across all time points. The important thing here is that we rejected
the imaginary part as it gave us the phase information and the real
part just gave us the band-passed signal but what we were more
interested in was the power therefore we extracted the magnitude
of the complex signal. We got a spectrogram like representation of
the power of the signal, with columns denoting the time points and
rows denoting the frequencies from 8Hz to 30Hz. Figure 4 shows
the spectrograms for RGB colors. The Morlet wavelet helped to
reduce edge artifacts and noise from the data. It also helped to
obtain a balance in temporal precision and frequency precision.
The sampling rate of the signal and the Morlet wavelet was kept
the same in order to perform convolution. Figure 5 shows the EEG
data with and without the application of the Morlet wavelet. In Al-
gorithm 1 we summarize the procedure we followed to find alpha
and beta band power from the raw EEG signal. We removed the
flagged artifacts that we got in Data cleaning step after applying
the wavelet transform. This step was done after the transform was
applied so that we did not reduce the points below the sampling
frequency of 256Hz. The features were extracted from the remain-
ing data. The features accounted for the spectral, correlation as
well as statistical properties of the data which were normalized
using z-score. We experimented with different time windows of
length 100ms, 200ms, 500ms, 1000ms. Each window was taken
with a 50% overlap with the next window. Each window was used

3

15

CASCON’20, November 10-13 2020, Toronto, Canada C, Mahima, et al.
Fre

qu
en
cy

Fre
qu
en
cy

Fre
qu
en
cy

Time(s) Time(s)Time(s)

22

15

8
1.8 2.6 3.4

22 22

15 15

8 8
1.8 1.82.6 2.63.4 3.4

Figure 4: Spectrograms of Red, Green, and Blue respectively. Each spectrogram is made by the EEG obtained from an average of 20
trials (also called Event-related potential) of Subject 1 from channel AF7. The spectrograms show that on the onset of activity at 2.4
sec there is an increase in the power of alpha and low beta frequency band in case of green and red however the power of alpha-band
decreases and that of low beta increases in case of blue on the onset of stimuli.

to extract a single row of features vector. The next feature vector
was obtained by moving the window half of its length.

Algorithm 1: How to extract alpha and beta band powers
from Raw EEG data from Morlet wavelet convolution

Input: Raw EEG data
Output: Alpha and Beta band power in form of spectrogram
1. Initialize the FFT parameters i.e. the minimum and

maximum frequency, the time period of the wavelet which
is equal to the sampling rate of the signal, the result matrix.

2. Find the FFT of the Raw EEG data.
3. while Frequency ≤ M axF r equenc y do

4. Create a complex morlet wavelet from frequency by
convolution of sine wave and gaussian.

5. Find the FFT of the wavelet.
6. Find the convolution of FFT of signal and FFT of

wavelet by pointwise multiplication.
7. Find inverse fourier transform of convoluted signal to

convert back to time domain.
8. Extract the magnitude of the complex signal and

square it to get the absolute power component of the
signal and add it to the result matrix.

end

Si
gn

al
 (m

ic
ro

vo
lts

)

Time (s)
Figure 5: The original EEG signal and its Morlet-convolution
version using a wavelet of 30 Hz

3.3.1 Spectral features. These features were calculated by taking
into account the average power of each band, the variance in the
power of each band, and the hemispherical difference in each

band over a time window for each of the four channels. Thus we
got 18 features(8 average power coefficients for each channel, 8
variance power coefficient for each channel, and 2 hemispheric
difference coefficients) for each sample that was formed by a single
time window. This method was similar to the one followed in [7].
This set of spectral features are the most commonly used features
in many EEG related studies as they allow the model to evaluate
any potential changes in the absolute band power due to stimuli.

3.3.2 Pairwise Correlation features. In addition to the spectral fea-
tures, it is also important to study the correlation among different
frequency bands from different channels. We calculated this using
a pairwise correlation in each time window for each band and
each electrode. [7] follows this method too. We got a total of 28
correlation features using this method from a single time window.
These features were helpful to find cross-region similarity as some
of our data was discontinuous because of artifact removal.

3.3.3 Statistical Features. Features that represent the statistical
properties of the signal like Kurtosis, Skewness, Shannon Entropy
and Hjorth Parameters were also extracted.

Kurtosis, Skewness and Shannon Entropy . Kurtosis is a measure
of outliers in data. Data with less value of Kurtosis has less number
of outliers. The Skewness measures the asymmetry in data. The
entropy is a measure of information in data. We calculated each of
these parameters both for alpha and beta bands, therefore we got
24 features from these properties.

Hjorth Parameters. They are indicators of statistical properties
used in signal processing in the time domain introduced by Bo
Hjorth in 1970 [6]. We obtained 16 Hjorth parameters for alpha and
beta band for all 4 channels. We calculated two Hjorth parameters
namely, the mobility parameter as in equation 2 and complexity
parameter as in equation 3 on alpha and beta power bands that
we obtain from CWT.

Mobi l i t y =

√√√√ var
dy(t)

dt

var y(t)
(2)

Complexi t y =

√√√√ Mobi l i t y
dy(t)

dt

Mobi l i t y(y(t))
(3)

Here y(t) is the alpha or beta band power for a time window. We
got a total of 40 statistical features. Table 1 shows all the features

4

16

Understanding Brain Dynamics for Color Perception Using Wearable EEG Headband CASCON’20, November 10-13 2020, Toronto, Canada

Table 1: The features obtained from raw data.

Avg. Power
features

Var. Power
features

Hem. diff
features

Correlation
features

Kurtosis Sknewness Shannon
Entropy

Hjorth
Parameters

Alpha
Band

TP9, TP10,
AF7, AF8

(4)

TP9, TP10,
AF7, AF8

(4)

|Left sensors-
right sensors|

(1)

Cross corr of alpha
& beta of all sensors

TP9, TP10,
AF7, AF8

(4)

TP9, TP10,
AF7, AF8

(4)

TP9, TP10,
AF7, AF8

(4)

TP9, TP10,
AF7, AF8

(8)

Beta
Band

TP9, TP10,
AF7, AF8

(4)

TP9, TP10,
AF7, AF8

(4)

|Left sensors-
right sensors|

(1)

Cross corr of alpha
& beta of all sensors

TP9, TP10,
AF7, AF8

(4)

TP9, TP10,
AF7, AF8

(4)

TP9, TP10,
AF7, AF8

(4)

TP9, TP10,
AF7, AF8

(8)

No. of
Features

8 8 2 28 8 8 8 16

obtained from raw EEG data. Figure 6 shows the visualization of
features in 2-D space by applying Linear Discriminant Analysis
[33]. It shows that the three classes are almost separable.

Figure 6: Visualization of data of Subject 1 for a single trial in
2-D space using Linear Discriminant Ananlysis

3.4 Dimensionality reduction
The process of feature reduction is important because it has many
advantages like reduced training times, simplified and interpretable
models, reduced chances of overfitting i.e. lesser variance and less
impact of the curse of dimensionality. We performed feature selec-
tion/dimensionality reduction by two different methods. Firstly
we used the Forward Feature selection technique which is a super-
vised approach and secondly, we used Autoencoders [15] which is
an unsupervised approach for feature reduction. We elaborate on
them in the following subsection.

3.4.1 Forward Feature Selection. In this method, we started by
selecting one feature and calculating the metric value for each
feature on the cross-validation dataset. The feature offering the
best metric value was selected and appended to a list of features.
The process was repeated next time with two features, one selected
from the previous iteration and the other one selected from the
set of all features not present in the set of already chosen features.
The metric value(f-measure) was computed for each set of two
features and features offering the best metric value were appended
to the list of relevant features. This process was repeated until we
had the desired number of features. The number of features was
reduced to 10 features. The reduced feature set of size ten was
chosen after experimenting with feature sets of different sizes,

the top ten features gave the best balance between accuracy and
number of features.

3.4.2 Stacked Autoencoders for Feature Extraction. Autoencoders
are neural networks that can be used to reduce the data into a low
dimensional latent space by stacking multiple non-linear trans-
formations(layers). They have an encoder-decoder architecture.
The encoder maps the input to latent space and the decoder re-
constructs the input. The data in latent space is supposed to have
encoded the most important features and has a dimension lesser
than the original dimension of data. This data in the latent space
can be used as a reduced feature set and the models can be trained
on this data. The number of features was reduced to 10(similar to
that using forward feature selection) using a stacked autoencoder
structure shown in Figure 7. This architecture was chosen after an
exhaustive experiment with various architectures.

Input_layer
Input
Output

(None,46)
(None,46)

Encoder_layer1
 Input
Output

(None,46)
(None,32)

Encoder_layer2
 Input
Output

(None,32)
(None,18)

Encoder_layer3
Input
Output

(None,18)
(None,10)

Decoder_layer1
Input
Output

(None,10)
(None,18)

Decoder_layer2
Input

Output
(None,18)
(None,32)

Decoder_layer3/Output_layer
Input
Output

(None,32)
(None,46)

Figure 7: Final Autoencoder architecture used

3.5 Classification Task
We applied ML models on the 86 features that we extracted by
the procedure explained in Section 3.3. The classification task

5

17

CASCON’20, November 10-13 2020, Toronto, Canada C, Mahima, et al.

was done in two folds. We first considered the data from individ-
ual subjects and applied models to that data to perform intra-
subject classification for which we achieved an accuracy of 80.6%.
Intra-subject classification helped us to study subject-specific dif-
ferences of the EEG reactivity patterns. Then we considered the
combined data from all the subjects and performed inter-subject
classification and got an accuracy of 58.1%. The inter-subject case
helped us to make a more generalized model. The classification
was done in two ways and their performances have been com-
pared. We performed classification using the original feature set
as well as the reduced feature set from forward selection and au-
toencoders for both intra-subject and inter-subject. Below we
elaborate on the models that we have used along with the cho-
sen hyperparameters. We tuned the hyperparameters using Grid
Search. The range of hyperparameters chosen was based on previ-
ous works [7, 36].

3.5.1 K Nearest Neighbor (KNN). KNN is a non-parametric and
lazy learning algorithm. Non-parametric means there is no as-
sumption for underlying data distribution and that’s why we tested
it in our problem. K is a critical hyperparameter that we varied in
the range 4 to 8 in our experiment. The Euclidean distance was
used as the distance metric. As KNN is a lazy learner, therefore it is
not advisable to use it in our application, we use it for comparison
purposes only.

3.5.2 Logistic Regression (LR). We used logistic regression model
both with ridge and lasso regularization. We varied the parameter
C or penalty term in the range 0.01 to 100. We found out that lasso
regularization gave better results on our data.

3.5.3 Random Forest (RF). The random forest algorithm is an en-
semble approach that uses multiple decision trees and makes a
classification decision by voting from all the trees. The number of
estimators in our problem were varied from 10 to 100.

3.5.4 Artificial Neural Network (NN). We have used ANN with the
following architecture: First hidden layer with 300 neurons and
second hidden layer with 100 neurons. The activation function
used was sigmoid. L2 regularization had been used to avoid over-
fitting, with a regularization rate of 0.0001. The hyperparameter
tuning was done using grid search.

3.5.5 Support Vector Machine (SVM). SVM with RBF kernel has
been used in our experiment. The hyperparameters C and Gamma
were varied between 0.001 and 100 and 0.01 and 10 respectively.

3.5.6 Gradient Boosting (GB). Gradient boosting is an ensemble
learning approach that produces a prediction model in the form of
an ensemble of weak prediction models. Gradient boosting com-
bines weak learners into a single strong learner. In our Gradient
boosting model we varied the hyperparameter estimators from 10
to 100.

4 EVALUATION METRICS
Many metrics are used to evaluate ML Models like average accu-
racy, precision, recall, F-measure, ROC-AUC score, MCC score etc.
In our case, we used three metrics for performance evaluation
of our models- Average Accuracy, Average ROC-AUC score, and

Average Matthews Correlation Coefficient (MCC). Since our data
is balanced i.e. each class has almost equal representation the
average accuracy score would have sufficed but we used the other
two additional metrics to verify the performance of our models.
We used scikit learn [24] library of python to evaluate the models.

4.1 Accuracy Score
The accuracy score in our problem was calculated as :

Average Accuracy Score(y, ŷ) = 1

nsample
Σ

nsamples−1
i=0 1(yi = ŷi)

(4)
In equation 8, ŷi is the predicted value of the i-th sample and yi

is the corresponding true value and 1(x) is the indicator function.
nsamples is the total number of samples. The accuracy indicates
the samples that were correctly classified from all the samples.

4.2 ROC-AUC score
ROC-AUC stands for Receiver operator characteristics- Area under
the curve, it basically calculates the area under the receiver oper-
ator curve.The ROC curve is created by plotting the true positive
rate (TPR = T P

T P+F N) against the false positive rate (FPR = F P
T N+F P)

at various threshold settings. We find the area under the curve to
evaluate our model. Since our problem is multiclass therefore we
computed the average AUC of all possible pairwise combinations
of classes using equation 5 as suggested in [17].

Average ROC-AUC Score = 2

c(c −1)
Σc

j=1Σ
c
k> j (AUC(j |k)+AUC(k| j))

(5)
where c is the number of classes and AUC(j |k) is the AUC with j as
the positive class and k as the negative class and AUC(k| j) is vice
versa. In general, AUC(j |k)≠AUC(k| j)) in the multiclass case.

4.3 Matthews Correlation Coefficient
The Matthews correlation coefficient [12] is used to evaluate the
quality of binary and multiclass classifications. The MCC is a kind
of correlation coefficient value between -1 and +1. A coefficient of
+1 represents a perfect prediction, 0 an average random prediction
and -1 an inverse prediction. In the multiclass case, Matthews cor-
relation coefficient can be defined in terms of a confusion matrix
C for K classes. The MCC for multiclass as suggested in [18] is
calculated as follows:

MCC =
c × s −ΣK

k pk × tk√
(s2 −ΣK

k p2
k)× (s2 −ΣK

k t 2
k)

(6)

where tk = ΣK
i Ci k is the number of times class k truly occurred,

pk =ΣK
i Cki is the number of times class k predicted, c =ΣK

k Ckk is

the total number of samples correctly predicted and s =ΣK
i Σ

K
j Ci j

the total number of samples.

5 EXPERIMENT RESULTS
We performed two categories of classification namely, intra-subject
and inter-subject classification. For intra-subject classification, we
applied 5-folds cross-validation for data from five trials of each
subject and in the second classification, we applied leave out one

6

18

Understanding Brain Dynamics for Color Perception Using Wearable EEG Headband CASCON’20, November 10-13 2020, Toronto, Canada
Av

era
ge

 Ac
cur

acy
 Sc

ore

Av
era

ge
 AU

C-R
OC

 Sc
ore

Av
era

ge
 M

CC
 Sc

ore

Time window(ms) Time window(ms)Time window(ms)

Figure 8: Average Accuracy, Average ROC-AUC score and Average MCC score for different time windows for intra-subject classification

Av
era

ge
 Ac

cur
acy

 Sc
ore

Av
era

ge
 AU

C-R
OC

 Sc
ore

Av
era

ge
 M

CC
 Sc

ore

Time window(ms) Time window(ms)Time window(ms)

Figure 9: Average Accuracy, Average ROC-AUC score and Average MCC score for different time windows for inter-subject classification

subject cross-validation where we trained the model on seven
subjects data and validated it using a single subject data and we re-
peated it for all subjects. The performance metrics that we used to
evaluate our model are average cross validation accuracy, average
ROC-AUC score, and average MCC. We report the results on the
complete dataset as well on the reduced dataset from dimension-
ality reduction techniques that we mentioned in Section 3.4. The
average accuracy, average AUC score, and average MCC score with
different time windows for both intra-subject and inter-subject
classification are shown in Figure 8 and Figure 9 respectively.

We got the best results for a time window of 200ms. We consid-
ered the time window of 200ms for further experimentation. We
discuss the results in three segments, the results without dimen-
sionality reduction, results after dimensionality reduction from
the forward selection algorithm and results after dimensionality re-
duction from Autoencoder. In the following subsections, we show
the results in Table 2-11, considering the average metric score
of all the subjects, the best metric score among all subjects and
the inter-subject metric score for the three metrics explained in
Section 4 . In all the tables the number in brackets is the standard
deviation. We have highlighted the highest metrics for each case
in all tables. The code for all the experiments is available online 5.

5.1 Results without dimensionality reduction
Table 2 shows the accuracy score by using all features. We saw that
the Random Forest algorithm performed the best and Neural Net-
work and Gradient Boosting classifier also showed comparable re-
sults. The highest accuracy for an individual was 70.2% which was
reasonably better than the accuracy of random guess i.e. 33%. The
inter-subject accuracy of 56.8% was also very promising consider-
ing the fact that we applied leave one subject out cross-validation
in this case. The results were better for intra-class classification
which means that a customized model could be trained on an
individual’s data and then it can be used for predictions for a par-

5https://github.com/cmahima/MuseProject

ticular subject rather than using data from different people which
might also cause privacy issues.

Table 2: Accuracy by using all the features at 200ms time win-
dow.

Metrics KNN SVM Logistic
Regression

Random
Forest

Neural
Network

Gradient
Boost

Avg Subject
Accuracy

0.414
(0.056)

0.474
(0.018)

0.506
(0.028)

0.625
(0.018)

0.523
(0.013)

0.608
(0.057)

Best Subject
Accuracy

0.513
(0.021)

0.578
(0.031)

0.600
(0.022)

0.702
(0.000)

0.700
(0.026)

0.669
(0.039)

Inter-subject
Accuracy

0.338
(0.033)

0.377
(0.030)

0.408
(0.030)

0.568
(0.025)

0.490
(0.033)

0.472
(0.040)

In Table 3 we see the ROC-AUC scores. The highest average
score of 0.851 was achieved by the Random Forest classifier, the
average score of 0.803 was also better than an AUC score of 0.5 in
the case of a random classifier.

Table 3: ROC-AUC Score by using all the features at 200ms time
window

Metrics KNN SVM Logistic
Regression

Random
Forest

Neural
Network

Gradient
Boost

Avg Subject
Auc score

0.552
(0.019)

0.514
(0.032)

0.676
(0.027)

0.803
(0.012)

0.696
(0.035)

0.763
(0.015)

Best Subject
Auc score

0.600
(0.043)

0.620
(0.057)

0.710
(0.037)

0.851
(0.020)

0.822
(0.024)

0.810
(0.012)

Inter-subject
Auc score

0.530
(0.039)

0.570
(0.021)

0.601
(0.046)

0.654
(0.051)

0.611
(0.035)

0.643
(0.034)

7

19

CASCON’20, November 10-13 2020, Toronto, Canada C, Mahima, et al.

The MCC scores by using all features are in Table 4. A MCC score
of 0 means that the classifier is predicting randomly, in our case
the highest MCC score was 0.523 which was much higher than a
random prediction.

Table 4: MCC score by using all the features at 200ms time win-
dow

Metrics KNN SVM Logistic
Regression

Random
Forest

Neural
Network

Gradient
Boost

Avg Subject
MCC

0.120
(0.050)

0.291
(0.040)

0.310
(0.041)

0.433
(0.033)

0.303
(0.056)

0.433
(0.033)

Best Subject
MCC

0.203
(0.102)

0.333
(0.070)

0.318
(0.041)

0.523
(0.097)

0.431
(0.070)

0.479
(0.091)

Inter-subject
MCC

0.207
(0.072)

0.1645
(0.057)

0.167
(0.059)

0.366
(0.075)

0.155
(0.060)

0.189
(0.058)

5.2 Results with Forward Feature Selection
We saw significant improvement in the results, especially for Ran-
dom Forest classifier, with the use of forward feature selection
which is a supervised feature selection technique. The irrelevant
and noisy features were removed and the feature set was reduced
to 10. This methodology helped us to curb the overfitting issue too
and thus the performance on the validation set improved. In Table
5 we see the average accuracy scores by using the top 10 features.
There was an increase in average accuracy by nearly 10% and we
got the highest accuracy of almost 80.6% which was much better
than any other previous approaches that have been used for EEG
classification using RGB colors using wearable devices. The aver-
age subject accuracy of 72% showed that the classifier performed
well for all the subjects. The average accuracy increased by 9.5%.
In this case, also the results of intra-subject classification were
better than that of inter-subject classification. The inter-subject
classification accuracy improved by 1.3%. Random Forest algo-
rithm had given us the best results in this case too with Neural
network and Gradient Boost with comparable performance.

Table 5: Accuracy by using 10 features by forward selection at
200ms time window

Metrics KNN SVM Logistic
Regression

Random
Forest

Neural
Network

Gradient
Boost

Avg Subject
Accuracy

0.492
(0.038)

0.487
(0.045)

0.492
(0.028)

0.720
(0.035)

0.513
(0.036)

0.597
(0.048)

Best Subject
Accuracy

0.615
(0.051)

0.604
(0.028)

0.590
(0.050)

0.806
(0.041)

0.766
(0.039)

0.720
(0.035)

Inter-subject
Accuracy

0.377
(0.013)

0.366
(0.024)

0.388
(0.012)

0.581
(0.032)

0.475
(0.040)

0.411
(0.019)

We see in Table 6 the AUC scores after forward feature selection.
The best AUC score increased by 0.037 and the average AUC score
has increased by 0.054. The MCC scores with forward feature se-
lection are in Table 7 which also increased. Thus forward feature
selection not only made our architecture efficient computationally
but also increased the overall performance of the architecture. In
fact, we got the best accuracy of 80.6% with the use of the Random
Forest classifier with forward selection.

Table 6: ROC-AUC Score by using 10 features by forward selec-
tion at 200ms time window

Metrics KNN SVM Logistic
Regression

Random
Forest

Neural
Network

Gradient
Boost

Avg Subject
Auc score

0.546
(0.017)

0.588
(0.034)

0.688
(0.014)

0.857
(0.031)

0.699
(0.033)

0.740
(0.037)

Best Subject
Auc score

0.775
(0.018)

0.670
(0.018)

0.712
(0.045)

0.901
(0.013)

0.879
(0.011)

0.860
(0.015)

Inter-subject
Auc score

0.540
(0.023)

0.580
(0.062)

0.611
(0.026)

0.676
(0.023)

0.610
(0.025)

0.632
(0.014)

Table 7: MCC score by using 10 features by forward selection at
200ms time window

Metrics KNN SVM Logistic
Regression

Random
Forest

Neural
Network

Gradient
Boost

Avg Subject
MCC

0.150
(0.030)

0.289
(0.072)

0.302
(0.037)

0.578
(0.061)

0.437
(0.031)

0.310
(0.061)

Best Subject
MCC

0.531
(0.054)

0.346
(0.054)

0.364
(0.067)

0.638
(0.013)

0.553
(0.068)

0.515
(0.056)

Inter-subject
MCC

0.017
(0.112)

0.189
(0.051)

0.197
(0.017)

0.476
(0.015)

0.255
(0.012)

0.289
(0.043)

5.3 Results with Autoencoder
We applied autoencoder to observe how an unsupervised feature
reduction technique would work on our data. With the autoen-
coder, a reduced feature set of 10 was obtained. Using this reduced
feature set as input to the ML models, we achieved a lower average
CV accuracy in comparison to classification using forward feature
selection. Therefore autoencoders are not recommended for our
application. Table 8-10 show the metrics achieved with the use
of autoencoders. The highest accuracy we got was from Gradient
Boost classifier which was around 51%. This accuracy is far from
any practical use and very less when compared to the accuracy
from forward feature selection, thus we conclude that unsuper-
vised feature reduction technique of autoencoder does not work
well on our EEG data.

8

20

Understanding Brain Dynamics for Color Perception Using Wearable EEG Headband CASCON’20, November 10-13 2020, Toronto, Canada

Table 8: Accuracy by using 10 features by Autoencoder at 200ms
time window

Metrics KNN SVM Logistic
Regression

Random
Forest

Neural
Network

Gradient
Boost

Avg Subject
Accuracy

0.398
(0.010)

0.362
(0.026)

0.393
(0.022)

0.430
(0.011)

0.409
(0.009)

0.417
(0.000)

Best Subject
Accuracy

0.417
(0.000))

0.406
(0.000)

0.434
(0.000)

0.489
(0.008)

0.473
(0.024)

0.510
(0.000)

Inter-subject
Accuracy

0.358
(0.012)

0.348
(0.027)

0.347
(0.023)

0.397
(0.017)

0.355
(0.028)

0.398
(0.012)

Table 9: ROC-AUC Score by using 10 features by Autoencoder at
200ms time window

Metrics KNN SVM Logistic
Regression

Random
Forest

Neural
Network

Gradient
Boost

Avg Subject
Auc score

0.501
(0.037)

0.499
(0.012)

0.518
(0.044)

0.637
(0.024)

0.598
(0.026)

0.600
(0.017)

Best Subject
Auc score

0.655
(0.000)

0.560
(0.018)

0.602
(0.000)

0.686
(0.007)

0.688
(0.020)

0.730
(0.001)

Inter-subject
Auc score

0.505
(0.019)

0.499
(0.062)

0.520
(0.026)

0.548
(0.018)

0.510
(0.037)

0.511
(0.036)

Table 10: MCC score by using 10 features by Autoencoder at
200ms time window

Metrics KNN SVM Logistic
Regression

Random
Forest

Neural
Network

Gradient
Boost

Avg Subject
MCC

0.099
(0.019)

0.189
(0.072)

0.191
(0.026)

0.225
(0.019)

0.218
(0.039)

0.199
(0.067)

Best Subject
MCC

0.261
(0.000)

0.267
(0.000)

0.213
(0.000)

0.229
(0.027)

0.301
(0.038)

0.261
(0.000)

Inter-subject
MCC

0.015
(0.022)

0.024
(0.053)

0.022
(0.051)

0.212
(0.031)

0.120
(0.054)

0.115
(0.022)

In the results, we saw that the accuracies for inter-subject and
intra-subject classification varied. This can possibly be due to
inter-subject variability in EEG as suggested in [14, 16]. There
sometimes exits a variability in the amplitude of different EEG
peaks, so some people might show more excitability at given time-
points than others. There is also often a bit of variability in latency -
signals might vary in when they occur, but the range is pretty tight,
like 5-10ms either way. Thus these reasons may have resulted in
our model’s lower performance in inter-subject case.
The final proposed model for our application is that of Random
Forest classifier with forward feature selection. In Table 11 we

compare our results with previous efforts that have been done to
classify EEG signals on the basis of color stimuli using wearable
EEG devices. In Figure 10 we show the ROC curve for the proposed
model with AUC-ROC score of individual classes for all the sub-
jects where 0 represents red, 1 represents green and 2 represents
blue.

Table 11: Performance of other methods on EEG classification
into color stimuli. Our aprroach shows 5-folds average accu-
racy value for intra-class classification

Algorithms
Best Average

Accuracy

Martin Angelovski et al.[4]
using 2 channel portable EEG

53%

Sara Åsly et al.[35, 36]
using 4 channel portable EEG

58%

Kyle Phillips et al.[26]
using 14 channel emotiv EEG

79.6%

Rakshit et al.[27]
using 10 channel medical EEG

81.2%

Our approach using 4 channel portable EEG 80.6%

6 CONCLUSIONS AND FUTURE WORK
We have used EEG signals from a wearable consumer-grade EEG
headband to classify the raw EEG data into three classes of col-
ors, red, green, and blue. In our approach, we focussed mainly
on Alpha and Beta frequencies and discarded all other lower and
higher frequencies which otherwise would have added noise to
the data. We extracted various spectral, correlation and statistical
features from the data and apply ML models to it. Our proposed
model of Random Forest with forward feature selection showed
significant improvement when compared to previous approaches.
Our methodology achieved an improvement of almost 20% in the
average accuracy of classification.
Despite having a fewer number of electrodes Muse performed
well in the classification task and gave promising results. The intra-
class classification accuracy of 80.6% shows that wearable devices
can be used in integrated IoT frameworks where they can be used
in various control applications. The IoT pipeline for this applica-
tion must take into account the data preprocessing and feature
extraction in real-time. The time window for our particular applica-
tion was small to capture the effect of color stimuli only and avoid
unnecessary artifacts in data. This time-window might vary for dif-
ferent applications. One drawback of Muse that we encountered
during experiments was that it cannot be worn for a long time due
to comfort issues and also the connection can become weak some-
times however one can overcome this problem by applying water
to the channels. With the advancement in wearable computing,
more comfortable devices are now available that would not bother
one if used for a longer time like the new Muse S headband. The
Muse 2 device is also sensitive to muscle movements but that is
not an issue in our application as we are only interested in a small
time window of data when a person focuses on a color. Our work

9

21

CASCON’20, November 10-13 2020, Toronto, Canada C, Mahima, et al.

Figure 10: The ROC-AUC curve using our proposed architecture for all the subjects

has thus highlighted the capability of these wearable devices to
detect and classify the EEG signal on the basis of color stimuli and
the results are encouraging. This study opens up a new door to
integrate these devices in our day to day lives to use brain signals
to control various devices.

REFERENCES
[1] Diane Aclo et al. 2015. EEG-based Color Classification System using Artificial

Neural Networks. LPU-Laguna Journal of Engineering and Computer Studies
(10 2015).

[2] Eman Alharbi, Saim Rasheed, and Seyed Buhari. 2016. Feature selection al-
gorithm for evoked EEG signal due to RGB colors. In 2016 9th International
Congress on Image and Signal Processing, BioMedical Engineering and Informat-
ics (CISP-BMEI). 1503–1520.

[3] Mohammad Almogbel, Anh Dang, and Wataru Kameyama. 2018. EEG-signals
based cognitive workload detection of vehicle driver using deep learning. In
2018 20th International Conference on Advanced Communication Technology
(ICACT). 256–259.

[4] Martin Angelovski et al. 2012. Application of BCI Technology for Color Prediction
Using Brainwaves. ICT Innovations 2012, Web Proceedings ISSN 1857-7288 (09
2012).

[5] Scott Makeig Arnaud Delorme. 2004. EEGLAB: an open source toolbox for anal-
ysis of single-trial EEG dynamics including independent component analysis. J
Neurosci Methods (2004).

[6] Hjorth B. 1970. EEG analysis based on time domain properties. Electroen-
cephalogr Clin Neurophysiol. 227 (1970), 306-310.

[7] Pouya Bashivan, Irina Rish, and Steve Heisig. 2016. Mental State Recognition
via Wearable EEG. CoRR (2016).

[8] Alberto Bozal. 2017. Personalized Image Classication from EEG Signals using
Deep Learning. Master’s thesis.

[9] Maher Chaouachi, Imène Jraidi, and Claude Frasson. 2011. Modeling Mental
Workload Using EEG Features for Intelligent Systems. In User Modeling, Adap-
tion and Personalization. 50–61.

[10] Thiago da Silveira, Alice Kozakevicius, and Cesar Rodrigues. 2016. Automated
drowsiness detection through wavelet packet analysis of a single EEG channel.
Expert Systems with Applications 55 (03 2016).

[11] Wm Dobelle. 2000. Artificial Vision for the Blind by Connecting a Television
Camera to the Visual Cortex. ASAIO journal (01 2000), 3–9.

[12] Baldi Pierre et al. 2000. Assessing the accuracy of prediction algorithms for
classification: An overview. Bioinformatics (Oxford, England) (06 2000), 412–24.

[13] Chris Berka et al. 2004. Real-Time Analysis of EEG Indexes of Alertness, Cogni-
tion, and Memory Acquired With a Wireless EEG Headset. International Journal
of Human–Computer Interaction 17, 2 (2004), 151–170.

[14] Galin D et al. 1982. Sex and handedness differences in EEG measures of hemi-
spheric specialization. Brain and Language (1982).

[15] K. Han et al. 2018. Autoencoder Inspired Unsupervised Feature Selection. In
2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2941–2945.

[16] Richard J. Riding et al. 1997. Cognitive Style and Individual Differences in EEG
Alpha During Information Processing. Educational Psychology (1997).

[17] David Hand et al. 2001. A Simple Generalisation of the Area Under the ROC
Curve for Multiple Class Classification Problems. Hand, The (11 2001), 171–186.

[18] Gorodkin J. 2004. Comparing two K-category assignments by a K-category
correlation coefficient. Comput Biol Chem (2004), 367-374.

[19] Jason Johannesen, Jinbo Bi, Ruhua Jiang, Joshua Kenney, and Chi-Ming Chen.
2016. Machine learning identification of EEG features predicting working mem-
ory performance in schizophrenia and healthy adults. Neuropsychiatric Electro-
physiology 2 (12 2016).

[20] Zuzana Koudelková and Martin Strmiska. 2018. Introduction to the identifica-
tion of brain waves based on their frequency. MATEC Web of Conferences (01
2018), 05012.

[21] Olav Krigolson, Chad Williams, and Francisco Colino. 2017. Using Portable
EEG to Assess Human Visual Attention. International Conference on Augmented
Cognition (05 2017), 56–65.

[22] Hyeon Kyu Lee and Young-Seok Choi. 2019. Application of Continuous Wavelet
Transform and Convolutional Neural Network in Decoding Motor Imagery Brain-
Computer Interface. Entropy 21 (12 2019), 1199.

[23] Chin-Teng Lin et al. 2007. EEG-Based Assessment of Driver Cognitive Responses
in a Dynamic Virtual-Reality Driving Environment. IEEE transactions on bio-
medical engineering 54 (08 2007), 1349–52.

[24] F Pedregosa et al. 2011. Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research 12 (2011), 2825–2830.

[25] J. Peirce et al. 2019. PsychoPy2: Experiments in behavior made easy. (51 2019).
[26] Kyle Phillips, Olli Fosu, and Ismail Jouny. 2015. Separation and classification

of EEG responses to color stimuli. In 2015 41st Annual Northeast Biomedical
Engineering Conference (NEBEC). 1–2.

[27] Arnab Rakshit and Rimita Lahiri. 2016. Discriminating different color from EEG
signals using Interval-Type 2 fuzzy space classifier. In 2016 IEEE 1st Interna-
tional Conference on Power Electronics, Intelligent Control and Energy Systems
(ICPEICES). 1–6.

[28] Saim Rasheed and Daniele Marini. 2015. Classification of EEG Signals Produced
by RGB Colour Stimuli. Journal of Biomedical Engineering and Medical Imaging
(10 2015).

[29] Concetto Spampinato et al. 2017. Deep Learning Human Mind for Automated
Visual Classification. CVPR 2017 (09 2017).

[30] Jason Teo and Jia Chia. 2018. EEG-based excitement detection in immersive en-
vironments: An improved deep learning approach. AIP Conference Proceedings
(09 2018), 020145.

[31] David Vivancos. 2018. MindBigData, The Imagenet of the Brain. (51 2018).
[32] Hao Wang et al. 2010. The continuous analysis of EEG’s alpha wave by morlet

wavelet transform. National Center for Biotechnology Information (08 2010),
746–8, 752.

[33] Jieping Ye. 2007. Least squares linear discriminant analysis. Proceedings of the
24th international conference on Machine learning (01 2007), 1087–1093.

[34] Huiran Zhang and Zheng Tang. 2011. To judge what color the subject watched
by color effect on brain activity. In IJCSNS International Journal of Computer
Science and Network Security. 80.

[35] Sara Åsly. 2019. Supervised learning for classification of EEG signals evoked by
visual exposure to RGB colors. Ph.D. Dissertation.

[36] Sara Åsly, Luis Moctezuma, Monika Gilde, and Marta Molinas. 2019. Towards
EEG based classification of RGB color-based stimuli. 8th Graz Brain-Computer
Interface Conference (09 2019).

10

22

Towards Interpretable and Maintainable Supervised Learning
Using Shapley Values in Arrhythmia

Sanjena Krishnakumar
Ryerson University

Toronto, Ontario, Canada
sanjena.krishnakumar@ryerson.ca

Tamer Abdou
Ryerson University

Toronto, Ontario, Canada
tamer.abdou@ryerson.ca

ABSTRACT
This paper investigates the application of a model-agnostic inter-
pretability technique, Shapley Additive Explanations (SHAP), to
understand and hence, enhance machine learning classification
models using Shapley values in the prediction of arrhythmias1.
Using the Arrhythmia dataset2, three different feature selection
techniques, Information Gain (IG), Recursive Feature Elimination-
Random Forest (RFE-RF), and AutoSpearman, were used to select
features for machine learning models to predict the arrhythmia
class. Four multi-class classification models, Naïve Bayes (NB), k-
Nearest Neighbours (kNN), Random Forest (RF), and stacking het-
erogeneous ensemble (Ensemble) were built, evaluated, and com-
pared. SHAP interpretation method was applied to find reliable
explanations for the predictions of the classification models. Ad-
ditionally, SHAP values were used to find ‘bellwether’ instances
to enhance the training of our models in order to improve their
performances in the prediction of arrhythmia. The most stable and
top-performing classification model was RF, followed by Ensemble
in comparison to NB and kNN. SHAP provided robust and reliable
explanations for the classification models. Furthermore, improving
the training of our models with ‘bellwether’ instances, found using
SHAP values, enhanced the overall model performances in terms of
accuracy, AUC, and F1 score. In conclusion, we recommend using
SHAP value explanations as a robust and reliable method for local
model-agnostic interpretability and to enhance machine learning
models for arrhythmia prediction.

KEYWORDS
SHAP, LIME, Shapley value, local model-agnostic interpretation,
bellwether, multi-class classification, machine learning, healthcare,
arrhythmia

ACM Reference Format:
Sanjena Krishnakumar and Tamer Abdou. 2020. Towards Interpretable and
Maintainable Supervised Learning Using Shapley Values in Arrhythmia.

1This paper was written as part of the Certificate in Data Analytics, Big Data, and
Predictive Analytics at Ryerson University
2https://archive.ics.uci.edu/ml/datasets/Arrhythmia

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honoured. For all other uses, contact the owner/author(s).
CASCON’20, November 10-13 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

1 INTRODUCTION
Arrhythmia is a cardiac condition in which the heart beats abnor-
mally. There are several types of arrhythmia with varying severity:
asymptomatic to causing sudden cardiac deaths (SCD). According to
CANet, SCD due to arrhythmia causes about 40,000 deaths annually
in Canada and was expected to be the top cause of morbidity and
mortality in 20203. The electrocardiogram (ECG) measures the elec-
trical activity of the heart and is important for accurate diagnoses,
preventive measures, and treatments for patients with arrhythmia.
Machine learning algorithms would further help deepen our under-
standing of arrhythmia and further improve the accuracy and pre-
cision of medical diagnoses. In healthcare and medicine, physicians
and clinicians require explanations and transparency in diagnosing
medical conditions. However, complex machine learning models
are often black box models that lack interpretability, making them
difficult to trust in practice even though these models often have
high accuracies. Therefore, interpreting these models is invaluable
for clinicians in understanding how the models’ predictions are
decided using features and their values as well as improving model
performances to provide more reliable medical diagnoses.

Local Interpretable Model-agnostic Explanation (LIME) is a valu-
able method using local surrogate models to explain individual
predictions of a model [18]. LIME uses one explanation model on
different prediction models [18]. However, its disadvantages include
the neighbourhood of a data point of interest being large, its incon-
sistency and instability of explanations for two close data points,
and repeating sampling could result in different explanations, mak-
ing it hard to trust their explanations [15, 18]. However, Shapley
Additive Explanations (SHAP) overcomes these shortcomings by
using Shapley value, where the difference between an instance’s
prediction and average prediction of a dataset is fairly distributed
among the feature values to provide exact explanations [18]. More-
over, SHAP provides more reliable explanations for models by in-
tegrating LIME and Shapley value, coming from coalitional game
theory [15, 18]. Since calculating Shapley values is computationally
expensive, SHAP approximates the Shapley values using a speci-
fied number of samples from the dataset [15, 18]. Furthermore, the
additive property of LIME in SHAP allows for global interpreta-
tion methods using aggregations of Shapley values on prediction
models [18]. Therefore, SHAP would be a reliable and robust lo-
cal model-agnostic method for the interpretation of arrhythmia
prediction models in this study.

3https://canet-nce.ca/

23

https://doi.org/10.1145/nnnnnnn.nnnnnnn

CASCON’20, Nov 10-13, 2020, Toronto, Canada S. Krishnakumar and T. Abdou

‘Bellwether’ instances are examples within a dataset that could
be used to train machine learning models to provide better pre-
dictions for other data points and reduce the instability of class
predictions [11, 12]. Additionally, the feasibility and effectiveness
of using ‘bellwether’ instances to improve prediction models in ar-
rhythmia will be investigated. Using ‘bellwether’ examples would
bring forth valuable instances while reducing undesirable noise
and erroneous data, due to example mistyping, within datasets to
build enhanced machine learning models. Therefore, we propose
to evaluate four different multi-class classification models, employ
SHAP for model interpretability, and use its Shapley values to dis-
cover ‘bellwether’ instances to enhance the proposed models and
their performances. Here are the research questions for this study:
RQ1: How do the classification models perform and compare in

predicting arrhythmia?
RQ2: What interpretations for the applied classificationmodels are

found using local model-agnostic Shapley value explanations,
and how reliable is this method?

RQ3: How does selecting ‘bellwether’ instances using SHAP val-
ues improve the classification models for the prediction of
arrhythmia?

This paper will firstly discuss the heart, ECG, and arrhythmias,
works related to this paper, and the methodology for dimension-
ality reduction, building of different classification models for the
prediction of arrhythmia, interpreting these models using SHAP,
and improving these models using ‘bellwether’ instances found
using Shapley values. Next, in results, feature subsets found from
feature selection, the evaluation of the classification models, local
and global interpretation of the models using SHAP, and the evalua-
tion of ‘bellwether’ training instances to improve these models will
be presented. Lastly, this paper concludes with threats to validity,
and conclusion and future work.

2 BACKGROUND AND RELATED WORK
2.1 Heart, ECG, and Arrhythmias
The contraction and relaxation of the heart are independent of the
nervous system, where the nervous system controls the increase
and decrease of the heart rate [23]. The heart has four chambers:
left atrium, left ventricle, right atrium, and right ventricle (Figure 1).
Electrical activity starts at the sinoatrial (SA) node and propagates
through the heart muscle [16]. First, depolarization starts at the SA
node, seen in Figure 1, and the rapid conduction of depolarization
occurs through the atria (upper two heart chambers) [23]. This
wave of depolarization moves through the internodal pathways,
causing atrial contraction. Next, depolarization slows down at the
atrioventricular (AV) node, resulting in a delay between the atrial
and ventricular contractions, allowing blood to flow from the atria
into the ventricles (lower two heart chambers) [23]. The depolar-
ization wave then moves through the Bundle of His, left and right
Bundle Branches and Purkinje fibers, where the ventricles depolar-
ize and contract starting from the apex (bottom of the heart) and
moving towards the systematic and pulmonary circulation (top,
back of the heart). The heart relaxes and this cycle repeats itself.

The electrical activity from the heart creates electrical currents
on the surface of the body that fluctuate the electrical potential of
the skin, which could be detected by pairs of leads placed on the

Figure 1: Anatomy of the Heart and ECG for Normal Heart
Rhythm [23]

body and recorded as a pattern by an electrocardiogram (ECG) [16,
23]. The 12-lead ECG uses 10 electrodes placed on the chest, arms,
and legs. The difference in electrical potential between these leads
helps construct the ECG signal [16, 23]. The waves shown by an
ECG correspond to the electrical activity of the heart: atrial depo-
larization (P wave), ventricular depolarization (QRS complex wave)
and ventricular repolarization (T wave) [16, 23]. Figure 1 shows
a normal heartbeat pattern with a P wave, QRS complex, and T
wave [23]. The P wave shows the contraction of atria (depolariza-
tion) while atrial relaxation (repolarization) is masked by the QRS
complex [23]. The QRS complex shows ventricular contraction (de-
polarization) and is large due to the ventricles having larger tissue
mass to pump blood to the lungs and body [23]. Lastly, the T wave
shows ventricular relaxation (repolarization) [23].

However, the presence of arrhythmias can drastically change
these wave patterns [16]. Arrhythmia varies depending on its rate,
origin, and other characteristics. Heart rates can be slow (brady-
cardia), normal, or fast (tachycardia) [23]. It can originate from the
SA nodes, AV nodes, supraventricular, or ventricular regions. The
heart size can also affect heart rates, like in hypertrophy, where
the heart is too large, which could be atrial or ventricular. Heart
diseases affecting coronary circulation include ischemia, injury,
and infarction [23]. Different arrhythmias vary in its speed, origin,
and severity from asymptomatic to life-threatening. Therefore, dif-
ferentiating types of arrhythmia from normal heart rates in ECG
recordings using multi-class machine learning models to detect
specific arrhythmias is vital for early diagnoses, preventative treat-
ments, interventions, and medications for arrhythmic patients.

2.2 Related Work
In 1997, Güvenir et al. developed a classification algorithm, the
Voting Feature Intervals (VFI5), to distinguish regular heart rate
and different arrhythmias from ECG recording measurements in
the Arrhythmia dataset [8]. The VFI5 obtained 62% and 68% (with
feature weights) accuracies, performing better than Naïve Bayesian
(NB) and Nearest Neighbor (kNN) classifiers with 50% and 53%
accuracies [8]. However, these accuracies can be considered low in
the present-day, and other performance measures, like sensitivity,
specificity, and AUC, were not reported. Our study also uses this
Arrhythmia dataset [5, 8].

24

Towards Interpretable and Maintainable Supervised Learning Using Shapley Values in Arrhythmia CASCON’20, Nov 10-13, 2020, Toronto, Canada

With recent technological advancement and more health moni-
toring devices, larger volumes of ECG data with high dimension-
ality are being collected from homes and hospitals [20]. These
large volumes of data require efficient and accurate detection of
arrhythmias and arrhythmic events from ECG recordings and using
machine learning algorithms could help physicians and cardiolo-
gists better diagnose arrhythmia efficiently [20]. High-dimensional
datasets are standard in the biomedical and healthcare fields and
often include irrelevant and redundant features for class predic-
tion, increasing computational costs and decreasing performance
of predictive models [2, 9]. Feature selection methods retain data
interpretability without transforming the reduced original features
and have shorter computational time. In contrast, feature extraction
transforms original features to a reduced number of new features
and has higher discriminatory power but loses the original data
interpretability and is computationally more expensive [9]. Stud-
ies investigated feature selection methods for binary classification
using the Arrhythmia dataset, such as the contribution-selection
algorithm (CSA) with backward elimination that resulted in a 21-
feature subset with 84% accuracy and grafting algorithm with 75%
accuracy [4, 21]. Although these studies used binary classification,
our paper investigates feature selection techniques to choose a
feature subset for multi-class classification with 13 classes.

Feature selection includes filter, wrapper, and hybrid methods.
Information Gain (IG) and Recursive Feature Elimination-Random
Forest (RFE-RF) perform well among the filter and wrapper feature
selection techniques, respectively [10]. These two methods are ap-
plied to the Arrhythmia dataset to help find a proper feature subset
to train prediction models. Hybrid, like embedded, methods tend to
perform computationally better than wrapper techniques [2, 9, 10].
AutoSpearman is a hybrid method that removes correlated vari-
ables while retaining information about the class [10]. It improved
classifiers’ accuracy by 1-2% and was highly consistent for software
defects metrics [10]. As AutoSpearman has not yet been applied
to healthcare, our study investigates its effectiveness for a high-
dimensionality reduction in arrhythmia.

Parvaneh et al. found studies using deep learning algorithms
for predicting arrhythmia had often not reported computational
efficiencies of the models and model interpretability had not been
investigated, which are essential as more complex models often
require more computational time and are more difficult to inter-
pret [13, 14, 20]. Also, traditional supervised models often perform
well but can be overlooked. Lessmann et al. compared supervised
learning algorithms, performance measures and statistical hypoth-
esis tests for credit scoring amidst the current technical advance-
ments [13]. Dynamic ensemble classifiers predicted less accurately
than simple models, multiple classifiers obtained high accuracy, and
Random Forest (RF) performed well [13, 14]. Li et al. updated this
study, benchmarking 17 classification models using 27 datasets and
focusing on class distribution sampling, performance measures and
testing procedures for software defect prediction [14]. RF was found
to be one of the top-performing classifiers, NB as one of the lowest,
and kNN was found among the top ten performing classifiers for
software defect prediction [14].

Moreover, Li et al. emphasized the importance of model com-
prehensibility as well [14]. Accurate interpretations of a model’s
predictions enable users to trust the prediction model, discover

insights into improving the model, and understand the process
behind a model [15]. Machine learning interpretation methods are
applied to interpret black box models [18]. Model-specific methods
rely on the inner workings of prediction models and thus, different
methods are required to interpret different types of prediction mod-
els; whereas, model-agnostic interpretation methods are flexible
and can be applied on different types of prediction models as it only
depends on the data and prediction function [18]. Therefore, model-
agnostic techniques separate the type of interpretable model from
the type of prediction models [18]. While global surrogate inter-
pretable models are applied to approximate a model’s predictions,
local surrogate interpretable models interpret a model’s individual
predictions [18].

Local interpretable model-agnostic explanations (LIME) is a
method applying local surrogate models to explain a model’s indi-
vidual predictions [18]. These models ensure good local approxima-
tion but not global approximation [18]. LIME’s advantages are: one
explanation model can be applied on different prediction models,
it is easy to use, and it can be trained with interpretable features
that are different from the ones used in training the prediction
model [18]. Although LIME’s additivity property also makes this
method advantageous, its disadvantages include: the local neigh-
bourhood of a data point is unclear, the unstable and inconsistent
explanations in which two close data points can have widely vary-
ing explanations, repeating sampling could result in different ex-
planations, and missing features should have an attribution value
of 0 [15, 18]. This makes it difficult to trust its explanations. SHAP
overcomes these shortcomings by incorporating LIME with Shap-
ley value from coalitional game theory that calculates features’
marginal contributions to the difference between a machine learn-
ing model’s individual prediction and the average prediction for
the dataset [6, 15, 18]. SHAP allows for contrasting and full expla-
nations, its efficiency property ensures the difference between a
prediction and the average prediction is fairly distributed among
feature values that is not found with LIME, it provides reliable and
reasonable explanations based on game theory and has efficiency,
symmetry, dummy, and additivity properties [15, 18]. Shapley value
satisfies all three properties, local accuracy, missingness, and con-
sistency; however, methods not based on Shapley value are not
guaranteed to fulfill all these properties [6, 15, 18]. El Mokhtari et
al. employed SHAP interpretation method and SHAP values to find
the features that most contributed in the prediction of commen-
taries with financial time series data and evaluated the impact of
additional datasets on models’ performances [6]. They compared
kNN, RF, Support Vector Machine (SVM), XGBoost, and Long Short-
term Memory Network (LSTM) and found binary kNN classifier
outperformed in terms of F1-score [6]. It was found the additional
Point of Sales (POS) dataset had not improved the classification
models’ performances that used the VAR, discrepancy dataset [6].
Moreover, using SHAP values as a data transformation method
allowed for a natural clustering that helped in the models’ accu-
racy [6].

Krishna used a project’s data that provided the best predictions
on other projects’ data as ‘bellwethers’ to mitigate conclusion in-
stability in software analytics [11]. The simple technique of using
‘bellwethers’ for transfer learners provided comparable predictions

25

CASCON’20, Nov 10-13, 2020, Toronto, Canada S. Krishnakumar and T. Abdou

to other transfer learning methods and provided stable conclu-
sions [11]. He described a ‘bellwether effect’ as a ‘bellwether’ (an
exemplary project existing within the historical dataset) to use
in training an accurate prediction model [11]. ‘Bellwether’ finds
reliable data and does not restrict leveraging the full benefits of
the model [11]. Models trained from specialized regions within a
dataset sometimes performed better than those trained across all
data [11]. Highly competitive performances were obtained using
the ‘bellwether’ dataset, RF, and four evaluation metrics: accuracy,
recall, precision, and F1 score [11]. In addition, effect-size tests
were employed to ensure that differences were not due to small
effects [11]. Kudjo et al. developed an algorithm using X-means clus-
tering algorithm and mean absolute error to select ‘bellwether,’ an
exemplar training set, for improved software quality’s vulnerability
severity prediction using four models, deep neural network, logistic
regression, kNN, and RF, and evaluation metrics included preci-
sion, recall, and F1 score [12]. The ‘bellwether’ approach showed
improved performance compared to benchmark techniques hav-
ing 14.3-97.8% for F1 score [12]. In this paper, Shapley values for
all instances in the Arrhythmia dataset, all classification model’s
predictions, and selected features were used to find and choose a
set of ‘bellwether’ instances for a training set for the classification
model using a minimum absolute Shapley value threshold.

3 METHODOLOGY
3.1 Dataset
The Arrhythmia dataset is open source and publicly available from
the UCI Machine Learning Repository [5] [8]. This dataset contains
279 features, an arrhythmia class attribute, and 452 observations,
where each observation represents a patient record and its class
determined by an expert cardiologist [8]. The features include: age,
height, weight, heart rate and 12-lead ECG recording measurements
of the patients using the IBM-Mt. Sinai Hospital program4.

This multi-class arrhythmia class contains 13 classes (three ad-
ditional classes had no instances and were not included): ‘nor-
mal’, coronary artery disease (CAD), old anterior myocardial in-
farction (OAMI), old inferior myocardial infarction (OIMI), sinus
tachycardy (ST), sinus bradycardy (SB), ventricular premature con-
traction (VPC), supraventricular premature contraction (SVPC), left
bundle branch block (LBBB), right bundle branch block (RBBB), left
ventricule hypertrophy (LVH), atrial fibrillation (AFib), and ‘other’.

3.2 Data Preparation
First, the Arrhythmia dataset was randomly partitioned into train-
ing and test sets using 70:30 ratio. This ensured that the test set was
independent of the training set [22]. This was performed for 10 iter-
ations using different seed numbers. Missing values were imputed
using medians and the kNN algorithm in a donor-based imputation
technique [25]. Zero-variance variables were also removed.

3.3 Dimensionality Reduction
To retain human interpretability for our prediction models, fea-
ture selection was chosen over feature extraction [2, 9]. Different
feature selection techniques were combined to incorporate three

4https://archive.ics.uci.edu/ml/datasets/Arrhythmia

different perspectives in selecting features to predict the arrhythmia
class [2, 9, 10]. Three feature selection techniques were applied to
the training set: IG, RFE-RF, and AutoSpearman. The top features
with the highest information gain coefficients, the wrapper subset
with the highest accuracy, and features chosen by AutoSpearman
were found. Common features were chosen between: 1) IG and RFE-
RF, 2) IG and AutoSpearman, 3) RFE-RF and AutoSpearman, and 4)
IG, RFE-RF, and AutoSpearman. A feature subset was selected with
all common features among the three techniques and top common
features between each pair of techniques.

3.4 Class Imbalance
The arrhythmia class in the dataset was imbalanced. For a model
to learn to better differentiate and classify the minority arrhythmia
classes as well as correctly predict the majority ‘normal’ class, Syn-
thetic Minority Over-sampling Technique (SMOTE) was applied
on the training set [1, 3]. SMOTE was used for oversampling all
minority classes with synthetic examples and undersampling the
majority class [3]. Using different parameter values from the de-
faults for the SMOTE function improved performance measures
of the models [1]. Therefore, SMOTE was applied with different
sampling parameter values.

3.5 Training and Testing Classification Models
Figure 2 is a flowchart showing the three following steps: building
classification models, model interpretation, and improving classifi-
cation models with ‘bellwether’ training set.

Figure 2: Building, Interpreting, and Improving Classifica-
tion Models Flowchart

Four supervised learning classifiers, Naïve Bayes (NB), k-Nearest
Neighbors (kNN), Random Forest (RF) and a heterogeneous stack-
ing ensemble (Ensemble), were trained to predict normal heart
rhythm and types of arrhythmia using 10-fold cross-validation on
the training set. 10-fold cross-validation ensured that there was no
overlapping of data used for learning and validation in the same
runs [22]. More advanced models often require more computa-
tional time and are more difficult to interpret [13, 14, 20]. Also,
traditional supervised models often perform well but can be over-
looked. Classification models could be categorized into six main
classes based on their underlying approaches: Bayesian, tree-based,
support vector machine, neural network, boosting and other [14].
To study how different machine learning algorithms act on the

26

Towards Interpretable and Maintainable Supervised Learning Using Shapley Values in Arrhythmia CASCON’20, Nov 10-13, 2020, Toronto, Canada

Arrhythmia dataset, different types of classification models were
selected. Like Güvenir et al., this paper also explores the traditional
NB and kNN models. RF was found to be one of the top-performing
classifiers [13, 14]. Homogeneous ensemble models combine clas-
sifiers that act similarly as base models; whereas, heterogeneous
ensemble models combine classifiers that perform differently as
base models that have different perspectives on the same data and
are complementary [13, 14]. Therefore, the simpler traditional NB
and kNNmodels, top-performing homogeneous ensemble RF, and a
stacking heterogeneous ensemble (Ensemble) built using NB, kNN,
and RF algorithms were compared in the prediction of arrhythmia.

Using the ‘caret’ package [7], the optimal tuning parameters
found for NB model were ‘usekernel’ = TRUE for non-parametric
distribution and ‘adjust’ = 1 for bandwidth adjustment. Changing
‘fL’ for Laplace correction did not change the model’s performance
and was set to 1. For kNN model, it was necessary to preprocess
the data using “center” and “scale” to reduce the more significant
effect of large-value features on the predictions. The optimal tuning
parameter for the number of neighbours was ‘k’ = 5. For the RF
model, the optimal tuning parameter for the number of randomly
selected predictors was ‘mtry’ = 2. The same optimal parameters
were found for Ensemble’s base RF model and the ‘mtry’ for the
meta RF model was ‘mtry’ = 2 or 3. The trained classification models
were then tested using the test set that was initially separated from
the training set in data preparation.

To build the Ensemble model, the training set was split with a
ratio of 50:50 for training and validation sets. The base models were
trained using the training set and their predictions were made on
the validation and test sets. The meta model using RF algorithmwas
trained using these predictions and the actual class of the validation
set. Lastly, the meta model made predictions using the base models’
predictions on the test set.

3.6 SHAP Value Explanations for Classification
Models

Partial Dependence Plot (PDP) is a global interpretable model that
illustrates the marginal effects of one or two features of a model’s
predictions [18]. Although heterogeneous effects in features are not
distinguished using PDPs, Individual Conditional Expectation (ICE)
curves and Accumulated Local Effects (ALE) plots find individual
predictions of a classification model and heterogeneous effects
become apparent [18]. However, ICE curves only show one feature
and ALE plots show the differences in predictions, where a higher
number of intervals produce less accurate explanations [18]. LIME
uses local interpretable models for individual explanations and is
additive [15, 18]. SHAP combines LIME and Shapley value to explain
individual predictions of models. SHAP was applied to interpret our
prediction models locally for individual predictions and globally for
arrhythmia class subsets because the approximated Shapley values
could be combined into global explanations [15, 18].

For each model, SHAP was run for each instance in the Arrhyth-
mia dataset to obtain a data frame of SHAP values, feature values,
prediction probabilities for every data instance, feature, and class.
The Shapley value comes from coalitional game theory and aims
to equitably distribute the payout among players in a game [18].
Here, the ‘game’ is the prediction of an instance, the ’payout’ is

the difference between the prediction of the arrhythmia classes
minus the average predictions for the dataset, and the ‘players’ are
the features used to train our classification models. Therefore, we
want to determine how fairly distributed the contributions of the
feature values were in predicting the arrhythmia class for all the
applied classification models. For Ensemble, the ‘features’ were the
base models’ predictions and its interpretability explains how fairly
distributed the contributions of the base NB, kNN and RF models’
prediction values were in the prediction of the arrhythmia class.
SHAP values were used to provide an approximation of Shapley
values for models and observations using the R package ‘iml’ [19].

For each model and instance, SHAP values were calculated for
the selected features for the 10 iterations performed. The parameter
for the number of Monte Carlo samples was set to 20 to estimate
the Shapley values for more efficient computation. All the SHAP
values were combined into a data frame for each model. Since the
meta RF model in Ensemble makes a final prediction for the arrhyth-
mia classes using the base NB, kNN, and RF models’ predictions,
SHAP used these base models’ predictions as ‘features’ for Ensem-
ble model [19]. SHAP Feature Importance Plot uses the magnitude
of feature attributions [18]. For Feature Importance Plots, we plot-
ted the calculated mean SHAP values grouped by class and feature
for the dataset and then features were ordered by decreasing impor-
tance [18]. SHAP Summary Plots illustrated the feature importance
and feature effects [18]. Each point depicted the SHAP value for
a feature and instance, where its colour shows its feature value
from high to low [18]. Features were sorted by decreasing impor-
tance [18]. SHAP Dependence Plots illustrate the feature values
and their corresponding SHAP values [18].

3.7 Finding ‘Bellwether’ Training Set to
Improve Classification Models

Using the SHAP values data frame from the previous step for each
classifier and selected features to train the models, a minimum ab-
solute SHAP value threshold was chosen aimed in selecting around
70% of the dataset (or 323 instances) as ‘bellwether’ instances to
retrain and improve each classification model. The maximum num-
ber of ‘bellwether’ instances chosen was 403. Because SHAP values
determined the contribution of every feature for the individual pre-
dictions in each classification model, ‘bellwether’ instances were
chosen for each model’s new ‘bellwether’ training set.

SMOTE was applied to these ‘bellwether’ training sets with the
same parameters and feature subset as before from feature selection
and class imbalance to train the new classification models. The four
applied classification models, NB, kNN, RF and Ensemble were
retrained using these new ‘bellwether’ training sets to predict the
arrhythmia class using 10-fold cross-validation. These models were
evaluated using the same initial test sets that were partitioned
during data preparation. This was performed for the 10 iterations.

3.8 Evaluation of Classification Models
To include multiple perspectives and to reduce potential bias, the
models using the original and ‘bellwether’ training sets were eval-
uated using the following performance measures: accuracy, AUC,
macro specificity, macro precision, macro recall, macro F1 score,

27

CASCON’20, Nov 10-13, 2020, Toronto, Canada S. Krishnakumar and T. Abdou

and Cliff’s 𝛿 effect size. Accuracy ((TP+TN) / (TP+TN+FP+FP)) mea-
sures how accurately a classifier correctly predicts a class. The AUC
measures recall (or sensitivity) (TP rate) versus 1-specificity (FP
rate) for the classifiers. Macro precision (TP / (TP +FP)) is the over-
all number of correctly classified positive instances divided by the
number of instances labelled as positive by the classifier. This is the
percentage of instances predicted as normal or any arrhythmia class
that were correctly predicted. Recall (TP / (TP + FN)) is the number
of correctly predicted positive instances divided by the number of
actual positive instances. Therefore, higher recalls have lower false
negatives. F1 score is the harmonic mean of precision and recall
and is effective when working with imbalanced datasets [12].

The Cliff’s 𝛿 effect size from ‘effsize’ R package was used to
measure how often the accuracy of one classification model was
more significant than another model [17, 24]. Cliff’s 𝛿 effect size is
a non-parametric measure that estimates the magnitude of signifi-
cant practical differences and determines the overlap between two
groups [12]. It is an accurate and reliable measure. The magnitude
thresholds for Cliff’s 𝛿 is found in Table 1 [12].

Table 1: Cliff’s 𝛿 Effect Sizes andMagnitude Thresholds [12].

Absolute Cliff’s 𝛿 Effect Size Magnitude Thresholds
𝛿 < 0.112 negligible
0.112 ≤ 𝛿 < 0.276 small
0.276 ≤ 𝛿 < 0.427 medium
𝛿 ≥ 0.427 large

Cliff’s 𝛿 effect size statistically checks whether the classifiers
behave similarly to determine whether NB, kNN, and RF perform
differently enough to incorporate into a stacking heterogeneous
ensemble classification model. Additionally, the efficiency and sta-
bility of the classifiers were compared. Efficiency ensures classifiers
perform at a reasonable time, especially considering the increas-
ingly available ECG data. Increased stability of models provides
more robust, reproducible, and accurate results, all important in
diagnosing patients and ensuring classifiers do not overfit to the
training set.

4 RESULTS
4.1 Feature Subsets
Using IG, RFE-RF, and AutoSpearman feature selection techniques
resulted in feature subsets that varied across the 10 iterations. How-
ever, 14 features consistently appeared in the feature subsets for
more than 5 of the 10 iterations: heart rate (bpm), AVF’s average
width of Q wave (msec), V3’s number of intrinsic deflections, V1’s
area under the QRS complex (msec·mV), average QRS duration
(msec), average duration between onset of Q and offset of T waves
(msec), V6’s amplitude of T wave (mV), average duration between
two consecutive T waves (msec), V1’s number of intrinsic deflec-
tions, V3’s amplitude of R wave (mV), V4’s amplitude of T wave
(mV), AVR’s amplitude of T wave (mV), V3’s amplitude of the Q
wave (mV), and V3’s average width of the S wave (msec).

The recurrence of these features in the feature subsets suggests
that V1, V3, V4, V6, AVF, and AVR leads helped predict normal
heart rhythm and different types of arrhythmia. Additionally, the
widths of Q and S waves and amplitudes of T, R, and Q waves were

most common in the feature subsets. Heart rate, lead V1’s area
under QRS complex (msec·mV), and leads V1’s and V3’s number of
intrinsic deflections were also often found as useful in predicting
typical and different types of arrhythmia. Features involving leads
V2, DII, AVL, V5, and DI, widths of R, Q, R’, and S waves, and
amplitudes of R’, R, T, and S waves appeared less frequently in
these subsets. Luz et al. mentioned that R-R intervals, amplitude
and width of the T wave, and lead II were more important features
in diagnosing cardiac diseases while leads V1, V2, and V4 were
favoured for classifying ventricular related arrhythmias [16]. It is
seen that features using leads V1 and V4 and amplitude of T waves
were also found significant in our feature subsets for arrhythmia
prediction.

4.2 Evaluation of Classification Models
Comparing the models’ median accuracies over 10 iterations, RF
performed the highest with 75.97% accuracy, Ensemble performed
the second highest with 72.87% accuracy, NB had 67.83% accuracy,
and kNN performed the lowest with 52.72% accuracy, as shown
in Figure 5. However, RF and Ensemble models had statistically
significant accuracies with 𝑝-values (𝑝 < 0.0001) for all iterations.
The median AUCs shown in Table 3 were 0.7957 for NB, 0.7895 for
RF, 0.7869 for Ensemble, and 0.7594 for kNN, where NB, RF, and
Ensemble performed similarly and kNN slightly underperformed
in terms of AUC.
Table 2: Cliff’s 𝛿 Effect Sizes and the CorrelationCoefficients
Between the Pairs of Classifiers.

Classifier Cliff’s 𝛿 Estimate Correlation Coefficient
NB-kNN 0.96 -0.2057
NB-RF -1.00 -0.0149
kNN-RF -1.00 0.0994
NB-En -0.92 0.2335
kNN-En -1.00 0.3878
RF-En 0.96 -0.5177

The absolute Cliff’s 𝛿 estimates were very large (confidence level
= 0.95) as shown in Table 2, indicating the classification models’
accuracy distributions showed no to minimal overlap according to
Kudjo et al. (Table 1) [12]. Since NB, kNN, and RF models’ accuracy
distributions show no to minimal overlap, this highlights a het-
erogeneous ensemble using the mentioned models could capture
varying aspects of the data to increase its performance. However,
we observe in this study that RF slightly outperformed Ensemble.

In terms of efficiency, the fastest classification model was kNN,
then NB, and both RF and Ensemble had longer training times
(Figure 6) (Microsoft Surface 2 Laptop with 16GB memory and
Intel(R) Core(TM) i7 processor, R version 3.6.0 running onWindows
10). Figure 7 illustrates while NB and kNN performed the least
consistently, RF and Ensemble performed the most consistently and
therefore, were the most stable for arrhythmia prediction.

4.3 SHAP Value Explanations for Classification
Models

Feature Importance Plots illustrate the average contributions of
features to the prediction of the arrhythmia classes. Figure 3 shows
Feature Importance Plots for the classifiers for the first iteration.

28

Towards Interpretable and Maintainable Supervised Learning Using Shapley Values in Arrhythmia CASCON’20, Nov 10-13, 2020, Toronto, Canada

Figure 3: Feature Importance Bar Plots for NB, kNN, RF, and Ensemble Classifiers for Iteration 1.

Figure 4: SHAP Summary Plot for NB Classifier for Iteration 1.

Concentrating on the 14 most frequently appearing features in
the final feature subsets across the 10 iterations, heart rate (bpm)
increased the prediction probability of ‘other’ class in NB model, ‘si-
nus tachycardy’ (ST) and ‘sinus bradycardy’ (SB) in kNNmodel, and
‘normal’ and ‘coronary artery disease’ (CAD) in RF model, while
decreasing the prediction probability for CAD in NB and kNN mod-
els, and additionally ‘normal’, ‘ventricular premature contraction’
(VPC), and ‘other’ in kNN model, and often affecting ‘normal’ and
‘atrial fibrillation’ (AFib) in NB model, ST and SB in NB and RF
models, and OIMI in all NB, kNN, and RF models. Average QRS
duration (msec) often increased prediction of ‘left bundle branch
block’ (LBBB), ‘right bundle branch block’ (RBBB), and ‘other’ in
NB, VPC in kNN, and ST in RF, while decreasing the prediction
probability of ‘normal’ in NB, and often influencing prediction of
‘normal’ in kNN and RF, and CAD, LBBB, RBBB, and ‘other’ in RF.
Lead V1’s area under QRS complex (msec·mV) increased prediction
probability for ST in NB, RBBB in NB and kNN, and LBBB and
‘other’ in NB and RF. It often decreased prediction for ‘normal’ in
NB, and ‘other’ in kNN while affecting predictions for AFib in NB,
‘normal’, SB, and RBBB in RF, and CAD in both NB and RF. The
average duration between onset of Q and offset of T waves (msec)
often increased probability for SB and VPC in NB, and ST in both
NB and kNN, decreased prediction for ‘other’ in NB, SB in kNN, and
‘normal’ in both NB and RF, while influencing the predictions of
CAD, LBBB, and AFib in NB, ‘normal’ in kNN, ST and SB in RF. The
average duration between two consecutive T waves (msec) often

increased the prediction probability of CAD and decreased predic-
tion probability of ‘normal’ in NB and RF while often affecting the
prediction probability of ‘other’ in kNN.

Lead AVF’s average width of Q wave (msec) increased the pre-
diction probability of OIMI in all models, decreased the prediction
probability for ‘other’ in kNN and ‘normal’ in both NB and RF,
and often influenced the predictions of ‘normal’ and VPC in kNN.
V3’s average width of S wave (msec) often increased prediction
probability of OAMI in RF and affected prediction for ‘normal’ in
NB. V6’s amplitude of T wave (mV) often increased the prediction
probability of ‘normal’ and OIMI in RF and affected the probability
of CAD in all these models, ‘normal’ and SB in NB, and ‘normal’,
VPC, RBBB, and ‘other’ in kNN. Lead V3’s amplitude of R wave
(mV) increased the prediction probability of OAMI in NB and RF,
decreased ‘other’ in NB and ‘normal’ in kNN, and affected the prob-
ability of ‘other’ and ‘normal’ in RF. V4’s amplitude of T wave (mV)
often increased the prediction probability of ‘normal’ and CAD in
NB, CAD, VPC, and RBBB in kNN, decreased the probability of
RBBB in RF while affecting the probability of ‘normal’ and ‘other’
in kNN and RF and additionally CAD in RF. AVR’s amplitude of T
wave (mV) increased the probability of ‘normal’ and CAD in NB
and CAD, VPC, and RBBB in kNN, decreased the probability of
AFib in NB, while affecting CAD in NB, VPC and ‘other’ in kNN
and ‘normal’, CAD, and ‘other’ in RF. V3’s amplitude of Q wave
(mV) increased the probability of CAD in NB and OAMI in RF while
decreasing the probability of ‘normal’ in both NB and RF.

Lead V3’s number of intrinsic deflections increased the predic-
tion of OAMI in all models, CAD in both NB and RF, SB in kNN and

29

CASCON’20, Nov 10-13, 2020, Toronto, Canada S. Krishnakumar and T. Abdou

decreased the probability of SB in NB, ‘normal’ in kNN, AFib in RF
while affecting ‘normal’ and ‘other’ in NB and RF, and RBBB in RF.
V1’s number of intrinsic deflections increased the probability of
‘normal’ in NB while decreasing the probability of RBBB in RF and
often influencing the probability of OAMI and SB in NB, ‘normal’
in kNN and RF, AFib and ‘other’ in NB and RF.

For Ensemble, base NB’s predictions often increased the predic-
tion probability of CAD, decreased the probability of RBBB, and
influenced the probability for ‘normal’. Base kNN’s predictions
often increased the prediction probability for ‘normal’, CAD, and
OAMI, decreasing the prediction for ST, SB, and ‘other’. Base RF’s
predictions increased the prediction probability of ‘normal’ and
OAMI similar to base kNN model, CAD similar to the base NB and
kNN models, while decreasing the probability of RBBB similar to
base NB model and AFib, and affecting the probability of OIMI, ST,
SB, and ‘other’. Overall, SHAP value explanations for the classifiers’
predictions highlighted that different classification algorithms used
different features from the feature subset to make predictions for
the arrhythmia class. The SHAP values showed more significant
contributions of features in NB, then kNNwhile RF had lower SHAP
values. However, RF often affected many of the arrhythmia class
predictions compared to NB and kNN.

SHAPDependence Plot displays all data instances’ feature values
and its SHAP values for a feature. For example, for V6’s amplitude
of T wave (mV) in the NB model, there were nonlinear relationships
between the SHAP values and feature values. Values between -1.5
to -3.1mV decreased the prediction probability for ‘normal’ class
while values higher than 1.5mV increased its probability. Values less
than 0mV increased the prediction probability for CAD; whereas,
values greater than 0mV decreased its probability. 0 to 1.5mV val-
ues increased the prediction of ST and fluctuations were seen for
‘other’. Interestingly, heart rate (bpm) only ranged from 0 to 65bpm
in the Arrhythmia dataset, indicating it as erroneous because the
normal heart rate is around 60bpm. However, the models appeared
to have found patterns within this feature to predict ‘normal’ and
different arrhythmias. For example, for NB, values less than 30bpm
decreased the prediction probability of ‘normal’. 0 to 17bpm some-
times increased prediction probability for ST, indicating some of
these values could have been heart rates higher than 65bpm but pos-
sible constraints could have inhibited the recordings of these higher
values. 15 to 25bpm increased the prediction probability of SB. Simi-
lar patterns were found for the RF model. For kNN, less than 30bpm
showed decreased prediction probability of ‘normal’. Values less
than 17bpm increased prediction of ST and 17 to 30bpm increased
prediction of SB. The same patterns were found for the samemodels
and features across 10 iterations, depicting SHAP found consistent
patterns in the models’ predictions. Features could contain errors
in the Arrhythmia dataset, as seen with heart rate (bpm), and could
be determined with domain knowledge; however, finding better
quality data subsets within this dataset could also reduce the effects
of erroneous data present in a dataset.

SHAP Summary Plots show the distribution of SHAP values for
the features and feature values for each model and class. For exam-
ple, looking at Figure 4 for the first iteration of NB model, lower
V6’s amplitude of T wave (mV) values, lower heart rate (bpm) val-
ues, higher V1’s number of intrinsic deflections values, and slightly
higher V2’s amplitude of R’ wave values decreased the prediction

probability for ‘normal’ class. Lower V6’s amplitude of T wave (mV)
also increased prediction probability of CAD with around 0.2 SHAP
value. Lower values of V3’s average width of R wave (msec) and
V3’s amplitude of Q wave (mV) increased prediction probability of
OAMI with around 0.2 SHAP value. Lower heart rate (bpm) values
increased prediction for ST and SB with SHAP values around 0.2
and 0.4, respectively. The lower average duration between onset
Q and offset T waves (msec) increased prediction for ST. Higher
average QRS duration (msec) values, lower V1’s area under QRS
complex (msec·mV), and lower V4’s amplitude of R wave (mV) val-
ues increase prediction probability for LBBB with about 0.1 SHAP
values. Higher V1’s number of intrinsic deflections, V2’s amplitude
of R’ wave (mV) values, and slightly higher V1’s area under QRS
complex (msec·mV) increase probability prediction for RBBB with
≥ 0.2 SHAP values. Lower values for V3’s average width of S wave
(msec) and lower V3’s number of intrinsic deflections values in-
creased prediction of other with about 0.2 SHAP value while lower
values of V3’s amplitude of Q wave (mV) decreased the prediction
probability for other with around 0.2 SHAP value.

4.4 Evaluation of Improved Classification
Models Using ‘Bellwether’ Training
Instances

In terms of accuracy, RF+BW had the highest accuracy of 91.09%,
followed by Ensemble+BW with 86.44%, NB+BW with 78.30%, RF
with 75.97%, Ensemble with 72.87%, NB with 67.83%, kNN+BW
with 62.79% and lastly, kNN with 52.72% as seen in Figure 5. As
summarized in Table 3, using the ‘bellwether’ (BW) training set for
the classification algorithms resulted in at least 10% improvement
in accuracy for the models. RF+BW again had the highest AUC
of 0.9415, second Ensemble+BW with 0.9065, closely followed by
kNN+BWwith 0.9041, NB+BWwith 0.8644, NBwith 0.7957, RFwith
0.7895, Ensemble with 0.7869 and kNN with 0.7594. Interestingly, it
was observed that training the models with ‘bellwether’ instances
improved the AUCs of these models and found RF+BW performed
well again in terms of AUC while Ensemble+BW and kNN+BW
showed good AUCs above 0.90 as well, making kNN+BW appear
stronger than NB+BW even though NB had a higher AUC than
kNN and the kNN algorithm performed worst in terms of accuracy.

RF+BW and Ensemble+BW had the best macro specificity with
0.9898 and 0.9854, respectively. Macro F1 scores again indicated
RF+BW performed the best with an F1 score of 0.9160 and then
Ensemble with 0.8592 while RF, NB+BW, Ensemble, kNN+BW, NB,
and kNN had 0.7614, 0.7561, 0.7336, 0.7102, 0.6804, and 0.5846 macro
F1 socres, respectively. Looking at the macro precision and macro
recall, all kNN, NB, RF, and Ensemble have low performances of less
than 0.65. However, using ‘bellwether’ instances helped improve
the classification algorithms’ performances: RF+BW had 0.8962
precision and 0.9414 recall, Ensemble+BW had 0.8539 precision and
0.8949 recall, NB+BW had 0.7493 precision and 0.8039 recall, and
kNN+BW had 0.5883 precision and 0.8862 recall.

Therefore, RF+BW was the top-performing model, followed by
Ensemble+BW in arrhythmia prediction in terms of accuracy, AUC,
macro specificity, precision, recall, and F1 score. Figure 6 shows the
efficiencies of training these models. The fastest model was kNN
classification algorithm that had training time under 5 seconds but

30

Towards Interpretable and Maintainable Supervised Learning Using Shapley Values in Arrhythmia CASCON’20, Nov 10-13, 2020, Toronto, Canada

Table 3: Evaluation Metrics for the Classification Models Using the Original and ‘Bellwether’ (BW) Training Sets.

Models Accuracy AUC Macro Specificity Macro Precision Macro Recall Macro F1 score
NB 0.6783 0.7957 0.9630 0.5632 0.4930 0.6804

kNN 0.5272 0.7594 0.9575 0.4085 0.4922 0.5846
RF 0.7597 0.7895 0.9698 0.6425 0.5450 0.7614

Ensemble 0.7287 0.7869 0.9673 0.5749 0.5477 0.7336
NB+BW 0.7830 0.8644 0.9755 0.7493 0.8039 0.7561

kNN+BW 0.6279 0.9041 0.9692 0.5883 0.8862 0.7102
RF+BW 0.9109 0.9415 0.9898 0.8962 0.9414 0.9160

Ensemble+BW 0.8644 0.9065 0.9854 0.8539 0.8949 0.8592

Figure 5: Median Accuracies for NB, kNN, RF, and Ensemble
Classification Models Over 10 Iterations.

Figure 6: Median Computational Efficiencies of the Original
and Improved NB, kNN, RF, and Ensemble Classifiers.

Figure 7: Stability of theOriginal and ‘Bellwether’ (BW)Clas-
sification Models

all models’ training times were under one minute. The testing times
for all the models were faster, within a couple of seconds. The most
stable classification algorithms were RF and Ensemble, followed by
NB and kNN as seen in Figure 7.

The Cliff’s 𝛿 effect sizes between the new classification models’
accuracies were still large, like the original models as seen in Ta-
ble 4. However, it is evident that the improved NB, kNN, RF, and
Ensemble models trained with ‘bellwether’ instances performed
better than original NB, kNN, RF, and Ensemble models with Cliff’s
𝛿 effect size magnitudes of 0.81, 0.89, 1.00, and 1.00, respectively.
Therefore, finding ‘bellwether’ instances with SHAP values from
the data was an effective approach in improving the performance
and maintainability of the classification models.
Table 4: Cliff’s 𝛿 Effect Sizes and the CorrelationCoefficients
Between the Pairs of Classifiers using Original and ‘Bell-
wether’ (BW) Training Sets.

Classifier Cliff’s 𝛿 Estimate Correlation Coefficient
NB –NB+BW -0.81 -0.1430
kNN –kNN+BW -0.89 0.3215
RF –RF+BW -1.00 -0.0976
En –En+BW -1.00 0.1697
NB+BW –kNN+BW 0.8 -0.1590
NB+BW –RF+BW -1.00 -0.1441
kNN+BW –RF+BW -1.00 0.1948
NB+BW –En+BW -0.90 0.4981
kNN+BW –En+BW -1.00 -0.0930
RF+BW –En+BW 0.91 0.6136

5 THREATS TO VALIDITY
Internal Threats: The optimization of tuning hyperparameters, such
as the maximum depth of trees in RF and Ensemble’s base and meta
RF models, were not investigated but could further improve these
models’ performances and highlight more differences among the
models. Using SMOTE to oversample minority arrhythmia classes
uses synthetic samples based on the dataset, creating potential bias
and not accounting for varying samples that exist in reality. Ex-
ternal Threats: More and current data for arrhythmia with ECG
measurements would improve and allow for better assessment of
the models, providing more generalizability. This would also pro-
vide more varying minority arrhythmia class examples to train the
classification models and improve its prediction for these classes.
Construct Threats: Other classification algorithms could also be
compared for arrhythmia prediction. Using SHAP for model inter-
pretability expects features to be not correlated with each other so
that feature interactions could be further explored. Additionally,
domain experts’ knowledge would help validate and further im-
prove feature selection techniques, classification models, and the
interpretations of these models.

31

CASCON’20, Nov 10-13, 2020, Toronto, Canada S. Krishnakumar and T. Abdou

6 CONCLUSION AND FUTUREWORK
In conclusion, using three different feature selection techniques,
IG, RFE-RF, and AutoSpearman, was effective in finding less than
20 features for building arrhythmia prediction models. Güvenir et
al.’s VFI5 with feature weights obtained an accuracy of 68% while
NB and kNN classifiers had 50% and 53% accuracy[8]. In answer-
ing RQ1, kNN classifier also had 53% accuracy (rounding to the
nearest percent) in this study. NB classifier performed better with
about 68% accuracy while Ensemble and RF had 72.87% and 75.97%
accuracy, respectively. However, using the local model-agnostic
interpretability method, SHAP, provided insights on how the predic-
tion models predicted the arrhythmia class. To answer RQ2, NB and
kNN showed features had higher SHAP values and therefore, more
contribution for arrhythmia prediction than in RF model. However,
features in RF model affected more arrhythmia classes’ predictions
than in NB and kNN models. Ensemble model often relied on base
RF model’s predictions but base NB and kNN models were still used
to help make predictions, showing Ensemble still depended on base
NB and kNN models in making predictions. SHAP showed classi-
fiers used specific feature values for individual predictions. Domain
knowledge would help evaluate whether models’ explanations for
the predictions were useful and reasonable. Lastly answering RQ3,
it was seen that finding ‘bellwether’ instances using SHAP values
improved the classification models by over 10% in terms of accuracy,
macro precision, and macro recall. Similarly, kNN, RF, and Ensem-
ble improved by over 10% for AUC and macro F1 score while NB
improved by over 5% for these metrics. Using different evaluation
metrics helped show the improvement of using ‘bellwether’ in-
stances for prediction models (Table 3). Specifically, the magnitude
of Cliff’s 𝛿 were greater than 0.80, between the original models and
their respective improved models, indicating ‘bellwether’ instances
found using SHAP values were effective in improving arrhythmia
prediction models. RF+BW, Ensemble+BW, NB+BW, and kNN+BW
showed improved accuracies of 91.09%, 86.44%, 78.30%, and 62.79%,
respectively. Additionally, RF+BW was the top-performing model,
followed by Ensemble+BW, having 0.9415 and 0.9065 AUC, 0.9898
and 0.9854 specificity, and 0.9160 and 0.8592macro F1 scores, respec-
tively. In this study, we proposed using SHAP values as a reliable
technique for model-agnostic interpretability for machine learning
models and selecting ‘bellwether’ training instances using SHAP
values to improve prediction model performances. This could help
physicians and clinicians better understand the underlying expla-
nations of models’ predictions, allowing them to trust and further
improve these models. Future work include comparing different
classification models, like Gradient Boosting, in addition to the
models from this study for arrhythmia prediction, investigating
the effect of using feature selection on the ‘bellwether’ training set,
exploring optimization of hyperparameters in RF and Ensemble
models, and obtaining more samples and/or current datasets to
better predict arrhythmias to increase the models’ generalizability
and for further interpretability of machine learning models using
SHAP values.

REFERENCES
[1] Amritanshu Agrawal and Tim Menzies. 2018. Is "better data" better than "bet-

ter data miners"?: On the benefits of tuning SMOTE for defect prediction. In
Proceedings - International Conference on Software Engineering. 1050–1061.

[2] Raid Alzubi, Naeem Ramzan, Hadeel Alzoubi, and Abbes Amira. 2018. A Hybrid
Feature Selection Method for Complex Diseases SNPs. IEEE Access 6 (2018),
1292–1301.

[3] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.
2002. SMOTE: Synthetic minority over-sampling technique. Journal of Artificial
Intelligence Research 16 (2002), 321–357. arXiv:1106.1813

[4] Shay Cohen, Eytan Ruppin, and Gideon Dror. 2005. Feature selection based on
the shapley value. In IJCAI International Joint Conference on Artificial Intelligence.
665–670.

[5] Dheeru Dua and Casey Graff. 2019. UCI Machine Learning Repository. http:
//archive.ics.uci.edu/ml

[6] Karim El Mokhtari, Ben Peachey Higdon, and Ayşe Başar. 2019. Interpreting
Financial Time Series with SHAP Values. In Proceedings of the 29th Annual Inter-
national Conference on Computer Science and Software Engineering (CASCON ’19).
IBM Corp., USA, 166–172.

[7] Max Kuhn. Contributions from Jed Wing, Steve Weston, Andre Williams, Chris
Keefer, Allan Engelhardt, Tony Cooper, Zachary Mayer, Brenton Kenkel, the
R Core Team, Michael Benesty, Reynald Lescarbeau, Andrew Ziem, Luca Scrucca,
Yuan Tang, Can Candan, and Tyler Hunt. 2019. caret: Classification and Regression
Training. R package version 6.0-84.

[8] Halil Altay Guvenir, Burak Acar, Gulsen Demiroz, and Ayhan Cekin. 1997. Su-
pervised machine learning algorithm for arrhythmia analysis. Computers in
Cardiology (1997), 433–436.

[9] ZenaM. Hira andDuncan F. Gillies. 2015. A review of feature selection and feature
extraction methods applied on microarray data. Advances in Bioinformatics 2015
(2015), 1–13.

[10] Jirayus Jiarpakdee, Chakkrit Tantithamthavorn, and Christoph Treude. 2018.
Autospearman: Automatically mitigating correlated software metrics for inter-
preting defect models. In Proceedings - 2018 IEEE International Conference on
Software Maintenance and Evolution, ICSME 2018. 92–103.

[11] Rahul Krishna and Tim Menzies. 2019. Bellwethers: A Baseline Method for
Transfer Learning. IEEE Transactions on Software Engineering 45, 11 (2019),
1081–1105. arXiv:1703.06218

[12] Patrick Kwaku Kudjo, Jinfu Chen, Solomon Mensah, Richard Amankwah, and
Christopher Kudjo. 2020. The effect of Bellwether analysis on software vulnera-
bility severity prediction models. Software Quality Journal (2020), 1–34.

[13] Stefan Lessmann, Bart Baesens, Hsin Vonn Seow, and Lyn C. Thomas. 2015.
Benchmarking state-of-the-art classification algorithms for credit scoring: An
update of research. European Journal of Operational Research 247, 1 (2015), 124–
136.

[14] Libo Li, Stefan Lessmann, and Bart Baesens. 2019. Evaluating Software Defect
Prediction Performance: An Updated Benchmarking Study. SSRN Electronic
Journal (2019).

[15] Scott M. Lundberg and Su In Lee. 2017. A unified approach to interpret-
ing model predictions. In Advances in Neural Information Processing Systems,
Vol. 2017-Decem. Neural information processing systems foundation, 4766–4775.
arXiv:1705.07874

[16] Eduardo José da S. Luz, William Robson Schwartz, Guillermo Cámara-Chávez,
and David Menotti. 2016. ECG-based heartbeat classification for arrhythmia
detection: A survey. Computer Methods and Programs in Biomedicine 127 (2016),
144–164.

[17] Guillermo Macbeth, Eugenia Razumiejczyk, and Rubén Daniel Ledesma. 2011.
Cliff’s Delta Calculator: A non-parametric effect size program for two groups of
observations. Universitas Psychologica 10, 2 (2011), 545–555.

[18] Christoph Molnar. 2019. Interpretable Machine Learning. A Guide for Making
Black BoxModels Explainable. (2019). https://christophm.github.io/interpretable-
ml-book/

[19] Christoph Molnar, Bernd Bischl, and Giuseppe Casalicchio. 2018. iml: An R
package for Interpretable Machine Learning. JOSS 3, 26 (2018), 786.

[20] Saman Parvaneh, Jonathan Rubin, Saeed Babaeizadeh, and Minnan Xu-Wilson.
2019. Cardiac arrhythmia detection using deep learning: A review. Journal of
Electrocardiology 57 (2019), 70–74.

[21] Simon Perkins, Kevin Lacker, and James Theiler. 2003. Grafting: Fast, incremental
feature selection by gradient descent in function space. Journal of Machine
Learning Research 3 (2003), 1333–1356.

[22] Payam Refaeilzadeh, Lei Tang, and Huan Liu. 2009. Cross-Validation. In Encyclo-
pedia of Database Systems (1 ed.), Ling Liu and M Tamer Özsu (Eds.). Springer
US, 532–538.

[23] Dee Unglaub Silverthorn, Bruce R. Johnson, William C. Ober, Claire E. Ober, and
Andrew C. Silverthorn. 2016. Human Physiology: An Integrated Approach (7 ed.).
Pearson Education, San Francisco. 838 pages.

[24] Marco Torchiano. 2019. effsize: Efficient Effect Size Computation. R package
version 0.7.6.

[25] Luis Torgo. 2010. Data Mining with R, learning with case studies. Chapman and
Hall/CRC.

32

https://arxiv.org/abs/1106.1813
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://arxiv.org/abs/1703.06218
https://arxiv.org/abs/1705.07874
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

Efficient Location-Level Risk Analytics
Neil Burke

neil.burke@dal.ca
Faculty of Computer Science

Dalhousie University
Halifax, Nova Scotia

Oliver Baltzer
oliver@analyzere.com

Analyze Re
Halifax, Nova Scotia

Norbert Zeh
nzeh@cs.dal.ca

Faculty of Computer Science
Dalhousie University
Halifax, Nova Scotia

ABSTRACT
We propose a system for performing risk analytics of reinsurance
portfolios at the resolution of individual insured locations. By using
a graph-based portfolio representation, our system achieves the
flexibility to represent arbitrarily complex reinsurance portfolios.
In spite of this flexibility, which is not achieved by current risk ana-
lytics systems, neither commercial nor academic ones, our system
is substantially faster than current risk analytics systems. Given
that such a location-level portfolio analysis involves the processing
of terabytes of data, the key to the efficiency of our system is the
use of a scalable cloud-based architecture and the careful engineer-
ing of the data representation and algorithms to ensure that data
processing happens entirely in memory of the compute nodes.

CCS CONCEPTS
• Applied computing → Enterprise applications; • Informa-
tion systems → Data analytics.

KEYWORDS
risk analytics, cloud computing, algorithm engineering

1 INTRODUCTION
Insurance companies sell insurance to property owners and thereby
expose themselves to the risk of financial losses when the insured
files a claim. Natural disasters, such as earthquakes, floods or hur-
ricanes, can expose an insurance company to catastrophic losses
that result in the company’s bankruptcy or, worse, its inability to
reimburse its clients. Reinsurance companies act as insurers for
insurance companies. Reinsurance treaties (contracts) between pri-
mary insurers as the insured and a reinsurance company as the
insurer protect the primary insurer against such catastrophic losses.
This is an industry capitalized at $500 billion per year and annual
gross written premiums of more than $260 billion.

Both insurers and reinsurers aim to structure their portfolios
of contracts and treaties so that the probability to make a profit—
when premiums exceed claim payouts—is (significantly) higher than

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CASCON’20, Nov 10-13, 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

the probability of a loss—when claim payouts exceed premiums.
This does not only ensure the profitability of the company but
also reduces the risk that a reinsurance company cannot meet its
insurance obligations toward its clients, which in turn reduces
the risk that a primary insurer cannot meet its obligations toward
its clients—property owners. The ability to model and quantify
risk due to natural catastrophes to ensure an insurer’s solvency
has gained increasing importance over the last 25 years. Prior to
the introduction of commercially available catastrophe modelling
software, insurers relied on records of infrequent historical claims
in order to extrapolate future loss potential [8, 23].

Reinsurance companies employ decision support systems to help
with the management of their portfolios. This includes deciding
whether to enter into a new treaty with a primary insurer, and on
what terms; deciding whether it is safe to invest money or keep
cash on hand to respond to seasonal fluctuations in risk exposure,
for example due to hurricanes; and many more questions. The core
problem is to compute a loss distribution, a probability distribution
over the potential payouts to clients due to natural disasters.

The portfolio of a typical reinsurance company consists of thou-
sands of reinsurance treaties that can cover several hundred million
insured properties. The numbers of treaties and insured locations
and the complex interactions between different treaties in the port-
folio make it impossible to obtain a closed-form expression describ-
ing the loss distribution. Consequently, decision support systems
used in the reinsurance industry rely on Monte Carlo simulation to
obtain an accurate estimate of this distribution [6].

The estimation of the loss distribution using Monte Carlo sim-
ulation is computationally costly and involves the processing of
dozens of terabytes of data when analyzing a typical reinsurance
portfolio based on the risk exposure of individual insured locations.
Performing such a location-level analysis on existing commercial
risk analytics platforms is either infeasible or involves a combina-
tion of manual manipulation of the data with days of computation
time (see Section 6.4). To reduce the computation cost, most com-
mercial systems support only less fine-grained analyses based on
preaggregated losses at the county or state level. This sacrifices
accuracy and makes it impossible to model, for example, (quite
common) reinsurance treaties that cover losses due to hurricane
damage to properties within a certain distance from the coast.

Thus, there is a need for risk analytics platforms that are capable
of performing a location-level risk analysis of a full reinsurance
portfolio. Ideally, such a platform should be able to produce the
loss distribution of a portfolio within minutes because this helps an
underwriter to analyze the impact of a new treaty on the portfolio’s
risk exposure while negotiating the terms of the treaty. Fine-grained
modelling of a portfolio’s risk exposure at the level of individual
locations also opens the door for detailed tailoring of reinsurance

33

CASCON’20, Nov 10-13, 2020, Toronto, Canada Neil Burke, Oliver Baltzer, and Norbert Zeh

treaties, for example by adjusting the coverage for losses incurred
due to damage to high-risk locations. To support such fine-tuning, a
location-level risk analytics platform should be flexible and support
essentially arbitrary treaty terms and interactions between treaties.

In this paper, we propose a location-level risk analytics system
that meets both requirements. It achieves the flexibility to model
arbitrarily complex reinsurance portfolios by representing a portfo-
lio as a directed acyclic graph structure built from a small number
of simple building blocks. We propose a scalable cloud-based par-
allel evaluation engine that can compute the loss distribution of
a typical reinsurance portfolio covering 70 million insured loca-
tions in around 30 minutes on 20 compute instances with 48 cores
each. This is significantly faster than the performance of current
commercial or academic risk analytics systems—many of these
systems are unable to perform less fine-grained analyses in 30
minutes. Our system achieves faster performance in spite of its
greater flexibility—existing commercial and academic risk analytics
systems can manipulate only portfolios of a restricted structure.

Given that performing a portfolio risk analysis via Monte Carlo
simulation involves evaluating a large number of independent trials
(see Section 2), it is natural to parallelize the analysis by assigning
different trials to compute nodes that evaluate these trials inde-
pendently. This is efficient if each compute node can evaluate its
assigned trials entirely in memory. Since several gigabytes of data
must be processed to evaluate a single trial, this is non-trivial. The
key technical contribution of this paper is to demonstrate that the
evaluation of the portfolio graph can be organized so that the inter-
mediate results that need to be held in memory use little space. This
amounts to finding a topological ordering of the portfolio graph
of low cut width (see Section 5). Minimizing the cut width is an
NP-hard problem. Our solution employs a heuristic that exploits
the structure of typical portfolio graphs to obtain a topological
ordering of sufficiently low cut width quickly and then modifies
the portfolio graph and its topological ordering to reduce the cut
width further without changing the structure of the treaties in the
portfolio represented by the graph.

The remainder of this paper is organized as follows: Section 2
gives a brief overview of the use ofMonte Carlo simulation to obtain
an accurate estimate of a portfolio’s loss distribution. Section 3
discusses related work. Section 4 presents our graph-based portfolio
representation. Section 5 discusses our implementation of a cloud-
based risk analytics system. Section 6 discusses experimental results
that demonstrate the performance of our system and presents a
comparison against a major vendor’s commercial system. We offer
concluding remarks and a discussion of future work in Section 7.

2 PORTFOLIO RISK ANALYTICS
Monte Carlo simulation to estimate the loss distribution of a portfo-
lio is based on evaluating a large number of trials, typically 10,000
or more. Each trial computes the sequence of payouts to the rein-
surer’s clients, given a particular sequence of catastrophic events
(hurricanes, floods, etc.) in a given year. To compute a probabil-
ity distribution over the total annual payouts by the reinsurer to
its clients, it suffices to add up the total payouts in each trial and
analyze the frequency distribution of the total payouts across all
trials. More fine-grained analyses are possible that focus on the

.

. . .

Locations

Primary insurer
contracts

Reinsurer contracts

. . .

Figure 1: Typical structure of a reinsurance portfolio. Trian-
gles represent embedded structures such as primary insur-
ers’ portfolios and the reinsurance treaties acting on them.

distribution of losses due to a particular type of peril or on seasonal
loss distributions. This can be achieved by aggregating only sub-
sets of loss values in each trial and again analyzing the frequency
distribution of these aggregates across all trials.

Each trial is based on a sequence of catastrophic events, obtained
by sampling from catastrophe models developed by seismologists,
meteorologists, and other scientists. Structural models developed
by engineers are used to translate each event into an estimated
amount of damage to each insured property affected by the event,
quantified as a monetary loss value. The result is one year event loss
table (YELT) per property (location) that records the sequence of
losses for this property due to the sequence of events in this trial.
Each entry in the YELT, called an occurrence, stores the loss value
and the type and simulated date of the event that caused it. We call
such a YELT recording the losses for one location a location YELT.

The input to a location-level portfolio analysis is a set of trials.
Each trial is represented as a set of location YELTs, one per insured
location. The payouts to the property owner by the primary insurer
due to the losses recorded in each location YELT are determined
by the contract between property owner and primary insurer. The
totals of these payouts by a primary insurer to its clients in response
to the events in the trial constitute the insurer’s sequence of losses.
Note that this sequence can itself be viewed as a YELT. The primary
insurer’s losses are covered by a complex network of reinsurance
treaties that determine the payouts from the reinsurer to primary
insurers. These payouts are the reinsurer’s losses, and they form
once again a YELT, the portfolio YELT for this trial. The portfolio
analysis produces one portfolio YELT per trial. The structure of a
typical reinsurance portfolio is illustrated in Figure 1.

This paper focuses on computing the portfolio YELTs for all
trials from their location YELTs based on the insurance contracts
and reinsurance treaties covering these losses. This is the compu-
tationally costly part of the analysis as it involves aggregating the
losses across hundreds of millions of insured locations, millions of
insurance contracts, thousands of reinsurance treaties, and thou-
sands of trials. This requires processing several terabytes of input
data. The statistical analysis of the portfolio YELTs to estimate
the portfolio’s loss distribution is comparatively trivial, as far as
computation cost is concerned. We also do not consider the process
of producing the input YELTs of each trial. They are provided as
the input of the analysis. Commercial risk analytics platforms also
start with YELTs representing raw losses as input. These YELTs

34

Efficient Location-Level Risk Analytics CASCON’20, Nov 10-13, 2020, Toronto, Canada

are provided by brokers who produce them based on catastrophe
models or generated by licensing the necessary models and tools
from a vendor.

3 RELATEDWORK
3.1 Reinsurance Analytics
Location-level insurance analytics is a mostly unstudied topic.

Academic research on risk analytics systems has focused on
creating a distributed risk analytics engine using Hadoop [25] and
on using optimizations on specialized hardware to achieve fast,
single-node running times [7, 10]. These solutions only support
analyses at coarser granularities, with input YELTs aggregated to
county or state level, and they assume a very restrictive portfolio
structure, to simplify the implementation of efficient solutions. The
portfolio is assumed to be composed of a flat list of “programs”. Each
program is composed of a sequence of “layers” or transformations
that apply to all input losses in a user-specified order. The programs’
outputs are combined to generate the portfolio’s loss distribution.
This means that the portfolio is modelled essentially as a directed
tree, and that output from one program cannot be passed as input to
another within the same analysis. Not only does this make location-
level analysis impossible, it also limits the practical use of the system
even for coarser-grained analyses, as actual reinsurance portfolios
are rarely composed of programs with strictly delineated layers
and the interactions between treaties rarely form a tree.

There are a number of commercial risk analytics platforms on
the market that implement part of the functionality required to
solve the problem of location-level reinsurance analytics.

Catastrophe modelling software [1, 27] can compute the loss
distributions of a group of locations up to the primary insurer level,
and is therefore typically sold to primary insurers. These systems
are designed for modelling a much smaller number of locations
than what would be seen in a reinsurance portfolio. The two leading
products are built around Microsoft SQL Server as both their data
storage and computational platform, and are consequently bound
to the scalability limitations of SQL servers [34].

For analytics on reinsurance portfolios, the solutions on the
market today [2, 4, 32] are only able to consume data at an ag-
gregated geographic level (e.g., county level). The most flexible
of these systems allow the user to “nest” contracts within certain
other contracts. This allows for some flexibility in defining simple
dependent relationships between contracts, but it does not offer
the same flexibility and ease of expressing relationships between
contracts as a graph-based portfolio representation.

Dynamic Financial Analysis (DFA) products [5, 14, 26, 33] allow
for the modelling of complex cash flows and provide the greatest
level of flexibility in terms of structuring and modelling features.
However, they only consume data at very coarse levels of detail
and are typically limited to a small number of trials.

3.2 Graph Modelling Frameworks
The modelling of complex data flow problems as directed graphs,
as we do in our graph-based portfolio representation in Section 4,
and the development of distributed systems to evaluate such graph-
based data flow representations efficiently, as we do in Section 5,
has been the focus of previous work [3, 12, 13, 16, 20–22]. In these

systems, a graph represents a complex computation, vertices repre-
sent steps in this computation, and edges represent the flow of data
from one step to another. Due to their data dependencies, steps
connected by edges must be executed in sequence while steps not
connected by edges may be executed in parallel. These systems are
designed to schedule the steps of a processing pipeline (expressed
as a directed graph) across multiple machines while managing com-
munication between compute nodes. In spite of their effectiveness
for such problems, their focus on sophisticated scheduling and com-
munication strategies introduces overhead that is unnecessary in
the context of portfolio analysis. Since a portfolio analysis consists
of running tens of thousands of trials completely independently,
the reinsurance analytics problem is trivial to parallelize (barring
memory constraints; see Section 5).

Several works also exist on processing large graphs on a single
compute node [15, 18, 28, 30, 35, 36]. These systems aremore aligned
with our reinsurance platform design, as each trial in our analysis
is processed on an independent compute node. However, all of
these single-machine graph processing systems are focused on
iterative processing, where the amount of data flowing across each
edge of the graph is relatively small (PageRank [24] is a common
benchmark in these papers). Our problem is different in that the
data flowing across edges is much larger and not uniform. This
makes memory a scarce resource. Indeed, minimizing the amount
of working memory necessary to evaluate a single trial is the core
challenge we address in Section 5.

4 REINSURANCE PORTFOLIO AS A GRAPH
As described in Section 2, the output of a portfolio analysis is a
list of portfolio YELTs, one per trial. Since trials can be evaluated
independently, the core of the problem is to compute the portfolio
YELT of a single trial from the location YELTs of the trial.

This process can be represented as a directed acyclic graph (DAG).
The DAG has one source (vertex without in-neighbours) per loca-
tion YELT. A single sink (vertex without out-neighbours) represents
the output of the computation, that is, the portfolio YELT. Internal
vertices represent terms and clauses of contracts and treaties, such
as deductibles to be subtracted from claimed losses, the percent-
age of the remaining losses covered under a treaty or a limit up
to which losses are covered. Deductibles and coverage limits may
apply to individual claims or to the total of all claims throughout
the year. These types of contract terms can be modelled using a
small number of vertex types in the graph. Treaties are constructed
by combining these vertices into subgraphs that capture which of
these transformations apply to which losses and in which order.

In general, every vertex other than the sources and the sink takes
one or more YELTs as input and produces a YELT of transformed
loss values as its output. This output YELT forms (part of) the input
of one or more other vertices.

For many transformations, the order in which occurrences are
processed is important. For example, some contractual terms apply
only to the first n occurrences. Therefore, YELTs must be in sorted
order (by date). For the input YELTs of the portfolio, this can be
guaranteed using a one-time preprocessing. To keep intermediate
YELTs sorted, each vertex reads its input YELTs in order and writes
the transformed occurrences in order. If a vertex has multiple input

35

CASCON’20, Nov 10-13, 2020, Toronto, Canada Neil Burke, Oliver Baltzer, and Norbert Zeh

/RDG
ILOH�

/RDG
ILOH�

/RDG
ILOH�

'DWH (YHQW /RVV

���������� �� ����

'DWH (YHQW /RVV

���������� �� ����

'DWH (YHQW /RVV

���������� �� ����

6FDOH
���

0HUJH

'DWH (YHQW /RVV

���������� �� ���

'DWH (YHQW /RVV

���������� �� ����

0HUJH

'DWH (YHQW /RVV

���������� �� ����

���������� �� ���

Figure 2: Processing YELT occurrences through a simple ex-
ample graph for one trial

YELTs, these YELTs need to be merged by date before applying the
vertex’s transformation. Therefore, we refer to such a vertex as a
merge vertex. If a merge vertex finds multiple occurrences for the
same event and with the same date in its input YELTs, it combines
them into a single occurrence whose loss value is the sum of the
loss values of the combined occurrences.

Figure 2 illustrates a simple example portfolio modelled using
our graph framework. The source vertices labelled “Load” read
location YELTs from storage and send the occurrences across their
output edges. “Merge” vertices merge their input YELTs without
applying any transformations. In this example, the middle merge
vertex combines the two occurrences for the same date and event
(Date=2020-01-01, Event=14) and sums their losses. The “Scale”
vertex scales the loss of each occurrence in its input YELT by 50%.
This amounts to covering only 50% of the claimed losses under this
treaty. The final vertex in the graph merges everything together,
and outputs the portfolio’s final YELT.

While using a directed graph for modelling a reinsurance port-
folio is natural, it also is novel. As discussed in Section 3, previous
reinsurance risk analytics systems are constrained to rigid or tiered
portfolio structures. Many complex portfolios cannot be modelled
directly using those systems. Directed graphs allow the construc-
tion of arbitrarily complex structures from elementary vertex types.
A typical financial contract can be modelled using 5–10 vertices.

5 CLOUD-BASED SYSTEM FOR
LOCATION-LEVEL RISK ANALYTICS

A typical reinsurance portfolio covers approximately 50–100 mil-
lion locations; each location is represented by one location YELT
per trial. These locations are covered by approximately 50 million
insurance contracts, which are reinsured by thousands of reinsur-
ance treaties. This is illustrated in Figure 1. Representing such a
portfolio as a graph as in Section 4 results in a graph with hundreds

User

Client

Distributed
Storage

Occurrence
processor

queue

Occurrence
processor

Occurrence
processor

Occurrence
processor

︙

(1) Graph and
input losses

(2) Analysis
request

(3) Trials
1 to 10

(3) Trials
11 to 20

(3) Trials
i to j

(5) Portfolio trial losses

(4) Graph and
Input losses
trials 1 to 10

(4) Graph and
Input losses
trials 11 to 20

(4) Graph and
Input losses
trials i to j

(6) Portfolio
loss
distribution

Figure 3: Occurrence processing architecture overview.
Numbers reflect the order in which the steps are taken.

of millions of vertices. A location-level analysis of such a portfo-
lio based on Monte Carlo simulation involves processing several
terabytes of input and intermediate data and requires significant
computational resources.

We implemented a cloud-based solution that distributes the com-
putation across a large number of compute nodes. This provides
scalability, elasticity, and fault tolerance. Figure 3 gives an overview
of the system’s core architecture. The client (a front end through
which the user interacts with the system) uploads the portfolio
graph and input YELTs to a distributed storage system. To initiate an
analysis, the client divides the trials into groups and submits each
group to the occurrence processor queue. This queue is responsible
for assigning each trial group to the next available occurrence pro-
cessor. Each occurrence processor runs on its own compute node,
independently of other occurrence processors. Occurrence proces-
sors read their input from and write their results to distributed
storage, from where they can be retrieved by the client.

While this system design allows us to perform a portfolio analysis
by evaluating individual trials independently on different occur-
rence processors, with zero communication between them, process-
ing a single trial through a portfolio graph of hundreds of millions
of vertices and edges can require more memory than is available on
a commodity compute node if done naïvely. Occurrence processors
process the vertices of the portfolio graph in an order that ensures
that only few intermediate YELTs need to be held in memory at any
point during the analysis. This allows us to process multiple trials
in parallel so that CPU utilization is maximized, while doing all
computation entirely in-memory using commodity compute nodes.

Determining the optimal evaluation order of the vertices in the
portfolio graph is the responsibility of the graph optimizer. The

36

Efficient Location-Level Risk Analytics CASCON’20, Nov 10-13, 2020, Toronto, Canada

graph optimizer is run only periodically, whenever the portfolio
changes substantially due to the addition of new insured locations
or contracts. It is an offline task that is not part of the portfolio
analysis itself. To re-optimize the graph, the client submits a request
to the graph optimizer through a graph optimizer queue. The graph
optimizer then reads the graph from distributed storage, optimizes
its vertex ordering, and writes the resulting rearranged graph back
to distributed storage, for use by future analysis runs.

The remainder of this section discusses our risk analytics system
in greater detail. Section 5.1 discusses the design of the occurrence
processor. Section 5.2 discusses the implementation of the graph
optimizer. Section 5.3 offers some final remarks concerning the
scalability, elasticity, and fault tolerance of our system design.

5.1 Occurrence Processor
The occurrence processor is responsible for computing the portfolio
YELTs of a group of trials from the location YELTs of these trials.
The occurrence processor starts one thread per trial. Typically, the
number of trials assigned to an occurrence processor is at least
the number of cores on the compute node running the occurrence
processor, thereby allowing each core to run a thread.

The occurrence processor starts by loading the portfolio graph
into memory in Compressed Sparse Row (CSR) format [29, pages 84–
85], which has a small per-edge and per-vertex memory footprint.

Since the graph representation is static, it can be shared by all
threads of the occurrence processor and concurrent accesses to the
graph by different threads do not require locking. Once the graph is
loaded, each thread begins processing a single trial, traversing the
vertices in the portfolio graph and producing the output YELT of
each visited vertex from its input YELTs based on the vertex type.
Concurrently, an asynchronous I/O thread downloads the location
YELTs of subsequent trials, with the goal of minimizing the amount
of time worker threads are stalled waiting for input data.

Since each vertex u in the portfolio graph needs access to its
input YELTs to produce its output YELT, the vertices producing
these input YELTs need to be visited before u. Thus, the vertices of
the portfolio graph need to be visited in topological order.

There are many valid topological orders. The chosen order can
have a dramatic impact on the amount of memory the occurrence
processor uses to evaluate a single trial. Consider a portfolio graph
that is a complete binary tree. The YELT produced by each vertex
u must be held in memory from the time we visit u—the time the
YELT is produced—until we visit the last vertex that has this YELT
as one of its inputs. Once this last out-neighbour of u has been
visited, the YELT can be discarded and its memory reclaimed. If
vertices are visited by decreasing distance from the sink, then the
output YELTs of all source vertices have to be held in memory
simultaneously because they are all evaluated before any of their
out-neighbours. Since half of the vertices in a complete binary tree
are source vertices, this means that half of all YELTs must be in
memory simultaneously. For a portfolio with 50–100 million loca-
tions, this requires several gigabytes of RAM per trial. In contrast,
if vertices are visited in postorder (all vertices in each subtree are
visited consecutively), only lgn YELTs need to be in memory at
any time, where n is the number of vertices in the graph. This
significantly reduces the space needed to store intermediate YELTs.

5.2 Graph Optimizer
Choosing a space-efficient topological ordering of the portfolio
graph is the responsibility of the graph optimizer. If the topological
ordering of the portfolio graph arranges the vertices in the order
v1, . . . ,vn , then the YELTs that need to be in memory immediately
after processing the ith vertex vi are the ones corresponding to
edges vjvk with j ≤ i and k > i: vj has been visited and has
produced its output YELT, while vk requires this YELT as part of
its input and has not been visited yet. The maximum number of
YELTs to be held in memory simultaneously is thus

max
1≤i<n

|{vjvk ∈ E | j ≤ i < k}|.

We call this the cut width of the topological ordering in analogy
to the cut width of an undirected graph [17] and say that an edge
vjvk with j ≤ i < k “crosses the cut between vi and vi+1.” Figure 4
illustrates that different topological orderings of the same graph
may have different cut widths. Since the cut width of the topologi-
cal ordering directly determines the maximum number of YELTs
that need to be held in memory at the same time, our strategy to
minimize the memory requirements of evaluating a single trial is
to find a topological ordering of low cut width.

Finding a vertex ordering ofminimum cut width is NP-hard even
for undirected graphs [17]. Fixed-parameter algorithms [11, 31] and
a polynomial-time approximation algorithm [19] for computing
the cut width of an undirected graph have been proposed in the
literature. However, the running times of these algorithms are far
from linear. Thus, even if we were able to extend these algorithms
to DAGs, they would not be efficient enough for portfolio graphs
with hundreds of millions of vertices. Instead, we use a heuristic
approach that exploits the structure of portfolio graphs to compute
low-cut-width topological orderings for these graphs. This heuristic
is not guaranteed to find a topological ordering of the minimum
cut width, but it does find topological orderings of sufficiently low
cut width to lead to low memory requirements of the occurrence
processor, and it finds them quickly (in linear time).

The heuristic used by the graph optimizer proceeds in two phases.
The first phase computes an initial low-cut-width ordering of the
portfolio graph. The second phase modifies the graph and the order-
ing to reduce the cut width further while ensuring that the modified
graph represents the same portfolio as the original graph.

The structure of a typical location-level portfolio. In a typical rein-
surance portfolio, the insurance contracts covering individual loca-
tions do not interact with each other while the losses of primary
insurers are covered by a network of reinsurance treaties. Thus,
the portfolio graph can be viewed as a tree of subgraphs with a

a b c d e

(a)

a b d c e

(b)

Figure 4: Two topological orderings of the same graph. As
indicated by the dashed lines, the ordering in (a) has cut
width 3, while the ordering in (b) has cut width 2.

37

CASCON’20, Nov 10-13, 2020, Toronto, Canada Neil Burke, Oliver Baltzer, and Norbert Zeh

densely connected subgraph representing the network of reinsur-
ance treaties at the root and all other subgraphs representing pri-
mary insurance contracts. The subgraph representing the network
of reinsurance treaties typically consists of a few thousand vertices.
A primary insurance contract is modelled using 5–10 vertices.

Even if these subgraphs are densely connected, the portfolio
graph remains very tree-like; it has a large block close to the sink
and is otherwise composed of small blocks containing at most a few
dozen vertices. A block or 2-edge-connected component is a maximal
subgraph that cannot be disconnected by removing a single edge.

While we hope that the flexible graph-based representation of
reinsurance portfolios introduced in this paper will allow users to
model more complex and fine-tuned portfolio structures than are
in use today, we believe that the structure of reinsurance portfolios
will remain largely hierarchical, so portfolios should continue to be
composed of many fairly small blocks and very few larger blocks
close to the sink. This is the portfolio structure we exploit.

The initial topological ordering. Recall the example of a low-cut-
width ordering of a complete binary tree in Section 5.1. Given the
tree-like structure of reinsurance portfolios, this example suggests
the following simple strategy for computing a low-cut-width or-
dering of a portfolio graph: reverse the directions of all edges and
perform a depth-first traversal (DFS) of the graph starting at the
sink; arrange the vertices in postorder of the resulting DFS tree,
that is, in the order the DFS backtracks from them.

The cost of computing a topological ordering in this fashion is
linear in the size of the graph [9, Section 22.4]. If the tree of blocks
is fairly balanced and most blocks are small, both of which tend to
be true for reinsurance portfolios, then the edges crossing any cut
in the ordering are the in-edges of roughly a logarithmic number of
vertices. If these vertices have low in-degree, the topological order-
ing thus has low cut width. Some vertices, however, can have very
high in-degree. The second phase of the graph optimizer modifies
the graph to eliminate high-in-degree and high-out-degree vertices.

Degree reduction. Consider a vertex v of high out-degree t . Such
a vertex must create a copy of its output YELT for each of its t out-
neighbours. Instead of immediately creating t copies after visitingv ,
copies can bemade in a tree-likemanner, making few copies initially
and replicating each copy further as needed. In other words, we
introduce an “out-tree” of replicator vertices that simply make d
copies of their input YELTs, for an appropriate parameter d used to
tune the degree reduction (see Section 6). High-in-degree vertices
can be reduced in a similar manner. A single high-degree merge
vertex can be replaced with an “in-tree” of d-way merge vertices,
for the same parameter d . Degree reduction increases the size of
the graph by adding vertices in order to reduce the cut width of the
graph. It thus trades a slight increase in the amount of computation
to be performed for the ability to perform it entirely in memory
and hence efficiently. For degree reduction to reduce the cut width
of the ordering, however, the construction of the in- and out-trees
needs to be informed by the current topological ordering.

To understand the construction of an in-tree (the construction
of an out-tree is analogous), let vi be a vertex with t in-neighbours
vj1 , . . . ,vjt , j1 < · · · < jt < i (see Figure 5). The in-edges of vi
cross the cut between vh and vh+1 for all jt ≤ h < i . The edges
between vj1 , . . . ,vjd and vi cross the cut between vh and vh+1

4321321
Widths of cuts

Cut width reduced by d − 1 = 2

654321
Widths of cuts

Figure 5: Cut width reduction by inserting a degree-d vertex
(square) for d = 3. Modified edges are dashed.

for all jd ≤ h < i . Now assume we introduce a merge vertex
v ′ that merges the YELTs of vj1 , . . . ,vjd and then provides the
merged YELT as one of the inputs of vi . We remove vj1 , . . . ,vjd
from the set of in-neighbours of vi , make them in-neighbours of v ′,
and make v ′ an in-neighbour of vi . To obtain a valid topological
ordering of the resulting graph, we can insert v ′ into the current
topological ordering anywhere between vjd and vi . The number
of edges crossing any cut before v ′ or after vi is not changed by
this modification of the graph. The number of edges crossing any
cut between v ′ and vi is reduced by d − 1: before the addition of
v ′, the d edges between vj1 , . . . ,vjd and vi cross the cut; after the
addition ofv ′, a single edge betweenv ′ andvi crosses the cut. This
immediately suggests the following strategy to ensure that vi ’s
in-edges do not contribute more than d to the number of edges
crossing any cut:

We divide the sequence of in-neighbours of vi into r = ⌈(t −
1)/(d − 1)⌉ groups V1, . . . ,Vr such that V2, . . . ,Vr contain d − 1
vertices each andV1 contains up to d vertices. We add a new merge
vertex v ′

h immediately after the last vertex in each group Vh with
1 ≤ h < r . We do not add a new vertex after the last vertex in Vr
but refer to vi as v ′

r . We link the vertices v ′
1, . . . ,v

′
r to form a path,

by adding an edge from v ′
h to v ′

h+1 for all 1 ≤ h < r . We attach
the in-neighbours of vi to this path by adding an edge from every
vertex in Vh to v ′

h , for all 1 ≤ h ≤ r . This results in vi ’s in-tree
having the shape of a caterpillar (see Figure 6).

While this shape ensures that after degree reduction, there is no
vertex whose incident edges contribute more than d to the number
of edges crossing any cut—and it is impossible to do better with
degree-d vertices—we construct each in- and out-tree as a complete
d-ary tree instead: We divide vi ’s in-neighbours into r = ⌈t/d⌉
groups V1, . . . ,Vr of size at most d , add a new merge vertex v ′

h
immediately after the last vertex in each group Vh , and add edges
from the vertices in Vh to v ′

h . The vertices v
′
1, . . . ,v

′
r become the

new in-neighbours of vi . If r > d , we repeat this construction with
this new set of in-neighbours until vi has at most d in-neighbours
(see Figure 7). This construction provides the weaker guarantee that
the edges in vi ’s in-tree contribute at most d logd t to the number
of edges crossing any cut, but it has the following advantage:

Figure 6: Transformation of a high-degree vertex into a
caterpillar of degreed = 3. The inserted vertices are squares.

38

Efficient Location-Level Risk Analytics CASCON’20, Nov 10-13, 2020, Toronto, Canada

Figure 7: Transformation of a high-degree vertex into a
balanced tree of degree d = 3. The parents of the leaves
are squares. Their parents are diamonds. Edges are directed
from left to right. For clarity, arrow tips are not drawn.

We use the cut width of the topological ordering as an approxi-
mate measure of the amount of memory needed by the occurrence
processor to process one trial. This approximation is accurate if all
YELTs have roughly the same size—in this case, it is the number of
YELTs that need to be held in memory at any time, the cut width of
the topological ordering, that determines the space requirements
of the occurrence processor. This assumption is mostly satisfied
if many occurrences are combined when a merge vertex merges
YELTs, but this may not always be the case. In the extreme case
when no occurrences are combined, the d input YELTs of vi after
degree reduction have the same total size as the t input YELTs ofvi
before degree reduction. Degree reduction is completely ineffective
as a means to reduce the space requirements of the occurrence
processor in this case. However, the caterpillar structure would
mean that the occurrences in half of the original input YELTs of
vi pass through at least half of the merge vertices in vi ’s in-tree,
which would negatively affect the computation cost. A balanced
d-ary in-tree implements the merging process efficiently as a tree
of d-ary merges while achieving only a slightly lower reduction in
cut width. It is thus the reasonable defensive choice.

5.3 Scalability, Elasticity, and Fault Tolerance
The implementation of occurrence processors as stateless processes
without communication between them supports scalability, elas-
ticity, and fault tolerance. To improve system throughput (e.g., to
scale to a larger portfolioor more trials) and to respond to changing
system loads, it is easy to provision and deprovision occurrence
processors. Unresponsive occurrence processors can be restarted
and have their work rescheduled to a different compute node.

In theory, the scalability of our system is limited only by the
number of trials to be evaluated. An important practical limiter
is I/O. Provisioning more occurrence processors and allocating
fewer trials to each occurrence processor increases the overall I/O
bandwidth of the system and thus helps performance. However,
decreasing the number of trials per occurrence processor beyond
some point produces only minimal performance gains. There are
two reasons for this. First, the number of trials per occurrence
processor should be greater than the number of cores on a compute
node so the I/O cost of loading most input YELTs can be hidden by
loading the YELTs of later trials while evaluating ones that have
already been loaded. Since the cost of loading the YELTs of the

first batch of trials, one per core, cannot be hidden, a higher trials-
to-cores ratio per occurrence processor—that is, a smaller number
of occurrence processors—hides a greater fraction of the I/O cost.
Second, the portfolio graph needs to be loaded in its entirety by
each occurrence processor before the occurrence processor can start
evaluating its first trial—the cost of loading the portfolio graph
cannot be hidden. This cost is substantial because the portfolio
graphs can be large (> 10GB). Since this graph needs to be loaded
only once no matter how many trials each occurrence processor
evaluates, this I/O cost can be amortized by allocating sufficiently
many trials to each occurrence processor, but this limits scalability.

6 EVALUATION
We conducted a number of experiments to evaluate the effective-
ness of our approach to location-level portfolio analysis. Since the
feasibility of our approach depends on the ability of occurrence
processors to evaluate multiple trials in memory simultaneously,
Section 6.2 investigates the cut width of the topological ordering
of a typical portfolio graph produced using our method, including
the impact of degree reduction on the cut width and the amount of
memory and time taken by the occurrence processor to evaluate a
single trial. Section 6.3 performs a full 10,000-trial portfolio analysis
using our system and demonstrates that it can carry out such an
analysis efficiently. Section 6.4 compares the performance of our
system against a commercial system on the market today.

6.1 Test Portfolio
Since current commercial systems are unable to perform a full port-
folio analysis at the resolution of individual locations in a reasonable
amount of time, there do not exist any real-world location-level
portfolio data to date that could be used in experiments to evaluate
our system. Therefore, we are limited to using synthetic data.

We constructed our test data set from the portfolios of primary
insurers and from the portfolio of a reinsurer composed of treaties
with primary insurers and insurance contracts for high-value indi-
vidual properties.1 This portfolio structure is illustrated in Figure 8.

High-value individual properties include bridges or office towers
worth hundreds of millions of dollars. Such properties are insured
directly by reinsurance companies. The contract insuring each
such property is modelled using a subgraph of approximately 50
vertices, with fairly high connectivity near the sourceand sink of
the subgraph. There are 59 such structures in our test portfolio.

Each primary insurer business unit covers 100,000 insured loca-
tions and is composed of approximately 400,000 vertices. In this
structure, the contract for each location is modelled using a sub-
graph of 4–5 vertices. The losses from contracts are combined into
the insurer’s loss YELT using a high-degree merge vertex. Our
graph models 700 different primary insurance portfolios, making
these structures the bulk of our graph.

The “reinsurer’s contractual terms” structure serves as the sink
of the graph and takes the losses from the primary insurer business
units and high-value properties as inputs. This structure contains
approximately 5,000 vertices and models interdependent reinsur-
ance contractual terms for the entire business of a real reinsurance
group. The structure includes several large merge vertices, one with
1Due to confidentiality requirements, the specific companies cannot be identified.

39

CASCON’20, Nov 10-13, 2020, Toronto, Canada Neil Burke, Oliver Baltzer, and Norbert Zeh

Figure 8: High-level structure of the location-level graph
used in our experiments

in-degree over 1,000 and several with in-degree over 100, making it
the most complex component of the graph in terms of connectivity.

Overall, our test graph had approximately 307M vertices and
377M edges. Its structure reflects the flow of risk from individual
insured locations via primary insurance contracts to reinsurance
treaties and thus should be representative of location-level reinsur-
ance portfolios that we expect to emerge in the real world once
systems such as ours make location-level portfolio analysis feasible.

6.2 Graph Layout, Single-Trial Memory Usage
and Processing Time

Our first experiments concern the impact of the graph layout on
memory usage and processing time. Since trials are evaluated inde-
pendently in our system, we evaluated the impact of graph layout
and degree reduction in single-trial runs on a Ubuntu 18.04 Linux
workstation with an Intel i7-6700K CPU @ 4.0GHz, 64GB of DDR4
RAM @ 2400 MT/s, and with an SSD as the storage system.

Cut width vs graph size. Figure 9 shows how the choice of the
maximum degree d during degree reduction affected the cut width
and size of the optimized graph. Values of d ≥ 214 resulted in no
degree reduction and no modifications of the graph because the
input portfolio graph had no vertices of degree greater than 214.
The cut width of the topological ordering was around 10,000 in
this case. A choice of d = 2 reduced the cut width to 157 but also
added 75M vertices to the graph due the replacement of high-degree
mergers with large binary trees. The sweet spot for our test graph
was achieved for d = 16, which resulted in a cut width of 310 and
increased the size of the graph by only around 2%.

Running time of the graph optimizer. Since the graph optimizer
is run only periodically, its running time is a secondary concern as
long as it is not excessive. For all choices of d in our experiments,
the graph optimizer ran in under 4 minutes. Around 50s were spent
on reading the input graph and writing the optimized graph back to
disk. It took around 10s to compute the initial topological ordering
of the input graph. Degree reduction was the costliest step, taking
around 150s. For d ≥ 214, the degree reduction cost dropped to
almost zero since the graph is not modified by the degree reduction
in this case. As a result, the running time of the graph optimizer
dropped to around 60s (I/O time + topological sorting) for d ≥ 214.

Running time of occurrence processor. The running time of the
occurrence processor depends on the total size of all YELTs it needs

21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

Max degree

310

320

330

340

350

360

370

380

|V
| (

m
illi

on
s)

|V| (millions)
Cutwidth

0

2000

4000

6000

8000

10000

Cu
tw

id
th

Figure 9: Number of vertices vs cutwidth for different values
of the maximum degree parameter

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Average occurrences per location

50

100

150

200

250

Ru
nn

in
g

tim
e

(s
ec

)

Max degree = 2
Max degree = 16
Max degree = 128
Max degree =

Figure 10: Running time of the occurrence processor as a
function of maximum degree and average number of occur-
rences per location

to process, which is correlated with the size of the portfolio graph
and the average size of the input YELTs. As discussed at the begin-
ning of this section, the maximum vertex degree used during degree
reduction impacts the graph size. We controlled the size of the input
YELTs using the average number of occurrences per location as
a parameter. We varied this parameter between 0.01 and 1. Since
individual properties are unlikely to make an insurance claim every
year, the average number of occurrences generated per location is
typically no greater than 0.2 in practice (which resulted in 4TB of
input YELTs for a 10,000 trial analysis for the test portfolio).

Figure 10 shows the time to process a single trial using the occur-
rence processor as a function of the average number of occurrences
per location and for different levels of degree reduction. There is a
baseline cost of about 25 seconds to load the graph into memory.
In a multi-trial portfolio analysis, this cost is amortized over multi-
ple trials evaluated by the same occurrence processor. Above this
baseline, the running time scaled linearly with the average number
of occurrences per location, which was to be expected because this
number should have a roughly linear influence on the total size of

40

Efficient Location-Level Risk Analytics CASCON’20, Nov 10-13, 2020, Toronto, Canada

all YELTs in the portfolio graph. Degree reduction with d ≥ 16 had
an insignificant impact on the running time, as the size of the graph
increases by no more than 2% for these parameters compared to
no degree reduction. The running time for d = 2 was noticeably
higher than for d ≥ 16 due to the around 75M vertices added by
the degree reduction.

Memory usage of occurrence processor. The occurrence processor
used 112MB of memory to store the intermediate YELTs for the
original graph without degree reduction (d = ∞, cut width 10,000),
31MB for the graph with maximum degree d = 128 (cut width 820),
and 15MB for the graph with maximum degree d = 16 (cut width
310). These results are significant for two reasons:

First, the reduction in cut width for smaller values of d translates
into a reduction in memory size, albeit not in a linear one: a factor
of around 30 between the cut widths for d = ∞ and for d = 16
translate into only a factor of 8 between the amounts of memory
used. This is because in the unreduced graph, the cuts crossed by
many edges are close to the sources of the graph, but edges close to
the sources carry only few occurrences; some of them do not carry
any occurrences. As the cut width decreases with smaller values
of d , the cuts causing peak memory usage shift closer to the sink
where YELTs carry more occurrences.

Second, processing even the unreduced graph uses only a mod-
est amount of memory, which shows that the initial topological
ordering is good enough to allow processing multiple trials in mem-
ory. This is significant because, as mentioned in Section 5.2, if few
occurrences are combined during merge steps, degree reduction
provides little benefit to memory usage.

6.3 Evaluation as a Distributed System
To evaluate the feasibility of a full-scale location-level portfolio
analysis consisting of 10,000 trials, we provisioned 20 m5.12xlarge
compute nodes from Amazon EC2 to serve as occurrence proces-
sors and submitted a 10,000 trial job using our graph reduced to a
maximum degree of 16. We used m5.12xlarge nodes for their high
network bandwidth and because the high vCPU count (48) allowed
us to reduce the number of times the graph had to be loaded into
memory. We used an average of 14 million input occurrences per
trial, an aggressively high estimate of what we would expect from
a typical location-level analysis. Each compute node was issued
500 trials to process, an average 10–11 trials per vCPU. We used
Amazon’s Simple Storage System (S3) for distributed storage, as it
scales well and has high throughput for Amazon EC2 nodes located
in the same availability zone. We used Amazon’s Simple Queue
Service (SQS) for the occurrence processor queue.

Starting from a newly provisioned cluster of occurrence proces-
sors with no data preloaded onto it, the system was able to compute
the portfolio YELTs for 10,000 trials in approximately 33 minutes.
The dedicated I/O threads of the occurrence processors retrieved
all data (approximately 4TB) in approximately 28 minutes. This
cost was nearly perfectly hidden by downloading the input data
for later trials while earlier trials were being processed. Since the
rate of download exceeded the rate of occurrence processing, our
current implementation is bound by computation speed. However,
any further optimizations of the processing speed, without any I/O
optimizations, will not reduce the running time below 28 minutes.

6.4 Comparison Against a Commercial System
The substantial licensing fees of commercial risk analytics systems
make it infeasible to compare our system against a wide range of
them. Due to aworking relationshipwith one of themajor vendors,2
we were given access to a server running their platform.

The vendor’s analytics suite offers two separate programs: an
insurance client for modelling primary insurance structures and
a reinsurance client for modelling reinsurance structures. Using
these programs to model a reinsurer’s portfolio at location-level
requires using the insurance client to model the primary insurance
contracts in the reinsurer’s portfolio, manually exporting the re-
sulting loss distributions to the reinsurance client, and running the
reinsurance client to apply the portfolio’s reinsurance treaties to
the loss distributions generated by the insurance client.

We used this process to perform a location-level analysis on a
real primary insurer’s data set of 500,000 locations, representing
hurricane risk exposures in a US state. Each location was covered
by one primary insurance contract. As the reinsurance structure,
we created a simple synthetic contract. A full reinsurance portfolio
includes locations from many other states and countries. Thus, this
data set represents only a small slice (< 1%) of the amount of work
required for a typical location-level analysis.

We evaluated the vendor’s analytics suite on the vendor’s hard-
ware, a virtualized Windows Server 2016 machine running on a
Xeon Gold 6154 processor with 16 virtualized cores and 64GB of
memory, and another Windows Server machine running Microsoft
SQL Server 2017 with 2 virtualized cores and 16GB of memory.With
this configuration, it took the vendor’s platform approximately 38
minutes to compute the portfolio’s losses.

We ran the same experiment on our platform using comparable
compute resources: one m5.4xlarge EC2 instance with 16 cores
and 64GB of memory. We could not run on the vendor’s hardware
because the implementation of our platform is Linux-based. With
this configuration, our platform took 35 seconds to perform the
same analysis (plus an additional 11 seconds to topologically sort
the graph and reduce its maximum degree). Due to nuances in the
interpretations of some financial contracts, both systems generated
different loss distributions in some instances. However, with de-
tailed knowledge of the vendor’s interpretation of such contracts,
our system is capable of generating matching output.

In addition to being significantly faster, our system is also signif-
icantly more flexible. The vendor’s system allows only one primary
insurance contract per location. The contract itself only supports
the three most common terms. The reinsurance client allows users
to create portfolios containing multiple contracts of different types,
but they are difficult to combine to model arbitrary dependencies
between contracts. The system uses a referencing system to direct
output from one reinsurance contract to another but only some
contracts can be referenced by others and keeping track of the
overall structure becomes difficult as more references are added.

On the small data set in this comparison, our system was over 50
times faster than the vendor’s system. Therefore, while our system
can perform a full-scale location-level analysis in around 30minutes,
we expect the vendor’s system to take more than a day. This has
a significant impact on the feasibility of location-level analyses in

2Again, confidentiality agreements prevent us from disclosing the name of the vendor.

41

CASCON’20, Nov 10-13, 2020, Toronto, Canada Neil Burke, Oliver Baltzer, and Norbert Zeh

the reinsurance industry. Moreover, we expect that the vendor’s
system’s use of a single SQL server for processing and retrieving
data introduces a significant bottleneck that severely hampers its
scalability to the size of a full-scale location-level portfolio.

7 CONCLUSION
We presented a system for processing complex reinsurance port-
folios at location-level resolution. By employing a flexible graph
representation, our system can model arbitrary dependencies be-
tween reinsurance contracts. In contrast, many commercial systems
on the market impose significant restrictions on the type of portfo-
lio structures they can model. In spite of this greater flexibility, our
system is over 50 times faster than at least one commercial system
by a major vendor we were able to use for comparison. Moreover,
it is unclear whether current commercial systems can scale to the
size of a full-size location-level portfolio, an input our system can
process in 33 minutes using a scalable cloud-based architecture.

To support interactive use of our system, future work should
focus on reducing the time of a portfolio analysis further by sup-
porting incremental updates to the graph and caching intermediate
results. Repeated runs of portfolio analyses on the same portfolio
are necessary mostly when investigating the impact of adding new
contracts or renegotiating the structure of existing contracts on
the portfolio’s risk exposure. Caching a well-chosen subset of in-
termediate results should enable the computation of an updated
portfolio YELT after each change in a matter of seconds because
most changes are local to only a small part of the graph and only
YELTs “downstream” from these changes need to be recomputed.

ACKNOWLEDGMENTS
The research of Neil Burke and Norbert Zeh was supported by the
Natural Sciences and Engineering Research Council of Canada.

REFERENCES
[1] AIR Worldwide. 2019. Touchstone. https://www.air-worldwide.com/Software-

Solutions/Touchstone/. Accessed: 2019-10-16.
[2] AIRWorldwide. 2019. Touchstone Re. https://www.air-worldwide.com/Software-

Solutions/Touchstone-Re/. Accessed: 2019-10-16.
[3] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haberman,

Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. 2013.
MillWheel: fault-tolerant stream processing at internet scale. Proceedings of the
VLDB Endowment 6, 11 (2013), 1033–1044.

[4] Analyze Re. 2019. Write More Profitable Reinsurance. https://analyzere.com/.
Accessed: 2019-10-16.

[5] Aon. 2019. ReMetrica. https://www.aon.com/reinsurance/analytics-(1)/remetrica.
jsp. Accessed: 2019-10-16.

[6] Aman Kumar Bahl, Oliver Baltzer, Andrew Rau-Chaplin, and Blesson Varghese.
2012. Parallel simulations for analysing portfolios of catastrophic event risk.
In 2012 SC Companion: High Performance Computing, Networking Storage and
Analysis. IEEE, 1176–1184.

[7] Neil Burke, Andrew Rau-Chaplin, and Blesson Varghese. 2016. Computing
probable maximum loss in catastrophe reinsurance portfolios on multi-core and
many-core architectures. Concurrency and Computation: Practice and Experience
28, 3 (2016), 836–847.

[8] KarenM. Clark. 2002. The Use of ComputerModeling in Estimating andManaging
Future Catastrophe Losses. The Geneva Papers on Risk and Insurance. Issues and
Practice 27, 2 (2002), 181–195. http://www.jstor.org/stable/41952626

[9] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2009. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press.

[10] Frank Dehne, Glenn Hickey, Andrew Rau-Chaplin, andMark Byrne. 2009. Parallel
catastrophe modelling on a cell processor. In Proceedings of the 2009 Conference
of the Center for Advanced Studies on Collaborative Research. IBM Corp., 24–31.

[11] Archontia CGiannopoulou,Michał Pilipczuk, Jean-Florent Raymond, DimitriosM
Thilikos, and Marcin Wrochna. 2019. Cutwidth: Obstructions and algorithmic

aspects. Algorithmica 81, 2 (2019), 557–588.
[12] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.

2012. PowerGraph: Distributed graph-parallel computation on natural graphs.
In Proceedings of the 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 12). 17–30.

[13] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J
Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in a Distributed
Dataflow Framework. In Proceedings of the 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), Vol. 14. 599–613.

[14] Guy Carpenter &Company. 2019. MetaRisk. http://www.guycarp.com/managing-
risk/analytics/metarisk.html. Accessed: 2019-10-16.

[15] Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon Lee, Min-Soo Kim,
Jinha Kim, and Hwanjo Yu. 2013. TurboGraph: A fast parallel graph engine
handling billion-scale graphs in a single PC. In Proc. of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM, 77–85.

[16] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. 2007.
Dryad: Distributed data-parallel programs from sequential building blocks. In
ACM SIGOPS Operating Systems Review. ACM, 59–72.

[17] Ephraim Korach and Nir Solel. 1993. Tree-width, path-width, and cutwidth.
Discrete Applied Mathematics 43, 1 (1993), 97–101.

[18] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-Scale
Graph Computation on Just a PC. In Proceedings of the 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 12). 31–46.

[19] Tom Leighton and Satish Rao. 1999. Multicommodity max-flowmin-cut theorems
and their use in designing approximation algorithms. J. ACM 46, 6 (1999), 787–
832.

[20] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and Joseph Hellerstein. 2010. GraphLab: A New Framework for Parallel Machine
Learning. In Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial
Intelligence. 340–349.

[21] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A system for large-
scale graph processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data. ACM, 135–146.

[22] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martín Abadi. 2013. Naiad: A timely dataflow system. In Proceedings of the
24th ACM Symposium on Operating Systems Principles. ACM, 439–455.

[23] American Academy of Actuaries Extreme Events and Property Lines Committee.
2018. Uses of Catastrophe Model Output. https://www.actuary.org/sites/default/
files/files/publications/Catastrophe_Modeling_Monograph_07.25.2018.pdf.

[24] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
pagerank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[25] Andrew Rau-Chaplin, Blesson Varghese, DuaneWilson, Zhimin Yao, and Norbert
Zeh. 2013. QuPARA: Query-driven large-scale portfolio aggregate risk analysis
on MapReduce. In IEEE International Conference on Big Data. IEEE, 703–709.

[26] Reynolds Porter Chamberlain. 2019. Software | RPC. https://www.
rpc.co.uk/services/rpc-consulting/software://www.rpc.co.uk/services/rpc-
consulting/software/. Accessed: 2019-10-16.

[27] Risk Management Solutions. 2019. Additional Software Products. https://www.
rms.com/software/additional-software-products. Accessed: 2019-10-16.

[28] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-stream: Edge-
centric graph processing using streaming partitions. In Proceedings of the 24th
ACM Symposium on Operating Systems Principles. ACM, 472–488.

[29] Yousef Saad. 2000. Iterative methods for sparse linear systems (second ed.).
[30] Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph Process-

ing Framework for Shared Memory. In Proceedings of the 18th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. 135–146.

[31] Dimitrios M Thilikos, Maria Serna, and Hans L Bodlaender. 2005. Cutwidth I: A
linear time fixed parameter algorithm. Journal of Algorithms 56, 1 (2005), 1–24.

[32] TigerRisk Partners. 2019. The leading risk-to-capital advisor worldwide. https:
//tigerrisk.com/. Accessed: 2019-10-16.

[33] Ultimate Risk Solutions. 2019. Leading Provider of Dynamic Financial Analysis
DFA Software. https://www.ultirisk.com/. Accessed: 2019-10-16.

[34] Sitalakshmi Venkatraman, Kiran Fahd, Samuel Kaspi, and Ramanathan Venkatra-
man. 2016. SQL versus NoSQL movement with big data analytics. International
Journal of Information Technology and Computer Science 8 (2016), 59–66.

[35] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E Priebe, and
Alexander S Szalay. 2015. FlashGraph: Processing billion-node graphs on an array
of commodity SSDs. In 13th USENIX Conference on File and Storage Technologies
(FAST 15). 45–58.

[36] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: Large-scale
graph processing on a single machine using 2-level hierarchical partitioning. In
2015 USENIX Annual Technical Conference (USENIXATC 15). 375–386.

42

https://www.air-worldwide.com/Software-Solutions/Touchstone/
https://www.air-worldwide.com/Software-Solutions/Touchstone/
https://www.air-worldwide.com/Software-Solutions/Touchstone-Re/
https://www.air-worldwide.com/Software-Solutions/Touchstone-Re/
https://analyzere.com/
https://www.aon.com/reinsurance/analytics-(1)/remetrica.jsp
https://www.aon.com/reinsurance/analytics-(1)/remetrica.jsp
http://www.jstor.org/stable/41952626
http://www.guycarp.com/managing-risk/analytics/metarisk.html
http://www.guycarp.com/managing-risk/analytics/metarisk.html
https://www.actuary.org/sites/default/files/files/publications/Catastrophe_Modeling_Monograph_07.25.2018.pdf
https://www.actuary.org/sites/default/files/files/publications/Catastrophe_Modeling_Monograph_07.25.2018.pdf
https://www.rpc.co.uk/services/rpc-consulting/software://www.rpc.co.uk/services/rpc-consulting/software/
https://www.rpc.co.uk/services/rpc-consulting/software://www.rpc.co.uk/services/rpc-consulting/software/
https://www.rpc.co.uk/services/rpc-consulting/software://www.rpc.co.uk/services/rpc-consulting/software/
https://www.rms.com/software/additional-software-products
https://www.rms.com/software/additional-software-products
https://tigerrisk.com/
https://tigerrisk.com/
https://www.ultirisk.com/

Investigation of Encrypted and Obfuscated Network Traffic
Utilizing Machine Learning

Kay Boldt
University of New Brunswick

Fredericton, Canada
kay.boldt@unb.ca

Kenneth B. Kent
University of New Brunswick

Fredericton, Canada
ken@unb.ca

Rainer Herpers
University of Applied Sciences

Bonn-Rhein-Sieg
Sankt Augustin, Germany
rainer.herpers@h-brs.de

ABSTRACT
This paper utilizes machine learning to investigate the classifica-
tion of encryption applied to network traffic and the underlying
activities. It is firstly motivated by the difficulty of traditional traffic
classification caused by additional encryption as ports and headers
are hidden. Secondly, the results also present the effectiveness of
currently available privacy-enhancing technologies. A new dataset
is created, containing Pure (without additional encryption), Tor,
Tor with obfuscation, VPN and VPN+Tor network traffic. Addition-
ally, there are five different activities performed during each kind
of traffic recording, namely audio streaming, browsing, P2P/SFTP
file transfers and video conferencing. The traffic is classified by
extracting features based on flows calculated by ARGUS and CI-
CFlowMeter, combining three classifiers with seven feature selec-
tion algorithms. The results for the classification of the encryption
clearly indicate the possibility of using this detection system in a
modified fashion within a practical application. For the detection
of activities inside encrypted network traffic, the results show that
the disguise is ineffective. Overall, this reveals the need to improve
the resistance of commonly used techniques for the protection of
network traffic against machine learning.

CCS CONCEPTS
• Security and privacy; • Computing methodologies → Ma-
chine learning;

KEYWORDS
VPN, Tor, machine learning
ACM Reference Format:
Kay Boldt, Kenneth B. Kent, and Rainer Herpers. 2020. Investigation of
Encrypted and Obfuscated Network Traffic Utilizing Machine Learning. In
Proceedings of 30th Annual International Conference on Computer Science and
Software Engineering (CASCON’20). IBM Corp., Riverton, NJ, USA, 10
pages.

1 INTRODUCTION
Nowadays, the use of virtual private networks (VPN) or Tor can
prevent or complicate the classification of network traffic. A VPN
creates a virtual tunnel between the client and an endpoint by uti-
lizing encryption of the network traffic, while Tor creates a layered

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CASCON’20, November 10–13, 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

tunnel through a network of nodes to the desired destination (see
Section 2.2). Traditional approaches for network classification fail
because they rely mostly on network ports or headers of network
packets and both are hidden under encryption. Therefore, machine
learning might be a possible solution. Further, this also gives an
indication of how well the currently available privacy-enhancing
technologies work.

1.1 Objectives
In this research, different machine learning methods were investi-
gated and examined to evaluate how well the detection and clas-
sification of the additionally encrypted network traffic works, as
well as the hidden activity performed within the network traffic.
Detection means that the use of an encryption method is discovered,
while classification means that the specific encryption is recognized
(e.g., VPN). To achieve this, a new dataset was created, containing
several types of additional encryption, including VPN, Tor, Tor
with obfuscation and VPN+Tor (VPN through Tor). The activities
performed were audio streaming, browsing, P2P/SFTP file transfer
and video conferencing. A new dataset was created to have full
control of the comprising encryptions and applications, which in
turn contains less noise than naturally occurring network data.

To classify the network traffic with machine learning, statistical
information/features about the recorded network flows were cal-
culated, utilizing ARGUS [2] and CICFlowMeter [3]. For machine
learning, selected methods from the machine learning framework
Scikit-learn [21] were tested using preliminary network data. Based
on those results the most suitable candidates for the analysis of net-
work traffic, with and without additional encryption, were further
utilized. To classify the network traffic, several steps were neces-
sary. The first step was the calculation of the statistical features
based on flows. Secondly, several feature selection algorithms were
utilized to create different sets of features. Finally, several classifiers
were used with each of those sets to classify the used encryption
and, based on the result, the activity performed within the network
traffic.

In addition to the comparison of the two tools for feature cal-
culation and the different machine learning algorithms, another
goal was determining whether the detection of the encryption and
the activities within can be done in practice, as this would pose a
significant threat towards privacy. Overall, this assesses the effec-
tiveness of the investigated privacy-enhancing techniques and can
be used to discern which techniques may need improvement.

43

CASCON’20, November 10–13, 2020, Toronto, Canada Kay Boldt, Kenneth B. Kent, and Rainer Herpers

1.2 Paper Organization
This paper is organized as follows. Section 2 covers the background
knowledge and reviews the related work. Section 3 describes the
planning of the dataset created within this research as well as the
extraction of features from network traffic and preparations to uti-
lize it for machine learning. Further, it includes planning for feature
selection and classification methods as well as the evaluation. Sec-
tion 4 is about the implementation and contains the setup for the
dataset, the tools for feature creation and the algorithms for feature
selection and classification. Section 5 comprises an analysis of the
feature selection and classification results. Section 6 presents the
conclusion and Section 7 is about future work.

2 BACKGROUND
Network traffic is usually encrypted or obfuscated using a commer-
cial VPN and/or Tor, which are explained in the following sections.
In addition, machine learning, which was used to analyze network
traffic in this research, is also introduced.

2.1 VPN
When using a VPN (virtual private network tunnel) [17], the net-
work traffic of a client is encrypted locally and forwarded to a
VPN server. This server decrypts the data and forwards it to the
original destination such as internal systems of a company or a
website. The services used or performed activities are protected by
the encryption of the VPN.

2.2 Tor
Tor [12] is an anonymization network consisting of several thou-
sand nodes or relays operated by volunteers around the world
using onion routing [14]. The applied layered encryption is the
reason for the name onion routing. A user who wants to use this
network will be connected to three randomly selected nodes [12].
With each of these three nodes, the user negotiates its own encryp-
tion/decryption key. The data to be transmitted is then encrypted
three times on the user’s system with the individual keys of the
nodes and then transmitted to the first node. This removes the
outermost encryption and forwards the traffic to the second node,
which decrypts the second level. At the last node, the final encryp-
tion level is removed and the network traffic is forwarded to its
actual destination, which only sees the IP address of the last node
and therefore not the one of the actual user.

Additionally, Tor also supports so-called “pluggable transports”
[8], which is a wrapper around the regular Tor traffic and is designed
to circumvent censorship and obfuscate network traffic. Currently
(version 9.0.1), the Tor browser supports meek-azure and obfs4.

Unfortunately, the bandwidth provided by Tor+meek is far too
low to successfully load modern web pages, connect to Spotify for
audio streaming, or start a video conference using Hangout.

Obfs4, the second currently supported obfuscation protocol, [6]
is the successor of obfs3 [5] and ScrambleSuit [7]. It encrypts the
Tor traffic in a way that it looks uniformly random. The interesting
feature of obfs4 for this research is the capability to disguise flow
signatures by offering protection against some protocol fingerprint
attacks, especially based on the packet size, and optionally on the
packet timing.

Obfs4 achieves this by implementing a protocol polymorphism
[6, 7], consisting of two steps. The first one manages the packet
length obfuscation. As long as enough data is in the send buffer, all
packets are as large as the maximum transmission unit (MTU). If
the send buffer no longer contains enough data, a random packet
length is chosen, and the last packet will be padded to this length,
resulting in an obfuscated packet size.

The second step is the optional obfuscation of the inter-arrival
times. As long as there is data to be sent, it will pick a random
delay and pause the transmission accordingly. This should protect
network traffic from being classified based on packet timings.

2.3 Machine Learning
Machine learning can be used to obtain information automatically
from data [22]. This allows structures, patterns and information
to be recognized in large amounts of data. Usually, this would be
very difficult or even impossible with conventional approaches [15].
This research uses algorithms that belong to the class of supervised
learning, which needs labelled data.

2.3.1 Training and Testing. Through testing and validation, the
error of the trained model in the generalization can be determined
[15]. A part of the existing data is retained during training and
used for testing. In order to not waste large amounts of data, but
still be able to achieve a trustworthy score for the model, the so-
called k-fold stratified cross-validation can be used [22]. Usually,
10 folds are used, which means that the data is split into 10 folds,
maintaining the original distribution of samples per class, using
nine folds for training and the last one for testing. The same is now
repeated until every fold has been the test fold. This gives 10 scores
on 10 different testing sets that can now be averaged in order to
get a trustworthy score of the performance of the model.

2.3.2 Evaluation. To evaluate the performance of the different al-
gorithms and feature subsets for each classification task the true
positive rate (TPR—also called recall), false positive rate (FPR), pre-
cision and F1 score were calculated per class and on average. The
calculations are as follows:

• TPR or Recall [15]:
TP

TP + FN

• FPR [22]:
FP

FP +TN

• Precision [15]:
TP

TP + FP

• F1 [15]: 2 ·
Precision · Recall

Precision + Recall
TP: true positives—the sample is positive as well as the classifi-

cation of it.
FN: false negatives—the sample is positive but the classification is
negative.
FP: false positives—the sample is negative but the classification is
positive.
TN: true negatives—the sample is negative as well as the classifica-
tion of it.

The TPR and FPR can be used to see how good or bad the pre-
dictions of a certain classifier are (e.g., the FPR indicates how many

44

Investigation of Encrypted and Obfuscated Network Traffic Utilizing Machine Learning CASCON’20, November 10–13, 2020, Toronto, Canada

false alarms a classifier generates). The precision combines the TP
and FP to describe how precise the prediction of a certain classifier
is. F1 is a combination of precision and recall and will be used as a
value to rank the performance of all classifiers.

2.3.3 Decision Tree. A decision tree consists of nodes with learned
conditions based on the training data. New samples are checked
against the condition of the root node and will travel all the way
down to a leaf node where it is finally classified. A tree has the
advantage that it can be visualized, which helps to get an insight into
the classification progress and the importance of certain features
[22].

2.3.4 Random Forest. A random forest is a combination of multiple
decision trees. To build those trees, the training data is split into
random subsets, where each subset is used to create a single tree.
One difference with a decision tree is that not all features are used
in a specific tree. Instead, a random subset is used. The classification
starts the same way as with a normal decision tree. However, in
the end, a majority vote of all trees of the forest will determine the
class of a new sample [22].

2.3.5 K-Nearest Neighbours. K-nearest neighbours (KNN) is a sim-
ple algorithm, which is based on similarity [18]. It stores the training
data and uses this to classify new elements by choosing the closest
k elements, which are used for a majority vote to determine the
class [22]. To measure how close/far two objects are, the Euclidean
distance can be used [18].

2.4 Related Work
A few groups have previously conducted research in VPN or Tor
traffic detection [11, 13, 16, 23] by using different machine learning
techniques.

Draper-Gil et al. [13] focused on time-related features in order to
distinguish between VPN and non-VPN traffic. For this, they created
flows of regular encrypted network traffic from different classes, like
browsing, email, streaming, file transfer, VoIP and P2P. Moreover,
they did the same for VPN traffic. The flows were created by the
ISCXFlowMeter using different flow timeout values (15, 30, 60 and
120 seconds). The machine learning part was performed with Weka
using C4.5 and KNN. Overall, the C4.5 algorithm achieved better
results and some traffic types like VoIP had a good classification
rate while Chat is hard to classify. As the recognition of VPN is
a binary decision in this work, the results have to be interpreted
carefully.

Lashkari et al. [16] also focused on time-based features, but this
time they tried to distinguish between Tor and non-Tor traffic.
For the generation of the network traffic for the different classes
(browsing, VoIP, P2P, etc.) they captured the traffic without any
additional encryption at a virtual machine. This traffic was subse-
quently routed through a gateway in order to send it through Tor.
At the gateway, the traffic was captured a second time, but now
with the additional Tor encryption. This capture approach ensures
that exactly the same network data is used for the encryption as
captured before this step. However, one problem is that, especially
in the case of time-based features, the timing of the packets is heav-
ily affected by the slower Tor network. In a real-world scenario
a user who does not use Tor will have different timings than in

this case. From the captured data they extracted flows using the
ISCXFlowMeter with different flow timeout values. The resulting
dataset is unbalanced (e.g., 969 Tor flows and 38,285 non-Tor flows).
Based on this they created two different scenarios. In the first one
they used their data from this paper and merged it with the former
paper [13] and labelled it as non-Tor. The resulting classifier should
tell if a given sample belongs to Tor or not. In the second case, they
only used the data generated for this paper where they tried to
classify the used application in Tor traffic. For the classification
itself, they used Weka with the algorithms Zero R, C4.5 and KNN
for the first scenario and Random Forest, C4.5 and KNN for the
second scenario. Overall they achieved a precision of 99% for the
differentiation between Tor and non-Tor traffic and 84.1% for the
classification of the Tor traffic type. Similar to their previous re-
search [13] they have some classes like chat or email, which have
a low classification rate while P2P has a good one. As with the
previous work, the recognition of Tor is a binary decision in this
case and the results have to be interpreted carefully again.

Cuzzocrea et al. [11] used different machine learning algorithms
to detect and classify applications within Tor network traffic. They
also captured Tor and non-Tor network traffic in one session like
Lashkari et al. [16] did and used the ISCXFlowMeter to generate
the flows afterwards. The compared machine learning algorithms
are J48, J48Consolidated, BayesNet, jRip, OneR and REPTree from
Weka. In the end, J48 and jRip performed best overall, but the results
for different traffic classes are strange, because they are steady. All
classes have more or less the same results (e.g., email and P2P have
a true positive rate of 99.8% and 99.6%) while all other papers have
a huge difference between those two.

Shahbar and Zincir-Heywood [23] tried the Tor traffic classifica-
tion with two different approaches. One uses the Tor circuits and
cells, the other focuses on the Tor network flows. The main differ-
ence between those two approaches is where the analyzer needs
to be. To get the information about the Tor circuits and cells, the
analyzer needs access to the Tor relay. For the Tor network flows
the data can be captured on the host, in the local network or at the
ISP level. They focused on P2P, streaming and browsing and tested
different machine learning algorithms with Weka. For circuit level
classification, random forest achieved a cross-validated accuracy
of 94.9%. For flow level classification, they managed to achieve a
cross-validated accuracy of 99.2% using a bayesian network classi-
fier. However, their dataset is unbalanced with 60% browsing, 20%
streaming and 20% BitTorrent data.

Montieri et al. [20] went a step further. They tried to distinguish
between different anonymity tools (Tor, I2P, JonDonym) and classi-
fied the traffic inside of them. To create the flows from the network
traffic, the researchers in this paper used the tool Tranalyzer2 [9].
Because the dataset is highly biased (e.g., 6,335 JonDonym samples
and 645,708 I2P samples) they downsampled the set to 10% and
5% but nevertheless, their dataset is still very unbalanced. For the
classification itself, they used naive bayes, bayesian networks, C4.5
and random forest. They achieved an accuracy of about 99.99% for
the classification of the different anonymity tools and 98.03% for
the applications.

This work contributes to this research by creating a new dataset
consisting of traffic created by multiple activities recorded without
additional encryption and with VPN, Tor, Tor with obfuscation, as

45

CASCON’20, November 10–13, 2020, Toronto, Canada Kay Boldt, Kenneth B. Kent, and Rainer Herpers

well as the combination of VPN and Tor. Further, several different
feature selection algorithms and different machine learning clas-
sifiers are used on balanced data. Moreover, different tools for the
calculation of flow-based features are used and compared.

3 APPROACH
For the investigation of encrypted and obfuscated network traffic,
first a dataset was created that contains the corresponding samples.
Secondly, these data were prepared formachine learning algorithms,
the results of which were evaluated in Section 5.

3.1 Dataset
The dataset for this research contained network traffic generated
by several activities like audio streaming, browsing, P2P/SFTP file
transfer and video conferencing. Furthermore, all of the above-
mentioned activities were recorded several times:

• Without additional encryption (Pure)
• While a VPN was active (VPN)
• While Tor was in use (Tor)
• While Tor with obfs4 was in use (Tor+obfs4)
• While a VPN running through Tor was active (VPN+Tor)

Each activity within the traffic classes (e.g., browsing in Tor)
was performed until the recorded network data sufficed to gener-
ate at least 1,000 samples using ARGUS and CICFlowMeter (see
Section 3.1.1). The VPN traffic was generated by utilizing a com-
mercially available solution from AirVPN [1] while the Tor traffic
is recorded on a Whonix [10] gateway (Section 4.1).

3.1.1 Preparation of the Network Data. To use recorded network
data for machine learning, it needed to be prepared. For this, the tool
ARGUS [2] in version 3.0.8.2, and CICFlowMeter [3] in version 4.0
was used. They extracted and calculated statistical features based
on the network flows. A network flow consists of all the packets
with the same source/destination IP address, source/destination
port and the same protocol (UDP/TCP). Using flows has several
advantages. First, it reduces the amount of data significantly as a lot
of information like the encrypted payloads are removed. Second, the
extracted features can be calculated on all kinds of network traffic,
if Tor/VPN is running or not. Lastly, statistical information about
the network traffic ignores all randomness from the encryption.

3.2 Machine Learning
Scikit-learn [21] (version 0.21.3), a collection of different machine
learning algorithms, was used within this research.

3.2.1 Preprocessing of the Flow Data. To scale the data to appropri-
ate ranges Scikit-learn’s built-in functions were used. The necessary
conversion of any non-numerical feature or entry into a numerical
feature was coded separately. To achieve perfectly balanced classes,
the Python toolbox Imbalanced-learn [19] in version 0.5.0 was used,
which is fully compatible with the Scikit-learn framework. It offers
different methods like down- and up-sampling of classes or even a
combination of both in order to balance the dataset again.

3.2.2 Feature Selection Algorithms and Classifiers. During prelim-
inary research on this problem, a dataset containing Pure and
VPN+Tor network data had been created. For both cases, certain

activities were performed during network traffic recordings. For the
calculation of flow-based features, CICFlowMeter was used with
different flow timeout values (15, 45 and 75 seconds). This means
that a flow, which is longer than e.g., 15 seconds, was split into sep-
arate flows. Feature selection was performed using the correlation
between features and classes. For classification the algorithms J48,
random forest and multi-layer perceptron were used.

These preliminary results showed that random forest performed
best by far, while correlation is not suited to select features. Utilizing
different flow-timeouts led to contradictory results.

Feature Selection. Based on the data and results of the prelimi-
nary research, several additional feature selection algorithms were
tested to choose the ones for this research. This included variance,
select from model and cross-validated recursive feature elimination.
The latter two used decision tree, random forest and extremely
randomized trees as base-classifiers. For the tests, the old data was
used to compare the results.

Model-based means to use a base-classifier like decision tree
or random forest, which by itself calculates the importance of the
given features, and uses the provided selection [22].

Recursive feature elimination is a computationally expensive ap-
proach, that uses again such a classifier, and recursively eliminates
the least important feature [22]. This also enables the observation
of the performance of the model in each step, which can be used to
select the best performing feature subset.

As a result, variance was used to remove features that are below
a certain threshold. This keeps all features that could possibly be of
use for machine learning. Further, model-based feature selection,
as well as recursive feature elimination based on decision tree,
random forest and extremely randomized trees, were used as feature
selection methods.

Classifiers. Based on the data and results of the preliminary find-
ings, further classification algorithms were tested, namely support
vector machine with a non-linear kernel, k-nearest neighbours,
naive bayes, decision tree, extremely randomized trees and bagging
with k-nearest neighbours and decision tree. Bagging utilizes multi-
ple instances of the provided base-classifier to improve the overall
performance.

As a result, the classification algorithms k-nearest neighbours,
random forest and extremely randomized trees were used in this
research.

3.2.3 Classification. The task for each classifier was first, to rec-
ognize what kind of additional encryption was used. Secondly, the
classifier needed to detect the activity performed, while the network
traffic was recorded.

For the first case, ARGUS and CICFlowMeter calculated the sta-
tistical features based on the recorded network data containing all
traffic labelled as Pure, VPN, Tor, Tor+obfs4, Tor+meek or VPN+Tor.
Next, each feature selection algorithm created their representative
feature set on the provided data. Afterwards, all combinations of
classifiers and feature sets were trained and tested using stratified
10-fold cross-validation. To evaluate the results, the scores men-
tioned in Section 2.3.2 were calculated as well as the confusion
matrices.

46

Investigation of Encrypted and Obfuscated Network Traffic Utilizing Machine Learning CASCON’20, November 10–13, 2020, Toronto, Canada

The second case was approached in a similar fashion as the
recorded network data now was split to only contain activities
performed during one type of additional encryption (e.g., VPN).
This data was labelled as, e.g., “browsing - VPN”. ARGUS and CI-
CFlowMeter calculated their statistical information as before and all
feature selection algorithms calculated their representative feature
sets. Finally, all classifiers were trained and tested with all feature
sets as before. This was now repeated until the activities performed
during each type of encryption were classified.

Since the choice of algorithms for feature selection and classifica-
tion was performed on a different dataset than the feature selection
and classification itself, no statistical correction procedure (e.g.,
Bonferroni correction) was used. Additionally, feature selection
and classification were compared on two different datasets.

4 REALIZATION
In order to create the dataset, it was necessary to set up the environ-
ment with the needed software to create and collect the network
data. Furthermore, flows were extracted from the recorded network
data, preprocessed and finally used by machine learning classifiers.

4.1 Setup for the Dataset
To generate the dataset, two virtual machines (Alice and Bob) with
Ubuntu Desktop 18.04.03 as the operating system were used as
clients.

The setup used to generate and capture Pure data consisted of
two virtual machines in different networks. For VPN and VPN+Tor
(illustrated in Figure 1) traffic, the provided client Eddie (based on
OpenVPN) fromAirVPN [1] was used in version 2.16.3. Additionally,
the Whonix [10] gateway in version 15.0.0.6.6 was used to redirect
Tor and Tor+obfs4 traffic from the client into the Tor network, as
shown in Figure 2. This gateway is a ready-to-use virtual machine,
which acts as a gateway for the client Alice. It is built to send all data
into the Tor network and can be further modified to use obfuscation
like obfs4 and meek. The software Wireshark in version 2.6.10 was
used to record the network data and stored it in pcap files for later
use. The recording took place on the client Alice for the cases Pure,
VPN and VPN+Tor. For the Tor and Tor+obfuscation cases, the
recording took place on the Whonix gateway. For the virtualization,
the software Virtual Box in version 6.0.14 was used.

For audio streaming, the software Spotify in version 1.1.10.546
was used. To generate browsing traffic, the browser Firefox in ver-
sion 71.0 was used on various websites. For P2P traffic, the software
qBittorrent in version 4.0.3 was used to download Linux images. To
generate SFTP traffic, the client software Filezilla in version 3.28.0
was used, as well as an external SFTP server. For the traffic itself,
a small number of generated, incompressible, binary files ranging
from 100 to 800 MB were down- and uploaded, while at least twice
the amount of data was downloaded. Additionally, several thou-
sand small files ranging from 6 to 250 KB were also down- and
uploaded. Lastly, for video conferencing, the Chrome browser in
version 79.0.3945.79 and Google Hangout were used. In all cases,
the clients Alice and Bob were on separate networks.

VPN

VPN+Tor

Pure

Internet

Pure

Tor Network
Service

VPN
Server

BobAlice

Figure 1: Setup to record
VPN+Tor network data on
the VM Alice.

Pure

Tor/Tor+obfs4

Internet

Pure

Pure

Tor Network

Service

Whonix
Gateway

BobAlice

Figure 2: Setup to record Tor
network data on the VM Al-
ice.

4.2 Extraction of Flows
The extraction of statistical information about flows was the first
step to prepare the network data for machine learning. The follow-
ing sections describe this process utilizing the software ARGUS and
CICFlowMeter.

4.2.1 ARGUS. The pcap files containing the recorded network
data, captured by Wireshark, needed to be read by ARGUS to ex-
tract flows. First, the pcap files were converted into an ARGUS-
specific format with the command argus -r packet.pcap -w
packet.argus. The second step was to use the created file and
extract the flows with their statistical information using the ARGUS
module “ra”with the command ra -F rarc.print.modified.conf
-nn -r file.argus. All project-specific fields like IPs, Ports and
IDs were excluded with one exception. The source net was kept
in order to filter IPv6 samples later, as all IPv6 related flows were
from local communication and had nothing to do with the research.
“-nn” was used to prevent ra from converting protocols to their
names (e.g., 6 to TCP). The output of ra was stored in a CSV file.
Continuous flows were split into five-second slices.

In the first post-processing step, all IPv6 samples were removed.
After the removal, the column “source net” was dropped, as the
addresses are project-specific.

The second stepwas to convert the TCP options field into a usable
format for machine learning. Initially, the options were stored in a
12-character long string with a specific character representing the
presence of a specific TCP option. As everything else was numeric,
this string was converted to binary columns, one for each possible
TCP option. After the values of the string were transferred to the
new columns, the old column with the TCP options was dropped.

The third step was to transfer the TCP flags in a similar way.
One problem is that the field containing the TCP flags is not as
thoroughly documented as the TCP options field. But as the string
in the TCP flags field was always 10 characters long, using spaces
if a TCP flag was not present, a conversion for every character to
its own binary column was used.

Finally, the columns “sEnc” and “dEnc” were converted from
single characters to binary numeric values, empty cells were filled
with a zero and the label column was added.

4.2.2 CICFlowMeter. The second tool used for the extraction of
flows was the CICFlowMeter. The flow-timeout was configured

47

CASCON’20, November 10–13, 2020, Toronto, Canada Kay Boldt, Kenneth B. Kent, and Rainer Herpers

to 5,000ms to be equal to ARGUS’s flow-timeout. After the flows
were generated and stored in the CSV file, project-specific features
were removed (flow id, IPs, ports and timestamp), the data type of
the two columns “Flow Byts/s” and “Flow Pkts/s” was changed to
numeric, empty cells were filled with zeros and the label column
was filled with the filename.

4.3 Machine Learning
After the data is recorded and the CSV files with the statistical
information of the flows were generated, several merged CSV files
were created. The first file contained all flows, where the labels
were exchanged for the type of encryption used. This CSV file was
used for the task of classifying the used type of encryption.

The next five files only contained the data of one specific encryp-
tion, which were used to detect the type of performed activity, like
browsing. The following steps were using those merged CSV files.

4.3.1 Environment to run the Algorithms. For the usage of Scikit-
learn, an Ubuntu 18.04.03 server was used. In order to run it, just
Python3.6 and Pip3 (version 9.0.1) were needed to install the Scikit-
learn package with its dependencies: NumPy (version 1.17.4) and
SciPy (version 1.4.0). Additionally, the software library and data
structure pandas (version 0.24.2) was installed and used.

4.3.2 Preprocessing of the Flow Data. In order to use the data
within the CSV files for machine learning, some preprocessing
was necessary. A label encoder from Scikit-learn was used to en-
code the labels from strings to numbers. In the next step, redundant
columns were removed.

Subsequently, the classes were balanced with a random under-
sampler function provided by imbalanced-learn. It chose samples
at random from all classes, but the smallest one, until the size of
the classes were equal.

4.3.3 Feature Selection Algorithms. After the preprocessing and
the downsampling, feature selection algorithms were used to create
different feature subsets. The first algorithm was “VarianceThresh-
old” provided by Scikit-learn. It removed all features without any
variance and all subsequent feature selection algorithms used only
this filtered data.

The second feature selection algorithm, called “SelectFromModel”,
is a classifier-based algorithm, where the classifier calculates the
importance of the provided features by itself. The algorithm was
used once with a decision tree, once with a random forest and lastly
with extremely randomized trees. By default, the feature selection
algorithm will select all features whose importance is greater than
the mean importance of all the features. For random forest and ex-
tremely randomized trees, the parameter “n_estimators” was used
to specify that 100 trees were used.

The third algorithm, called recursive feature elimination (RFE)
with cross validation (RFECV) is also a classifier-based algorithm.
Again a decision tree, a random forest and extremely randomized
trees were used, with the same parameters as before. RFE recur-
sively trains the classifier with all features, evaluates the importance
of the features and removes the least important one. After this, the
training starts again. RFECV uses RFE in a cross-validation loop to
obtain the optimal number of features on its own.

4.3.4 Classification Algorithms. For classification, the first algo-
rithm used was k-nearest neighbours. Scikit-learn provides an im-
plementation called “KNeighborsClassifier”. Except for the “weights”
parameter, all were set to default. For weights, the distance based
approach resulted in better results. It simply assured, that closer ele-
ments have more influence during the voting of a new element. K is
five by default and changing this value did not improve the results.
K-nearest neighbours was evaluated using stratified 10-fold cross-
validation. The function “StratifiedKFold” was used, which only
calculates lists of indices for the training and test data. Using this
function ensured that in each step of the 10-fold cross-validation,
all results can be retrieved and then used to calculate the evaluation
scores. Additionally, it was possible to fit and use a scaler (“MaxAb-
sScaler”) on the training data for each run individually. The same
fitted scaler was also used for the test data of the corresponding
run. Since the data values in this research were sometimes sparse,
the selected scaler was specially designed to handle sparse data and
keep the structure of the data. It scales each feature value by the
maximum absolute value of this feature, which will be set to 1 [4].
For all following classifiers, training and evaluation were done in
exactly the same way as for the k-nearest neighbours classifier.

The second and third classifiers used were random forest using
the function “RandomForestClassifier” and “ExtraTreesClassifier”,
which implements extremely randomized trees. The parameter
“n_estimators” was set to 100 and specified the number of trees.
Additionally, the seed value for the random state was set to a fixed
value.

5 ANALYSIS
The results of the feature selection and classification algorithms,
based on the flows provided by ARGUS and CICFlowMeter, are
analyzed in the following sections. For the classifiers, the average
F1 score was utilized as the primary indicator to rank the results
to select the best classifiers. Average means the average of the F1
scores of the classes, which resulted from the 10-fold stratified cross-
validation. The true positive rate, false positive rate and precision
(on average and per class) as well as the confusion matrix were
used as needed.

5.1 Feature Selection
The number of features selected by the variance algorithm repre-
sents the upper limit, as all non-static features were included. All
other algorithms were based on these features and selected the
most relevant ones based on their individual criterion. This led to
significant differences as, for example, the model-based approach
with a decision tree selected seven features of the Tor dataset, while
using it with random forest results in 14 selected features. But these
numbers on their own are meaningless, as the results of the differ-
ent machine learning classifiers based on those feature sets are of
interest.

All classifiers were able to achieve better performance with a
reduced feature set in comparison to the variance algorithm uti-
lizing features calculated by ARGUS. Besides, all feature selection
algorithms were able to reduce the number of features, in most
cases significantly.

48

Investigation of Encrypted and Obfuscated Network Traffic Utilizing Machine Learning CASCON’20, November 10–13, 2020, Toronto, Canada
sM
ea
nP
kt
S
z

S
rc
B
yt
es

dM
ea
n
P
kt
S
z

D
st
B
yt
es

To
tB
yt
es

S
rc
P
kt
s

D
st
P
kt
s

To
tP
kt
s

D
st
R
at
e R
at
e

S
rc
R
a
te Lo
ad

D
st
Lo
ad
D
ur

S
rc
Lo
ad

S
rc
W
in

D
st
W
in

S
rc
D
u
r

D
st
D
ur P
ro
to

sD
S
b

S
yn
A
ck

S
Tc
pM
ax

D
Tc
pM
ax

Tc
pR
tt

A
ck
D
at

Tc
pO
pt
M
ax
S
eg
S
iz
e sT
os

dT
tl

Tc
pO
pt
Tc
pT
im
es
ta
m
p

dE
nc

Tc
pF
lg
3

sT
tl
sE
nc

Lo
ss pL
os
s

pS
rc
L
os
s

S
rc
G
ap

Tc
pF
lg
6

S
rc
Lo
ss

D
st
Lo
ss

pD
st
Lo
ss

Tc
pF
lg
2

Tc
pF
lg
4

Tc
pF
lg
7

0

5

10

15

20

25

30

35

40

45

Figure 3: Total frequency of features calculated by ARGUS.
The x-axis lists all used 45 features provided by ARGUS
while the y-axis displays how often a feature was chosen by
a feature selection algorithm.

P
kt

 L
en

 M
ax

F
lo

w
 IA

T
 M

in
To

tL
en

 B
w

d
P

kt
s

F
w

d
P

kt
 L

en
 M

ax
B

w
d

P
kt

 L
en

 M
ax

B
w

d
P

kt
 L

en
 M

ea
n

S
ub

flo
w

 B
w

d
B

yt
s

P
kt

 L
en

 M
ea

n
P

kt
 L

en
 S

td
B

w
d

P
kt

 L
en

 M
in

P
kt

 S
iz

e
A

vg
P

kt
 L

en
 V

ar
B

w
d

IA
T

 M
in

F
w

d
P

kt
 L

en
 M

ea
n

B
w

d
P

kt
 L

en
 S

td
F

lo
w

 IA
T

 M
ax

F
w

d
P

kt
s/

s
To

tL
en

 F
w

d
 P

kt
s

S
ub

flo
w

 F
w

d
B

yt
s

F
lo

w
 D

ur
at

io
n

B
w

d
P

kt
s/

s
F

lo
w

 B
yt

s/
s

F
lo

w
 IA

T
 M

ea
n

F
lo

w
 IA

T
 S

td
B

w
d

IA
T

 T
ot

B
w

d
IA

T
 M

ea
n

B
w

d
IA

T
 M

ax
F

lo
w

 P
kt

s/
s

P
kt

 L
en

 M
in

F
w

d
IA

T
 M

in
F

w
d

P
kt

 L
en

 M
in

B
w

d
H

ea
de

r
Le

n
B

w
d

IA
T

 S
td

F
w

d
A

ct
 D

at
a

P
kt

s
In

it
B

w
d

W
in

 B
yt

s
F

w
d

P
kt

 L
en

 S
td

F
w

d
IA

T
 T

ot
To

t B
w

d
P

kt
s

F
w

d
IA

T
 M

ea
n

F
w

d
IA

T
 M

ax
D

ow
n/

U
p

R
a

tio
B

w
d

P
S

H
 F

la
gs

To
t F

w
d

P
kt

s
F

w
d

IA
T

 S
td

F
w

d
H

ea
d

er
 L

en
P

ro
to

co
l

A
C

K
 F

la
g

C
nt

F
IN

 F
la

g
C

nt
S

Y
N

 F
la

g
C

nt
Id

le
 M

ea
n

R
S

T
 F

la
g

C
nt

0

5

10

15

20

25

30

35

40

45

Figure 4: Total frequency of features calculated by CI-
CFlowMeter. The x-axis lists all used 51 features provided
by CICFlowMeter while the y-axis displays how often a fea-
ture was chosen by a feature selection algorithm.

The usage of the CICFlowMeter resulted in a slightly different
picture. Feature selection was most of the time still able to reduce
the number of features, but some algorithms only eliminated a few.
In addition, the performance improvement from the reduced feature
sets in comparison to the full feature set was not as significant as
with ARGUS.

The reason for this can be derived from Figure 3 and Figure 4.
Those two graphics show rankings of the features provided by AR-
GUS and CICFlowMeter based on how often a feature was selected
by a feature selection algorithm. In the case of ARGUS, there is a
leading group of seven features, where each was selected more than
30 times. For CICFlowMeter, 13 features were selected more than 30
times. Together with the fact that the graph for ARGUS is steeper,
this clearly shows that the feature selection algorithms were able
to reduce the number of features better by using those provided
by ARGUS. Overall this indicates, that the ARGUS features were
more significant than those from CICFlowMeter. Further analysis to
evaluate the performance of this leading group was not necessary,
as given the task, the best performing classifier and feature set can
always be utilized.

Classifier Task Best F1 Feature Sel. Algo. # of Features

KNN

Major Class 88.62% Model-based RF 19
Pure 89.45% Model-based ERT 23
Tor 88.94% RFECV DT 5
Tor+obfs4 91.78% RFECV DT 9
VPN 90.3% Model-based RF 12
VPN+Tor 87.85% Model-based RF 14

RF

Major Class 91.97% RFECV ERT 13
Pure 94.61% Model-based RF 20
Tor 91.84% RFECV DT 5
Tor+obfs4 94.43% RFECV DT 9
VPN 92.37% RFECV DT 6
VPN+Tor 89.09% Model-based/RFECV DT 8

ERT

Major Class 92% RFECV ERT 13
Pure 97.63% Model-based DT 10
Tor 92.28% RFECV ERT 9
Tor+obfs4 94.55% RFECV DT 9
VPN 92.37% RFECV DT 6
VPN+Tor 88.97% RFECV RF 8

Table 1: Best F1 scores from all classifiers for all datasets
based on ARGUS flows along with the used feature selection
algorithm and the number of features. If the best F1 score
is reached multiple times, the one achieved with lesser fea-
tures is used.

5.2 Machine Learning Classifiers
To evaluate the machine learning classifiers, the best average F1
score of each classifier for each dataset are listed in Table 1 for
ARGUS and in Table 2 for CICFlowMeter along with the used
feature selection algorithm and the number of features. The marked
rows are the overall best results per task and per feature calculation
software.

Based on those results extremely randomized trees was the over-
all best classifier utilizing flows provided by ARGUS. The classifier
was able to achieve the best F1 scores in all tasks but one. Only
for the classification of the activities within VPN+Tor traffic ran-
dom forest performed slightly better. Using the flows provided by
CICFlowMeter the results were different as random forest is the
overall best classifier for all tasks.

However, when comparing the results between the two tools,
overall the classifiers were able to perform better with fewer fea-
tures when using flows provided by ARGUS. The only task where
the flows provided by CICFlowMeter resulted in a higher F1 score
was the detection of the used encryption. Therefore, a combined
approach using the flows provided by CICFlowMeter to detect the
type of encryption and the flows from ARGUS to detect the used
application afterwards is the best option.

5.2.1 Classification of the used Encryption. The best F1 score for
the classification of the used encryption based on flows provided by
ARGUS was achieved by extremely randomized trees utilizing 13
features selected by the extremely randomized tree-based recursive
feature elimination function. Table 3 shows the detailed results
based on 5,734 samples per class. It reveals that the classifier was
able to detect Pure traffic best followed by Tor+obfs4, VPN, Tor and
lastly, VPN+Tor. The most surprising result was certainly, that the
detection rate of Tor+obfs4 traffic surpasses the one of plain Tor.
As obfs4 is designed to disguise the traffic pattern, this was out of
place. As this could be simply because of the presence of VPN+Tor

49

CASCON’20, November 10–13, 2020, Toronto, Canada Kay Boldt, Kenneth B. Kent, and Rainer Herpers

Classifier Task Best F1 Feature Sel. Algo. # of Features

KNN

Major Class 88.16% Model-based RF 21
Pure 78.39% RFECV DT 4
Tor 64.12% RFECV RF/ERT 48
Tor+obfs4 68.61% RFECV RF 40
VPN 79.86% Model-based RF 16
VPN+Tor 71.76% Model-based DT 11

RF

Major Class 93.05% RFECV RF 25
Pure 87.63% RFECV RF 23
Tor 72.78% RFECV RF 43
Tor+obfs4 76.57% RFECV RF 40
VPN 88.41% RFECV DT 38
VPN+Tor 80.79% RFECV ERT 15

ERT

Major Class 92.3% RFECV RF 25
Pure 87.02% RFECV RF 23
Tor 71.26% RFECV RF/ERT 43
Tor+obfs4 74.75% RFECV DT 42
VPN 86.95% RFECV ERT 36
VPN+Tor 80.24% Model-based DT 11

Table 2: Best F1 scores from all classifiers for all datasets
based on CICFlowMeter flows along with the used feature
selection algorithm and the number of features. If the best
F1 score is reached multiple times, the one achieved with
lesser features is used.

Class TPR FPR Precision F1
Pure 98.55% 0.21% 99.14% 98.85%
Tor 88.73% 2.90% 88.46% 88.59%
Tor+obfs4 93.48% 2.95% 96.33% 94.88%
VPN 92.15% 1.31% 94.61% 93.37%
VPN+Tor 86.78% 3.92% 81.99% 84.32%
Average 86.78% 2.26% 92.11% 92%

Table 3: Detailed results for the best cross-validated classi-
fication for the major class utilizing extremely randomized
trees and the feature set created by the extremely random-
ized tree-based recursive feature elimination function using
5,734 flows per class provided by ARGUS.

traffic, which consists of Tor traffic at the outer layer, another test
was conducted. This time the VPN+Tor traffic was excluded but,
nevertheless, the detection of Tor+obfs4 traffic still surpassed the
one of plain Tor. Therefore, the only remaining option is, that obfs4
has some specific characteristics, which enabled the classifier to
detect it better than plain Tor.

Despite this, the combination of multiple layers of encryption
techniques was still able to improve the resistance against detection
by machine learning proved by the fact, that the detection result of
VPN+Tor traffic was far below the detection of VPN traffic alone
and also inferior to Tor.

Table 4 shows the confusion matrix for this classifier. One inter-
esting point is that Tor traffic is mostly misclassified as VPN+Tor
and vice versa, which is most likely because the outer layer of the
network traffic in both cases was Tor. Additionally, the matrix re-
veals that the classifier easily discerns VPN traffic from the other
classes save VPN+Tor, which has shared characteristics.

The detailed results for the best classifier using the flows pro-
vided by CICFlowMeter are shown in Table 5 and are based on
150,000 samples per class. The random forest classifier was used,

Class | classified as → Pure Tor Tor+obfs4 VPN VPN+Tor
Pure 5,651 3 6 52 22
Tor 2 5,088 120 0 524
Tor+obfs4 1 241 5,360 0 132
VPN 35 0 0 5,284 415
VPN+Tor 11 420 78 249 4,976

Table 4: Confusionmatrix for the best cross-validated classi-
fication for the major class utilizing extremely randomized
trees and the feature set created by the extremely random-
ized tree-based recursive feature elimination function using
5,734 flows per class provided by ARGUS.

Class TPR FPR Precision F1
Pure 96.84% 1.02% 95.95% 96.40%
Tor 85.22% 3.95% 84.35% 84.78%
Tor+obfs4 98.20% 5.11% 98.46% 98.33%
VPN 99.46% 0.13% 99.47% 99.46%
VPN+Tor 85.56% 2.18% 87.02% 86.29%
Average 93.06% 2.48% 93.05% 93.05%

Table 5: Detailed results for the best cross-validated classi-
fication for the major class utilizing random forest and the
feature set created by the random forest-based recursive fea-
ture elimination function using 150,000 flows per class pro-
vided by CICFlowMeter.

Figure 5: Best F1-Scores for the classification of the per-
formed activity. All flows were provided by ARGUS.

while the feature set was provided by the random forest-based
recursive feature elimination function selecting 25 features. It is
slightly different from the results of ARGUS as the recognition of
Tor+obfs4 and VPN is better to an extent, that both surpassed the
one of Pure traffic. This leads to an average F1 score over all classes,
which is superior to the one achieved with ARGUS. Besides those
two, the detection of all other classes was inferior to ARGUS.

5.2.2 Classification of Activities. The best classification of activ-
ities were all achieved by classifiers utilizing ARGUS flows. The
corresponding F1 scores are displayed in Figure 5.

The results for the best classification of activities within Pure
network traffic using the flows provided by ARGUS are based on
1,096 samples per class. Extremely randomized trees was used as a

50

Investigation of Encrypted and Obfuscated Network Traffic Utilizing Machine Learning CASCON’20, November 10–13, 2020, Toronto, Canada

classifier, utilizing 10 features selected by the model-based approach
based on a decision tree. The results show that the classes P2P file
transfer, SFTP file transfer and video chat are the ones that can be
classified best with an F1 score above 97%. Audio streaming and
browsing are the two classes with slightly worse results, with about
90%. Those two classes were often classified as each other.

The results for the classification of activities within Tor traffic
based on ARGUS flows are based on 1,006 samples per class. The
classifier extremely randomized trees was used, utilizing nine fea-
tures selected by the extremely randomized tree-based recursive
feature elimination function. Still, the three classes P2P/SFTP file
transfer and video chat were classified best (the latter even better
than in the Pure case), while audio streaming and browsing were
worst. Overall, all classes, other than video chat, were classified
worse than before, thanks to the additional layer of encryption. This
difference is particularly noticeable for P2P file transfer where the
F1 score dropped from 98.27% to 93.9% as it often was misclassified
as audio streaming or browsing.

Configuring Tor to use obfs4 should increase the difficulty upon
the classification of activities within the network traffic. But as the
graph shows, based on 1,023 ARGUS flows per class, this was not the
case. Extremely randomized trees was again used for classification
utilizing nine features selected by the decision tree-based recursive
feature elimination function. All scores for every class improved in
comparison to the classification of plain Tor activities. P2P traffic
was recognized especially well with an F1 score of 99.17%, which is
a bad thing, as this counteracts the purpose of Tor and especially
obfs4. It clearly indicates, that the deployed techniques of obfs4 to
disguise the traffic pattern (see Section 2.2) are either not useful, or
are not used at all.

The best results for the classification of activities within VPN
traffic are based on 1,025 ARGUS samples per class. Extremely ran-
domized trees was used for classification while utilizing six features
selected by the decision tree-based recursive feature elimination
function. It shows that the classification of the classes, other than
video chat, was worse than within Pure traffic thanks to the used
VPN. However, video conferencing was classified with perfect pre-
cision. Despite this, the classes audio streaming, browsing and SFTP
file transfer had a lower F1 score as with the usage of Tor. But on
average, the classification of activities in Tor or VPN traffic was
done with a very similar success rate.

The final stage is the classification of activities within VPN+Tor
traffic, based on 1,170 ARGUS flows per class. The random forest
classifier utilized eight features selected by the decision tree-based
recursive feature elimination function. Other than browsing, which
was classified with an F1 score of 87.48%, the results were worse
than for VPN alone, Tor or Tor+obfs4. Within Tor+obfs4 traffic the
classification of browsing was similarly good with 87.84%. Over-
all, this indicated clearly, that utilizing two different encryption
techniques resulted in a better disguise of the network traffic. Nev-
ertheless, the classification rates were still too high considering
that the applied multiple layers of encryption are supposed to hide
the used activities inside.

6 CONCLUSION
Summarizing, feature selection improved the performance of the
classifiers as well as the runtime, although the recursive feature
elimination functions themselves were quite time-consuming. As
the feature selection is rarely performed, this can be ignored. RFECV
offered most of the overall best-performing feature sets, but no base
algorithm could be relied upon in all cases, which was not necessary
anyway. The framework outlined in this research can always choose
the optimal feature set.

Features of ARGUS had a higher significance as the classifiers
achieve better results with fewer features compared to the results
based on flows provided by CICFlowMeter. Using ARGUS flows
resulted in the usage of fewer features, fewer samples and better re-
sults in all activity classification tasks. Only for the detection of the
used encryption were the results of the classifiers better by a small
margin, when using flows calculated by CICFlowMeter. Contrary,
using CICFlowMeter flows resulted in the usage of significantly
more features, a vast amount of samples and the best result for the
recognition of the used encryption only.

For classification, extremely randomized trees was the overall
best performing classifier for all tasks, save one, based on ARGUS
flows. As this refers to the recognition of the application within the
traffic, the best performing classifier, along with the optimal feature
set, can always be chosen based on the results of the detected type
of encryption. For CICFlowMeter, this is not necessary. For all tasks,
random forest was the best performing classifier, and overall, it
would only make sense to use the flows of the CICFlowMeter for
the classification of the used encryption.

The impact of this research on encryption techniques like VPN or
Tor utilized to disguise the performed activity or even the usage of
the encryption altogether is huge. For example, the lowest average
FPR for the classification of the used encryption was 2.26% in this
framework. This is too high for a regular approach because when
classifying thousands of samples in a couple of hours, there would
be numerous false classifications leading to many false alarms. How-
ever, with additional information, this can be reduced significantly.
If it is known that certain network traffic is generated by a spe-
cific machine, the consecutively collected samples can be treated
differently. As it is highly unlikely that the used encryption will
change within 30 seconds, at least six samples can be used to vote
for the encryption, which significantly reduces the FPR. As this
enables the classifier trained in this thesis to precisely recognize
the encryption, the following application detection can always be
performed with the optimal classifier and feature set. This is a se-
rious issue, as especially Tor+obfs4 is designed to avoid detection
and, as a last resort, should hide the activities of a user. The first
objective is crushed and the second is weakened severely.

7 FUTUREWORK
Future work involves building a real-time detection model for the
used encryption based on the before mentioned approach by imple-
menting a majority vote. This could be based on six or more samples
that are collected and calculated during 30 seconds of network traf-
fic. If only one continuous flow is present during the 30 seconds,
ARGUS would slice it into 5-second samples, resulting in at least six
samples. If more flows are present, more samples can be obtained.

51

CASCON’20, November 10–13, 2020, Toronto, Canada Kay Boldt, Kenneth B. Kent, and Rainer Herpers

Additionally, a sensitivity-function, to prevent false classifications
due to switching the type of encryption (e.g., turning on/off a VPN)
would be needed. It could be implemented as a controller to adjust
when an alarm should be sent, e.g., only when all samples were
classified the same or only one is classified different etc.). Further,
the 30-seconds approach can be implemented as a sliding window
(once 30 seconds of network traffic were recorded) to continuously
monitor the network traffic for changes, while keeping the false
alarm rate very low.

As this is already a practical approach towards the detection of
the used encryption, the next step is to investigate to what degree
it is possible to discern multiple activities performed at the same
time, as this is a common scenario nowadays. Further, the possible
disturbance induced by the network traffic of updates performed
by the used operating system needs to be considered as well.

Finally, to investigate countermeasures to this machine learning-
based classification of network traffic, it is of interest to examine
whether enforcing the optional obfs4 time-based obfuscation yields
an improvement in regards to privacy. Additionally, to counteract
traffic recognition, the obfuscation performed by a VPN can be
improved by configuring the usage of padding and the utilization
of dummy traffic with various patterns. As dummy traffic generates
expenses without a direct benefit, it is quite unpopular and is usually
not an option within commercially available VPNs. Nevertheless, it
can be configured when the VPN is built on private servers, as a
company would do.

8 ACKNOWLEDGEMENTS
The authors thank Markus Ullmann for technical consultation and
Stephen MacKay for his help with editing. The authors would also
like to acknowledge the financial support of both the Natural Sci-
ences and Engineering Research Council (NSERC) as well as the
New Brunswick Innovation Foundation (NBIF) for their support of
the research.

REFERENCES
[1] [n.d.]. AirVPN. Retrieved 2019-06-05 from https://airvpn.org
[2] [n.d.]. ARGUS – Auditing Network Activity. Retrieved 2019-09-17 from https:

//qosient.com/argus
[3] [n.d.]. CICFlowMeter. Retrieved 2019-02-20 from http://www.netflowmeter.ca/
[4] [n.d.]. MaxAbsScaler – scikit-learn 0.22 documentation. Retrieved

2019-09-11 from https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.MaxAbsScaler.html

[5] [n.d.]. obfs3-protocol-spec.txt_obfs3_doc – pluggable-transports_obfsproxy
– Pluggable transport for obfuscated traffic. Retrieved 2019-11-14
from https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/
obfs3/obfs3-protocol-spec.txt

[6] [n.d.]. obfs4_obfs4-spec.txt at master Âů Yawning_obfs4 Âů GitHub. Re-
trieved 2019-11-14 from https://github.com/Yawning/obfs4/blob/master/doc/
obfs4-spec.txt

[7] [n.d.]. scramblesuit-spec.txt_doc - user_phw_scramblesuit – Philippś ScrambleSuit
repository. Retrieved 2019-11-14 from https://gitweb.torproject.org/user/phw/
scramblesuit.git/tree/doc/scramblesuit-spec.txt

[8] [n.d.]. Tor Project: Pluggable Transports. Retrieved 2019-10-01 from https://
2019.www.torproject.org/docs/pluggable-transports.html.en

[9] [n.d.]. Tranalyzer – About. Retrieved 2019-06-25 from https://tranalyzer.com
[10] [n.d.]. Whonix. Retrieved 2019-12-30 from https://www.whonix.org/
[11] A. Cuzzocrea, F. Martinelli, F. Mercaldo, and G. Vercelli. 2017. Tor traffic

analysis and detection via machine learning techniques. In 2017 IEEE Interna-
tional Conference on Big Data (Big Data). 4474–4480. https://doi.org/10.1109/
BigData.2017.8258487

[12] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The Second-
generation Onion Router. In Proceedings of the 13th Conference on USENIX Security

Symposium - Volume 13 (San Diego, CA) (SSYM’04). USENIX Association, 21–38.
http://dl.acm.org/citation.cfm?id=1251375.1251396

[13] Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam Mamun, and
Ali A. Ghorbani. 2016. Characterization of Encrypted and VPN Traffic using Time-
related Features. In Proceedings of the 2nd International Conference on Information
Systems Security and Privacy - Volume 1: ICISSP,. INSTICC, SciTePress, 407–414.
https://doi.org/10.5220/0005740704070414

[14] David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. 1996. Hiding
Routing information. In Information Hiding, Ross Anderson (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 137–150.

[15] AurÃľlien GÃľron. 2018. Praxiseinstieg Machine Learning mit Scikit-Learn und
TensorFlow: Konzepte, Tools und Techniken fÃĳr intelligente Systeme. O’Reilly.

[16] Arash Habibi Lashkari, Gerard Draper Gil, Mohammad Saiful Islam Mamun,
and Ali A. Ghorbani. 2017. Characterization of Tor Traffic using Time based
Features. In Proceedings of the 3rd International Conference on Information Systems
Security and Privacy - Volume 1: ICISSP,. INSTICC, SciTePress, 253–262. https:
//doi.org/10.5220/0006105602530262

[17] Martin Kappes. 2013. Netzwerk- und Datensicherheit: Eine praktische Einführung.
Springer Fachmedien Wiesbaden.

[18] Miroslav Kubat. 2017. An Introduction to Machine Learning, Second Edition.
Springer. https://doi.org/10.1007/978-3-319-63913-0

[19] Guillaume Lemaître, Fernando Nogueira, and Christos K. Aridas. 2017.
Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets
in Machine Learning. Journal of Machine Learning Research 18, 17 (2017), 1–5.
http://jmlr.org/papers/v18/16-365

[20] A. Montieri, D. Ciuonzo, G. Aceto, and A. PescapÃľ. 2017. Anonymity Services
Tor, I2P, JonDonym: Classifying in the Dark. In 2017 29th International Teletraffic
Congress (ITC 29), Vol. 1. 81–89. https://doi.org/10.23919/ITC.2017.8064342

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[22] S. Raschka and V. Mirjalili. 2018. Machine Learning mit Python und Scikit-Learn
und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Deep Learning
und Predictive Analytics. mitp.

[23] K. Shahbar and A. N. Zincir-Heywood. 2014. Benchmarking two techniques
for Tor classification: Flow level and circuit level classification. In 2014 IEEE
Symposium on Computational Intelligence in Cyber Security (CICS). 1–8. https:
//doi.org/10.1109/CICYBS.2014.7013368

52

https://airvpn.org
https://qosient.com/argus
https://qosient.com/argus
http://www.netflowmeter.ca/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs3/obfs3-protocol-spec.txt
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs3/obfs3-protocol-spec.txt
https://github.com/Yawning/obfs4/blob/master/doc/obfs4-spec.txt
https://github.com/Yawning/obfs4/blob/master/doc/obfs4-spec.txt
https://gitweb.torproject.org/user/phw/scramblesuit.git/tree/doc/scramblesuit-spec.txt
https://gitweb.torproject.org/user/phw/scramblesuit.git/tree/doc/scramblesuit-spec.txt
https://2019.www.torproject.org/docs/pluggable-transports.html.en
https://2019.www.torproject.org/docs/pluggable-transports.html.en
https://tranalyzer.com
https://www.whonix.org/
https://doi.org/10.1109/BigData.2017.8258487
https://doi.org/10.1109/BigData.2017.8258487
http://dl.acm.org/citation.cfm?id=1251375.1251396
https://doi.org/10.5220/0005740704070414
https://doi.org/10.5220/0006105602530262
https://doi.org/10.5220/0006105602530262
https://doi.org/10.1007/978-3-319-63913-0
http://jmlr.org/papers/v18/16-365
https://doi.org/10.23919/ITC.2017.8064342
https://doi.org/10.1109/CICYBS.2014.7013368
https://doi.org/10.1109/CICYBS.2014.7013368

An Approach to Represent and Transform Application-Specific
Constraints for an Intrusion Detection System

Ayesha Babar, Fahim Imam, Thomas R. Dean
Queen’s University

Kingston, Ontario, Canada
{ayesha.babar,fahim.imam,tom.dean}@queensu.ca

Jose Fernandez
Ecole Polytechnique

Montreal, Quebec, Canada
jose.fernandez@polymtl.ca

ABSTRACT
While the need for newer and more efficient network security tech-
niques is increasing, refining the existing and proven techniques
can also have potential benefits. One of the aspects of such improve-
ments in the existing systems is making them flexible to modify.
Currently, we have an intrusion detection system (IDS) that defines
the normal patterns of a network behaviour using constraints. The
IDS dissects the network packets into network information to eval-
uate the constraints. In this research, we extend the existing IDS to
validate constraints defined on application data. We extend the IDS
to further dissect the data within the incoming network packets.
We define the data constraints to identify possible malicious incon-
sistencies in the application data of a closed network such as the
Air Traffic Control (ATC) as an example. We use an ATC ontology
for the ATC domain data representation and threat evaluation. We
modify an existing ATC simulator and use it to generate both clean
and malicious data. Rules and queries are then developed for these
data using the ontology to represent detectable threats. The queries
are then transformed into application data constraints readable by
the IDS. While the transformation is defined as a manual process,
the IDS will be updated with automated transformation in the fu-
ture. The data constraints are written in the same domain-specific
language (DSL) already used for the IDS that ensures real-time
performance. In this paper, we present our approach to represent
and transform application-specific constraints for our IDS along
with examples.

CCS CONCEPTS
• Security and privacy → Network security; • General and
reference→General conference proceedings; •Networks→
Network reliability.

KEYWORDS
Intrusion Detection, Data Constraints, Program Transformation
ACM Reference Format:
Ayesha Babar, Fahim Imam, Thomas R. Dean and Jose Fernandez. 2020. An
Approach to Represent and Transform Application-Specific Constraints for
an Intrusion Detection System. In CASCON ’20: 30th Annual International

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honoured. For all other uses, contact the owner/author(s).
CASCON’20, November 10-13 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

Conference on Computer Science and Software Engineering, Nov 10–13, 2020,
Toronto, Canada. IBM Corp., Riverton, NJ, USA, 10 pages.

1 INTRODUCTION
Cybersecurity is a vital concern as networks surround all aspects of
our lives. While the internet may put our information and identity
at risk, closed safety-critical network systems such as air traffic
control systems (ATC) or nuclear plants may put lives at risk.

Intrusion detection systems (IDS) monitor networks for mali-
cious behaviour. IDSs emphasize the detection of malicious data at
the network level. However, malicious data can also occur at the
application layer. For example, the ATC systems have come to rely
more on Automatic Dependent Surveillance–Broadcast (ADS–B)
to extend radar coverage. However, ADS-B has no authentication,
and anyone with a software defined radio can transmit false ADS-B
data.

We have previously described an IDS designed for network in-
tegrity of closed networks such as ATC [31]. This IDS detects ab-
normal behaviour at the network level using a constraint engine. In
this research, we leverage the IDS to detect the presence of attacks
at the application layer. It may be true that the application logic is
equipped to deal with possible corruption of data. However, appli-
cation logic is complex due to the fact that it must both validate and
operate on the data. Malicious external data is not always obvious.
Adding an additional check on the application level data provides
in-depth defense to the system.

We use a simulated ATC system to produce simulated air traffic
data. This data is parsed and translated into resource description
framework (RDF) [14] graph database, using an ATC ontology. We
use SPARQL [15] to develop queries that represent the integrity
of the information. We then manually translate the domain level
threats to the low-level constraints used by our IDS. This allows
us to prototype the transformation, and identify changes needed
in the implementation of constraint engine to support application
level constraints.

The main contribution of our work are:

• Extension of existing constraint based IDS to identify data
integrity.

• A specification of transformation of a threat from natural
language to a domain specific language, used to generate a
custom IDS.

• Testing and evaluation of data constraints with the existing
IDS framework.

• Proposing required extensions in the existing framework for
new proposed data constraints.

53

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

CASCON ’20, Nov 10–13, 2020, Toronto, Canada Babar et al.

The structure of the rest of the paper is as follows. Section 2
provides a description of the existing framework, ATC simulation
and ATC ontology. Section 3 discusses selected threat scenarios
of the research. Section 4 describes the transformation process,
followed by Section 5 to illustrate the transformation process. The
evaluation of IDS and results are presented in Section 6 followed by
the related work in Section 7. We conclude the paper and discuss
the future work in Section 8.

2 BACKGROUND
To model the cyber threats we use an ATC simulator developed
by Morel [26] to generate the ATC data for our IDS. Originally
developed by Hasan et al. [17], the IDS detects intrusions based
on anomalous network behaviour. The IDS is based on constraints
capable of detecting anomalies in a limited access, closed networks
such as ATC. Such networks are characterized by a limited number
of protocols which makes it possible to define the normal network
behaviour as constraints. The current version of the IDS detects
intrusions based on protocol-specific constraints. One of the goals
of this research is to extend the IDS to specify application-specific
data constraints. The IDS can then detect anomalies in the data
carried in the network packets. Figure 1 shows the IDS architecture
along with the application level extensions. The modified IDS now
implements two kinds of constraints: a) protocol-specific network
packet constraints, b) application-specific data constraints. We refer
to the former as the network constraints and the later as the data
constraints.

Application Data. The application layer supports application
and end-user processes. It provides application services for file
transfers, e-mail, and other network software services [1]. In our
research, ATC application data is generated by the air traffic control
simulation. This data is embedded in the captured network packets
and is parsed by an application data parser. Examples of applica-
tion data are the speed of an aircraft or the position of an aircraft
detected by radar. An example of a constraint on the data is that
the speed of an aircraft is within a given range. The constraints
that ensure integrity of the application domain data are referred as
application data constraints or data constraints.

Network Data. The data captured by the IDS framework that
deals with the network layer is referred to as ‘network data’ for the
purpose of our research. This data is parsed by a network parser, and
the constraints that check the integrity in this data are referred to as
network constraints. Network constraints are already implemented
and evaluated by the IDS. An example of this constraint is that the a
publisher in the Real-Time Publish-Subscribe protocol (RTPS) [13]
has previously declared that it is a participant.

2.1 The Intrusion Detection System
The input to the IDS framework is a network protocol specification
written in the Structure and Context-Sensitive language (SCL) [23].
SCL describes the syntax and the semantic constraints of a given
protocol. Since SCL supports both context dependant parsing and
specifying general constraints, it is used to generate the two main
components of the IDS: the parser and the constraint engine. The
generated custom parser reads the network packets and converts
them in a format readable by the constraint engine. The constraint

ATC

Simulation
IDS

ATC Ontology v

Data Alerts

Network Alerts

Network Packets

Network

Constraints

Application

Constraints

Figure 1: The IDS architecture with extensions.

engine validates these packets against the defined network con-
straints and generates alerts.

The constraints in SCL are first transformed into an intermedi-
ate DSL which describes the constraint tree life-cycle along with
memory management. The constraints in the intermediate DSL are
then used to automatically generate the constraint engine in C. The
DSL describes the constraint tree life-cycle defined by Hasan et
al. [16] and has the following four phases: Instantiate (I), Bind (B),
Evaluate (E), and Destroy (D). We refer to the DSL as the IBED DSL
based on the life-cycle phases. The first, instantiate, occurs when an
initial packet of a constraint is encountered. This causes an instance
of the internal data structure to be allocated for a constraint tree.
The bind phase is used when additional packets are encountered
that add information to a constraint tree. The evaluate phase adds
the final data to the constraint and evaluates it. Since a constraint
may be evaluated multiple times, the destroy phase is used when a
packet is encountered that indicates that particular instance of the
constraint is redundant. Details about the IBED DSL can be found
in Rakha et al. [31].

In this approach, the constraints are intended to validate the last
packet in the constraint. The previous packets in the constraint
are used to provide needed information to validate the evaluation
packet.

2.2 The ATC Simulation
The ATC Simulation is designed and developed by Morel [26] and
generates the data used in our research. While the simulation is
not a complete representation of an ATC system it provides the
necessary components for our research [48]. The ATC is simulated
over a closed Data Distributed Service (DDS) network using the
RTPS protocol. The main components of the ATC simulation are
shown in Figure 2. An existing ATC simulator, Euroscope [8], is used
to generate and visualize ATC data using the FSD protocol (FSD and
Euroscope in the figure). We use a multiplexer to split the data and
transform it to DDS representations of Primary Surveillance Radar
(PSR), Secondary Surveillance Radar (SSR), Automatic Dependant
Surveillance-Broadcast (ADS-B) data.

2.3 The ATC Ontology
The ATC ontology defines the domain with the help of a controlled
and precise vocabulary. When describing the ATC domain, we
define the concepts that are present in the domain. For example,
speed is a concept and it has a meaning and context in our domain.
Some concepts can be explained using relations between other

54

An Approach to Represent and Transform Application-Specific Constraints for an Intrusion Detection System CASCON ’20, Nov 10–13, 2020, Toronto, Canada

FSD EuroScope

MULTIPLEXER

PSR

ADSB

Server

SSR

ADSB

localhost
(6809)

(6808)

DDS Network 1

PSR FSD

Client

SSR FSD

Client

PSR

Publisher

PSR

Subscriber

SSR

Publisher

SSR

Subscriber ADSB

Publisher
ADSB

Subscriber

Figure 2: ATC Simulator Architecture Model, adapted from
Morel [26]

Raw Data
Coming from

Sensors

Ontological
concepts
identified

RDF

Model
Ontology

SWRL

Rules
SPARQL

Figure 3: ATOM detection process, adapted from Cor-
riveau [21].

concepts and/or objects. Some concepts can be described as data
structures. The vocabulary used for the ATC domain is concise, and
includes classes, sub-classes and relations between them.

The ATC ontology research by Morel [26] is a practical applica-
tion of the ATOM [21] process. Abstractions-Translation-Ontology-
Method (ATOM) is a step-wise method to develop an ontology for
a domain specific system.

The ATOM process produces three artifacts: the final ontology,
the translation diagram, and the specification document. The final
ontology is in the form of a Resource Description Framework (RDF)
graph [30]. RDF is themost commonway of representing ontologies.
In RDF, an ontology is represented as a set of (Subject, Predicate,
Object) triplets. The subjects and objects are the nodes of the graph,
and the predicate is the property or relation between them. For
example, the instance of a concept an aircraft that has a specific
speed can be expressed in (PlaneA, hasSpeed, 370).

The ATOM process shown in Figure 3 is used to develop an ap-
proach to anomaly detection in the ATC domain. After examining
the application data in the network packets, the concepts are iden-
tified, and the RDF model is created. The RDF model is then used to
initiate the ontology. The nodes are the entities (e.g. airplane, radar,
speed) and the edges are the relations between the entities. Further
reasoning and flexibility can be added to the ontology by applying
rules. The final stage is a querying mechanism, which is used to
retrieve and update the information in the ontology. The query
language we use is SPARQL (SPARQL Protocol and RDF Query
Language) [27]. We have extended Morel’s initial ATC ontology1
for our research.

1Available at http://pyxis.ece.queensu.ca/graph/atc/ontologies/atc.owl

New modules have been added to the original ontology to sup-
port the representation of Flight Plan data, PSR report, and SSR
report. The core ontology is modified to provide better organiza-
tion to navigate its classes and properties. The current ontology
provides the logical framework to consistently describe, query, and
reason about different ATC attacks, including the types of attacks
described in this paper. The ontology currently includes 72 classes,
39 object properties, 40 data properties, and 250 logical axioms.

2.4 IDS and the ATC Simulator Extensions
To support the evaluation of application-specific data constraints
we have extended the existing IDS architecture as shown in Figure 4.
An application protocol specification is used to generate a parser
for the application specific data encoded in the network data. The
ontology from the ATOM Process is shown in the upper right. It is
used to initialize the graph database and also to derive a mapping
specification that identifies the relationship between the low level
data in the packets and the primitive entities and relations present
in the data. The RDF mapping is used to automatically generate an
RDF translator that populates the graph database with primitive
entities and relations. This database can be enhanced with rules and
a set of queries are identified that should be continuously evaluated
by the constraint engine. These extensions in the upper box have
been completed previously.

This paper describes the extensions in the lower box. We trans-
form the queries to a set of application level constraints which is
used to generate the application level constraint engine. This is
currently a manual transformation and we are working to automate
this transformation in the future.

The ATC Simulation was updated to take flight plan information
from EuroScope and model as flight strips in the simulated ATC
network. It was also updated to allow scripts that inject fake ADS-B
data into the simulation.

3 THREAT SCENARIOS
The nature and requirements of command and control systems
such as ATC differ from traditional IT systems. Cerchio et al. [9]
identify the primary requirements of ATC systems as Integrity and
Availability. Cerchio et al. also claim that airborne and seaborne
environments are not often considered in security research. While
the ground part of an ATC system is a closed network, it still re-
ceives outside information without verification. Threats against
open communication networks are related “mainly to message in-
sertion (confidentiality), modification (integrity) or suppression
(availability)” [34]. Thus, ATC systems are vulnerable to potential
attacks some of which are targeted directly at message integrity.

Automatic Dependent Surveillance-Broadcast (ADS-B) has be-
come a key component of ATC systems. The U.S. Federal Aviation
Administration (FAA) has required certain aircraft to have installed
ADS-B by January 2020 [29]. The threats we consider in this paper
are based on this mandate and are information attacks on ADS-B.
Balduzzi et al. [2] identify several threats against Automated Identi-
fication System (AIS) a system similar to ADS-B for ships. AIS and
ADS-B are examples of security critical networks. Both transmit
information periodically and are enhance the situational awareness
of entities in the system. ADS-B and AIS are subject to attacks

55

CASCON ’20, Nov 10–13, 2020, Toronto, Canada Babar et al.

of the same nature, which are to intercept, modify, or delete the
messages [22]. We use the same categorization as Balduzzi et al. [2]
due to similarities between AIS and ADS-B. Their categorization
shows that the attacks can be done at two levels: software and
radio frequency (hardware). Among the software identified threats,
spoofing and hijacking are two major categories, and both can be
modelled under the data related attacks.

We implemented three threat models: Ghost Plane, Physical
Law Violation and Spoofed Location. They represent breach to
the integrity, confidentiality and authentication of the system. The
ghost plane threat scenario simulates malicious ADS-B data of an
aircraft that doesn’t exit. The threat can be detected if it is within
the range of primary radar, is at an altitude that is not in the radar
shadow, but is not detected by the radar. This plane can have SSR
or ADS-B updates. If outside the range of radar, a ghost plane can
be detected if it violates the law of physics. That is, if it descends
or ascends faster than the aircraft category, or turns too fast or too
slow, or has a speed outside the range of the aircraft type.

Another attack is to monitor existing ADS-B broadcasts for an
aircraft and immediately broadcast a new position that overrides
the real position. This attack can be detected based on the time
intervals of the ADS-B messages.

4 TRANSFORMATION PROCESS
Figure 5 shows the artifacts involved in both the IDS framework and
the ATOM process. For both, the network packets generated by the
ATC simulator are first parsed into useful data structures. The IDS
uses the constraints defined in IBED DSL and protocol specification
in SCL, and auto-generates the C code for the constraint engine.
The constraint engine uses the generated C code to evaluate the
constraints and ensures network integrity in real-time. The ATOM
process translates the parsed network packets into RDF triples
using a RDF translator. The resulting RDF is be stored in a graph
database. SPARQL [15] queries are used to analyze and understand
different aspects of data. The main purpose for these queries is to
diagnose and investigate the packet data for constraints that can
be used to assess the health of the data. We first transform the
SPARQL queries from the ATOM process into SCL constraints and

Constraints

C code

SCL Constraints

IBED DSL
Ontology + Rules

RDF

SPARQL Queries

ATOM

Process

IDS

Framework

Manual

Transformation

Parsed Network

Packets

Manual

Transformation

Figure 5: Transformation of SPARQL queries to IBED DSL
constraints.

then transform the SCL constraints into the IBED DSL for our IDS
framework.

SPARQL queries are used for exploratory purposes by domain
experts to formulate the constraints at a high level. The IBED DSL
constraints are used to detect intrusions at run time by the con-
straint engine. Both SPARQL and IBED DSL queries represent the
threat in the application data domain which can be expressed in
First Order Logic (FOL). The complete transformation process con-
sists of six artifacts as shown in Figure 6.

The first artifact is a query specification in Natural Language.
Each of the steps between the artifacts up until artifact 5 (IBED DSL
of constraints) are currently manual in nature. The final step, used
to generate the C code is partially automated. We now describe
each step below and explain the involved representations.

Step 1: Query Specification in Natural Language.
We start by naming the queries that represent the respective

threat. We define them as a concise statement in natural language.
We try to remove as much syntactic or lexical ambiguities as possi-
ble. This definition helps in the true representation of the query.

This definition provides a basis for the FOL representation of
the queries in the next step.

Network Packets

Network

Constraints

Network Protocol

Specification

Network Parser \Network CE

Alerts Alerts

App. Protocol

Specification

\
App. Data

Transformation

App. Data Parser

RDF

Mapping

RDF Translator

GraphDB

Queries

App. Data

Constraints

\App. Data CE

Alerts

Ontology

Figure 4: IDS runtime framework architecture.

56

An Approach to Represent and Transform Application-Specific Constraints for an Intrusion Detection System CASCON ’20, Nov 10–13, 2020, Toronto, Canada

Query Specification in Natural Language

Query Description in FOL using ATC ontology

SPARQL Representation of Queries

SCL Representation of Constraints

IBED DSL Representation of Constraints

1

2

3

4

5

Generated C code for Constraints6

Figure 6: Transformation process from Natural Language to
low-level constraint engine code.

Step 2: Query Description in FOL using ATC Ontology. In
this step we decompose the natural language description of the
queries into concepts and relations using the ATC ontology. Once
a query is broken down into basic concepts and relations, we can
represent it in FOL. For example, the FOL representation of the
statement “if an aircraft has an SSR report and that SSR report has
some reported speed s then s is the speed of that aircraft” is:
∀x : Aircar f t ∃r : SSRReport ∃s : ReportedSpeed
hasSSRReport(x , r) ∧ hasReportedSpeed(r , s) → hasSpeed(x , s)

The FOL statements are used to construct the SPARQL queries as
part of the next step.

Step 3: SPARQL Representation of Queries.
The FOL description use the ATC ontology vocabulary which

gives context to the concepts and relations of the queries. The
context forms the basis for the SPARQL query representation. We
use RDF to represent and store application data. We translate the
raw data of the packets to RDF and store in a graph database. After
translating the FOL queries to SPARQL, the graph database provides
an executable environment to refine the queries and test them
against the simulated data.

Step 4: SCL Representation of Constraints.
This step maps the queries from the concepts in the ontological

space as expressed by RDF and SPARQL to the network protocol
space as expressed by SCL. This moves representation of the queries
closer to the network level. For example, the concept speed is
mapped to the protocol data SSRModeSType.airspeed.

The Structure and Context-Sensitive Language (SCL) is an ex-
tension of ASN.1 (a network specification language widely used by
network engineers). SCL provides a higher abstraction compared
to the IBED DSL, but is still attached to the representation and
organization of the data given by the protocol specification.

SCL specifies the behavior of the IDS for the incoming packets.
Each packet must have one or more constraints that specify the
validity of the packet [18]. The SCL constraints specify the how
the information in the specified packet depends on information in
previous packets. For example, the maximum reasonable speed of

an aircraft in an ADS-B packet depends on the type of the aircraft
which was a field in an earlier flight strip packet.

1 <constraints >

2 <constraint >

3 TYPE: SINGLE -PACKET -ENV

4 VALID -ENV: @RTPS.DATA_P (SrcIP , DstIP , DstPort)

5 </constraint >

6
7 <constraint >

8 TYPE: MULTI -PACKET

9 VALID -SEQ: (1) RTPS.DATA_W , @RTPS.GAP

10 {

11 @RTPS.GAP.SrcIP == (1) RTPS.DATA_W.SrcIP

12 @RTPS.GAP.writerEntityID ==

13 (1) RTPS.DATA_W.writerEntityID

14 }

15 </constraint >

16 </constraints >

Listing 1: Syntax convention of SCL SINGLE and MULTI
packet constraints [18].

Listing 1 shows an example of two constraints in SCL. The key-
word TYPE indicates if the constraint is on a single packet (the
value SINGLE-PACKET-ENV), or if it involves multiple packets (the
value MULTI-PACKET). The TYPE is followed by the sequence of the
packets required for the and the type of the target packet. The
target packet is prefixed with the symbol ‘@’. For single packet
constraints, there is only one packet involved, the target packet.

Listing 1 has a single-packet environment constraint (lines 2-4).
Environment constraints refer to entities in the particular environ-
ment. Our constraint engine has two modes. When first run on
a new system, environmental constraints record the information
in the constraints, such as the IP addresses of RTPS participants
(DATA_P), or the publishers of particular data topic. As such, envi-
ronmental constraints list the fields to be memorized as part of the
constraint.

For a multi-packet constraint, the target packet is always the last
or second last packet in the sequence, as the constraint is written
from the point of view of the last packet that triggers the constraint.
It may by optionally followed by the packet type that indicates that
the instance of constraint is no longer needed (prefixed with the
symbol ‘~’. In Listing 1, a GAP submessage in the RTPS protocol
must be proceeded by a publisher packet (DATA_W) that introduces
the entity id in the gap packet.

Step 5: IBEDDSLRepresentation of theConstraints. Trans-
formation specification of constraint from SCL to an IBED DSL
representation is the final step our transformation process. IBED
DSL code maps the packets to the constraint tree life-cycle: instan-
tiate, bind, evaluate and destroy. The IBED DSL constraint trees can
perform real-time evaluation and provide efficient memory man-
agement for the constraint engine [31]. As part of this research the
IBED DSL was extended to handle concepts that had not previously
been used for constraints at the network infrastructure level. The
details of the extension are described in section 6.2

Step 6: Generated C code for Constraints. The IBED DSL is
the final step of the manual transformation. The IDS framework

57

CASCON ’20, Nov 10–13, 2020, Toronto, Canada Babar et al.

uses the IBED DSL to generate low-level code for constraint engine
evaluation. The generated code for the data constraints validate
the application data integrity for incoming packets and raises ap-
plication alerts. The IDS framework uses TXL (a language designed
for source code transformation [6]) for auto transformation of DSL
code to the C code. As part of this research, the translator was
extended for the new concepts identified in step 5. Other than the
extensions in the auto-generated code, IBED DSL representation
also requires some extensions for correct transformation to c code.
For our application domain constraints we manually fixed the gen-
erated code for testing.

5 TRANSFORMATION EXAMPLE
In this section, we illustrate the process with one of the threats we
identified in section 3

5.1 Violation of Physical Law
This example represents one of the queries that might reveal mali-
cious ADS-B data for an aircraft that doesn’t exit. If the reported
position of an aircraft is outside the range of a radar antenna, then
there is no independent confirmation of the data. A malicious actor
might not fully check the data for consistency before broadcasting
it, particularly if they are modifying an existing attack. They may
get the speed or other characteristics of an aircraft type wrong.
This query checks that the speed of an aircraft is consistent with
the category of the aircraft.

5.1.1 Step 1 - Query Specification in Natural Language. .
Query Title: The Speed violation of an aircraft at cruising alti-

tude.
Query Definition: The speed of an aircraft is too slow or fast

while flying at the cruising altitude, based on the speed range of
the aircraft category given by the SSR reports.

Query Description: We identify the ontological concepts such
as Aircraft, SSRReport, Speed and AircraftCategory alongwith
their relations. Every aircraft has an aircraft category. In the simu-
lation, ADS-B reports are an instance of an SSR data message. They
are distinguished from SSR radar reports by the equipment field in
the packet. The ADS-B packets for some aircraft may be received
(relation hasSSRReport). Some SSRReports (there are several type)
contain the speed of the aircraft (relation hasReportedSpeed).

5.1.2 Step 2 - Description of the Query in FOL using ATC ontology.
An aircraft has SSR report and the aircraft is identified with a
unique number called target ID in these reports. The SSR report
has information about the aircraft. Information such as the speed
of an aircraft in these reports can be expressed as:

∀x : Aircar f t ∃r : SSRReport ∃s : ReportedSpeed
hasSSRReport(x , r) ∧ hasReportedSpeed(r , s) → hasSpeed(x , s)

The SSR reports for aircraft have other information about the air-
craft such as the category of the plane. For example, a Boeing A380
belongs to the aircraft category C [19]. Each of these categories has
a known minimum and maximum speed.

The ADS-B reports contain the speed of the aircraft, as well as
the category of the aircraft. The following query that identifies
aircraft whose speed is outside of the range of the category:

∀x : Aircar f t ∃r : SSRReport ∃c : Aircra f tCateдory
∃s : ReportedSpeed ∃m : MaxSpeed ∃l : MinSpeed
hasSSRReport(x , r) ∧ hasReportedSpeed(r , s) ∧
hasReportedAircra f tCateдory(r , c) ∧ hasMaxSpeed(c,m)

∧hasMinSpeed(c, l) ∧ ((s > m) ∨ (s < l))
→ hasViolatinдSpeed(x , s)

Table 1 lists the ATC ontology relations used for the query. The
relations hasMaxCSpeed and hasMinCSpeed refer to the maximum
and minimum speed and are not part of the ontology vocabulary.
For these queries added as extra relations in the graph database.
The Table 1 shows the types of the domain and range for each the
properties.

Domain Predicate Range
Aircraft hasSSRReport SSRReport
SSRReport hasAirspeed xsd:integer
SSRReport hasAircraftCategory xsd:string
AircraftCategory hasMaxCategorySpeed xsd:integer
AircraftCategory hasMinCategorySpeed xsd:integer

Table 1: Step 2 - Violation of the Physical Law and Ontology
Vocabulary.

5.1.3 Step 3 - The SPARQL Query. The SPAQRL Query in listing 2
is the translation of the FOL query from the previous section. This
query is expressed in the same RDF framework as the data mapping
that was used to map the application data in network packets to the
graph database. This is the first point in time that we can test the
query against data from the simulation. This query was successfully
run against both clean data from the simulation, and data that
contained simulated malicious data.
1 SELECT ?assignedTargetID ?ssrReport

2 ?reprotedSpeed

3 FROM FastInjectedData:

4 WHERE {

5 ?ssrReport ssr:hasTargetID ?assignedTargetID;

6 ssr:hasAircraftCategory ?reportedCategory;

7 ssr:hasAirSpeed ?reprotedSpeed;

8 st:hasMaximumCategorySpeed ?maxCategorySpeed;

9 st:hasMinimumCategorySpeed ?minCategorySpeed.

10 FILTER ((? reprotedSpeed < ?minCategorySpeed)

11 || (? reprotedSpeed > ?maxCategorySpeed))

12 }

Listing 2: Step 3 - SPARQL Query for the Violation of the
Physical Law.

5.1.4 Step 4 - SCL Representation. We transform the SPARQL query
to a corresponding SCL constraint. The mapping of RDF elements of
the SPAQL query to network fields used in SCL is given in Table 2.

Listing 3 gives a SCL representation of the SPARQL query. This
is an extension to the SCL language to allow a logical constraint on
the fields of a single single packet. the target packet of the constraint
is an SSR Mode S packet. The same packet destroys the instance of
the constraint that is created. The second extension to the language
is the addition of the domain element that allows the constraint

58

An Approach to Represent and Transform Application-Specific Constraints for an Intrusion Detection System CASCON ’20, Nov 10–13, 2020, Toronto, Canada

Ontology Relations SCL Field Name
ssr: SSRModeSType
ssr:hasTargetID SSRModeSTyp.target_id
ssr:hasAirSpeed SSRModeSTyp.airspeed
ssr:hasAircraftCategory SSRModeSType.category
st:hasMaximumCategorySpeed used as a scalar value
st:hasMinimumCategorySpeed used as a scalar value
Table 2: SCL fields to the ontology relations mapping.

writer to reference elements of the domain. The constraint simply
says that the speed must be between minimum and maximum value
for the category.

1 <constraint >

2 TYPE: SINGLE -PACKET

3 VALID -SEQ: @SSRModeSType , ~SSRModeSType.

4 {(@SSRModeSType.airspeed

5 > Domain.CategoryMinSpeed)||

6 (@SSRModeSType.airspeed

7 < Domain.CategoryMaxSpeed)}

8 </constraint >

Listing 3: Step 4 - SCL Representation of the Violation of
the Physical Law.

5.1.5 Step 5 - IBED DSL Representation. In the SCL representation
of the constraint, it is a single packet constraint and requires com-
parison of only one value, airspeed, for each incoming SSR packet
and after comparison it can be destroyed. The IBED DSL is shown
in Figure 4.

The constraint starts with the validation tree, that has three
values, the speed of a plane, the min and max speed for a category
(categoryMaximumSpeed and the categoryMinimumSpeed).

The DSL requires both an instantiate phase and and an evaluate
phase. Nominally these are triggered by different packets and a
hash table on values shared between the packets are used to transfer
the instance of the constraint tree from one packet to the other.
The code for each packet type is generated first for instantiate,
bind second, evaluate third and last for destroy. We take advantage
of this when generating code to evaluate a predicate on a single
packet.

In the instantiate phase on line 6 through line 15 is triggered
by an SSRModeSType packet and the values required from the
incoming packets are copied to the tree. The notation has been ex-
tended with two domain information functions, DomainLookUpMax,
line 11, and DomainLookupMin, that provide external information
based on information in the packet. In this case, we use the field
aircarft$category to find the maximum and minimum speeds
of the aircraft. We store the tree instance in the hashtable for use
in the evaluate phase.

In evaluate, line 17 through line 24, we recover the tree instance
and evaluate it. In destroy we find the tree and destroy it, line
27. As the needed extensions to the constraint engine are in the
process of being implemented, a simplified version of the DSL was
implemented and after the code was generated, was hand patched

to add the needed operators to the evaluation of the tree and in
code for the instantiate phase.

1 CONSTRAINT AD42
2
3 V(AND(LT(speed, categoryMaximumSpeed),
4 GT(speed, categoryMinimumSpeed)))
5
6 INSTANTIATE
7 AppData PDU_AppData.Type is SSRModeSType
8 if not SEARCH Protocol~target$id :Hash=hashIAD42
9 Tree.targetId = Protocol~target$id
10 Tree.category = Protocol~aircraft$category
11 Tree.categoryMaxSpeed = DomainLookUpMax(Tree.

category)
12 Tree.catgeoryMinSpeed = DomainLookupMin(Tree.

category)
13 Key = Protocol~target$id
14 HashInstantiate = hashIAD42
15 endif
16
17 EVALUATE
18 AppData PDU_AppData.Type is SSRModeSType
19 HashBind = hashIAD42
20 if SEARCH Protocol~target$id :Hash=hashIAD42
21 Tree.category = Protocol~aircraft$category
22 Tree.speed = Protocol~groundspeed
23 EVAL Protocol~target$id , Protocol~speed
24 endif
25
26 DESTROY
27 if SEARCH Protocol~target$id :Hash=hashIAD42
28 Key=Protocol~target$id
29 HashBind = hashIAD42
30 endif
31 END �
Listing 4: Step 5 - IBED DSL Code for Violation of the
Physical Law.

6 EVALUATION AND RESULTS
The evaluation shows that constraint engine can be extended to
handling not only network constraints but application data con-
straints as well. It also shows that the ontology and SPARQL can
be used to evaluate potential threats in the domain/ It shows that
we can implement the SPARQL queries in the constraint engine
and enforce them at the network level. In addition to the constraint
detecting the violation of physical laws, we applied the process to
the other two threats identified in section 3.

6.1 Evaluation of SPARQL
All three threats were expressed as SPARQL queries on our ATC
ontology. We generated four data sets. One contains only the clean
data from a Euroscope scenario file. We created three scripts that
injected malicious data for each of the three threats. Three graph
databases were created, each with one set of data. Each query was
run against the clean graph database and the malicious data set for
that threat. The result of the SPARQL queries is shown in table 3.

In one case, the SPARQL query successfully detected the mali-
cious data, and processed the clean data without incident. In the
ghost plane attack scenario, the range of the primary radar was set
to the range used by EuroScope. However, this ended up with an
edge condition in which an aircraft came into range and broadcast

59

CASCON ’20, Nov 10–13, 2020, Toronto, Canada Babar et al.

Threat Normal Trace Attack Trace
Physical Law Violation No alerts Correct detection
Ghost Plane 1 false alert Correct detection
Spoofed Location 2 false alerts Correct detection

Table 3: SPARQL Query Results.

an ADS-B message before the simulated radar detected the aircraft.
Revising the query to use a slightly smaller range of radar to en-
sure that the radar picks up a legitimate aircraft before an ADS-B
message is considered malicious.

The third attack scenario is that the position of an existing air-
craft is altered by immediately following a legitimate ADS-B mes-
sage with a malicious ADS-B message with a false position. This
query detects this attack by examining the period between ADS-B
messages. However, there were two cases in the clean scenario
where EuroScope generated legitimate updates that were closer
than threshold used in the query.

6.2 Evaluation of IDS
The results of evaluation the application data constraints with the
constraint engine are summarized in figure 4. The ghost plane and
the violation of the physical law constraints have the same results
as the SPARQL queries. The IBED DSL features needed for the
spoofed location query were not available, even using the approach
of using a placeholder and manually correcting the generated code.

Threat Normal Trace Attack Trace
Physical Law Violation No alerts Correct detection
Ghost Plane 1 Case Correct detection
Spoofed Location Not complete Not Complete

Table 4: IBED DSL Results.

One of the contributions of this research is to identify the exten-
sions required in the IBED DSL to implement application domain
data constraints. The two needed extensions are:

• All three application data constraints rely on external infor-
mation to be evaluated successfully, such as the ‘range of a
radar station’. But this information is not available in any
packet. We added domain functions such as DomainLookup-
Max in line 11 of listing4. These allow facts about the real
world to be added to constraints.

• The current IBED DSL does not support a constraint on a
single packet, as most single packet issues at the network
level are handled in the protocol parser. We constraints on
single packets that aren’t limited to the parsing of the packet.

• The existing IBED DSL implementation has a limited num-
ber of logical and relational operators, and no arithmetic
operators. These are needed if more general constraints are
to be implemented. We generalized the constraint trees to
include arithmetic, logical and relational operators.

7 RELATEDWORK
There are three areas of related research. The first is redundancy
checking and correlation of data. The second is related research in

intrusion detection, first order logic and data integrity. The last is
work related to the types of threats we investigate.

7.1 Redundancy Checking
Co-relating available information is one of strategies that can be
effective in the existing security of any system. This co-relation can
be done between different types of data, between data of different
systems or between data from different layers of same system.
Choo et al. [5] propose that the cyber attacks are ‘coordinated’ and
are ‘interconnected’. The main defense of such attacks requires
an infrastructure that includes data analytics. Choo et al. suggest
that a research challenge is the intelligent analysis of data that is
collected from different layers of network security.

Every detection system has the potential to raise false alarm.
Ducharme [10] notes that most of the time the consequences of
false alarms are resources and time. He notes that to avoid the
consequences, it is important to understand the false alarms and be
able to co-relate them. Eschelbeck et al. [12] note the importance of
the assessment and correlation of data between different systems.
They identify the need for correlation of information and used a
correlation engine with Snort IDS to reduce and validate alerts.

Parnas et al. [28] suggest a “triple redundancy" approach for
safety critical systems. The main system of any critical system must
perform reliably. Any backup systems must be independent. Parnas
et al. suggest that double or triple failure in a disjoint infrastructure
is less likely. We do not claim data integrity checking in the IDS is
a replacement for data integrity checking in command and control
systems such as ATC. Using an IDS to validate application data
adds redundancy and more confidence in the overall security of the
system.

7.2 Related IDS
Many organizations use security information and event manage-
ment (SIEM) systems to get an overall view of the information
security activity and enforce data integrity [24]. In general, SIEM
systems are designed to process security events which are gen-
erated by network security solutions [3]. SIEM systems gather a
considerable amount of data for analysis from different sources in
various formats. SIEM has many advantages, but there are limita-
tions. To make any sense of this data it must be converted into a
consistent format [35]. Security reports and dashboards provided
by SIEM systems are useful for security staff and management,
because they show several security metrics and the general state of
information security within organizations [25].

But these reports, logs and alerts contain a significant amount
of data. SIEM rules are used to correlate this information. Majeed
et al. [20] suggest that many SIEM systems are incapable of giving
the status of these rules in real time. Our approach may be adapted
to allow critical rules to be validated in real time.

Andrea et al. [4] investigate using an IDS that represent the states
of the system using a rules language for Industrial Control Systems
(ICS). Like our approach they work with a domain specific network.
We focus on data in command and control systems such as ATC.
Elfaki et al. [11] also based their intelligent rules on first order logic
to better detect inconsistencies. We use FOL for representation of
our threats, which are then transformed to IBED DSL constraints.

60

An Approach to Represent and Transform Application-Specific Constraints for an Intrusion Detection System CASCON ’20, Nov 10–13, 2020, Toronto, Canada

Ghost Plane

DSL
Application

Constraints

Constraint

Engine

Network

Constraints

All ConstraintsPhysical

Law DSL

Spoof DSL

Combined

Alerts

1
2

Figure 7: Contributions

7.3 Threats and Attacks
Costin et al. [7] in Ghost in the Air identify security issues in ADS-B
and show that attacks on the ADS-B are not only possible, but
easy. In ATC systems, data provided by ADS-B is trusted and lacks
security as a key feature [7] [33]. Costin et al. emphasize adding
the most basics authentications. Our physical law violation threat
model is a demonstration of the lack of such basic authentication.
Abnormal behaviour can be indicative of something that needs to
be further investigated.

Ray et al. [32] propose using an ontology for threat models.
They suggest starting by familiarizing oneself with the domain
by interviewing domain experts before building a threat model.
Balduzzi et al. [2] provided a categorization of attacks on AIS. AIS
and ADS-B share many of the same vulnerabilities and threats.

8 CONCLUSIONS AND FUTUREWORK
In this research we extend an existing constraint based IDS to
identify data integrity at the application level. We demonstrate
the extensions in the domain of air traffic control. Figure 7 is a
representation of the contributions. We specify a set of transfor-
mations from natural language to SPARQL queries to IBED DSL
constraints, that can be used to generate a custom IDS which are
shown on the left of figure 7. We test our proposed application
data constraints with our current IDS framework. The evaluation
demonstrates some elements of the DSL and generator that must be
extended to fully support application data constraints as shown in
region 2 of Figure 7. We show that with the extensions, application
data constraints can use the same life-cycle as our network con-
straints. We propose and present a set of application domain data
constraints for the ATC domain, using the same auto-generated
framework.

The future work for our research will focus on extensions to
the SCL and the IBED DSL. More application data constraints
should be evaluated and the work on mutli-packets constraint will
be completed. The IDS framework is currently generated semi-
automatically. The extensions identified in this research are in the
process of being integrated into the constraint engine generator.

The IDS is now capable of working on ensuring integrity in two
different aspects of a system, network and data. One interesting

dimension would be to explore defining constraints on another
aspect or working layer, to see if that adds further security.

In conclusion, some application domain data can be evaluated
at the network level. Industrial control systems and command and
control applications are often complex, and while security is a criti-
cal component, it is one of many components for critical systems.
Our approach adds a redundant check of the integrity of application
data in the intrusion detection system, where the sole focus is on
the system security.

We also provide an example of using the ATOM process to use
an Ontology to evaluate application integrity in the air traffic con-
trol domain using queries. We then transform them to a low level
constraint representation that can be validated in real time.

9 ACKNOWLEDGMENTS
We would like to acknowledge funding from the Department of
National Defense.

REFERENCES
[1] ISO/IEC JTC 1. 1994. ISO/IEC 7498-1:1994 Information technology – Open Systems

Interconnection – Basic Reference Model: The Basic Model. International Standards
Organization, Geneva, Switzerland.

[2] Marco Balduzzi, Alessandro Pasta, and Kyle Wilhoit. 2014. A Security Evaluation
of AIS Automated Identification System. In Proceedings of the 30th Annual Com-
puter Security Applications Conference (NewOrleans, Louisiana, USA) (ACSAC ’14).
ACM, New York, NY, USA, 436–445. https://doi.org/10.1145/2664243.2664257

[3] S. Bhatt, P. K. Manadhata, and L. Zomlot. 2014. The operational role of security
information and event management systems. IEEE Security & Privacy 12 (2014),
35 – 41.

[4] Andrea Carcano, Igor Nai Fovino, Marcelo Masera, and Alberto Trombetta. 2010.
State-Based Network Intrusion Detection Systems for SCADA Protocols: A Proof
of Concept. In Critical Information Infrastructures Security, Erich Rome and Robin
Bloomfield (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 138–150.

[5] Kim-Kwang Raymond Choo and Ali Dehghantanha. 2018. Introduction to the
Minitrack on Cyber Threat Intelligence and Analytics: A Conceptual Three-
Pronged Approach and Future Research Agenda. In Proceedings of the 51st Hawaii
International Conference on System Sciences. 5521 – 5523. https://doi.org/10.
24251/HICSS.2018.688

[6] James R. Cordy. 2006. The TXL source transformation language. Science of
Computer Programming 61, 3 (2006), 190 – 210. https://doi.org/10.1016/j.scico.
2006.04.002 Special Issue on The Fourth Workshop on Language Descriptions,
Tools, and Applications (LDTA âĂŹ04).

[7] Andrei Costin and Aurélien Francillon. 2012. Ghost in the Air(Traffic): On
insecurity of ADS-B protocol and practical attacks on ADS-B devices. In BLACK-
HAT 2012, July 21-26, 2012, Las Vegas, NV, USA. Las Vegas, UNITED STATES.
http://www.eurecom.fr/publication/3788

[8] Gergely Csernak. [n.d.]. EuroScope User Guide, for Version 3.0a. https://www.
euroscope.hu/documents/EuroScopeUsersGuide30.pdf. Accessed: 2019-10-29.

61

https://doi.org/10.1145/2664243.2664257
https://doi.org/10.24251/HICSS.2018.688
https://doi.org/10.24251/HICSS.2018.688
https://doi.org/10.1016/j.scico.2006.04.002
https://doi.org/10.1016/j.scico.2006.04.002
http://www.eurecom.fr/publication/3788
 https://www.euroscope.hu/documents/EuroScopeUsersGuide30.pdf
 https://www.euroscope.hu/documents/EuroScopeUsersGuide30.pdf

CASCON ’20, Nov 10–13, 2020, Toronto, Canada Babar et al.

[9] R. De Cerchio and C. Riley. 2012. Aircraft systems cyber security. In 2012 Inte-
grated Communications, Navigation and Surveillance Conference. 1–12. https:
//doi.org/10.1109/ICNSurv.2012.6218454

[10] É. Ducharme. 2017. Détection d’intrusion à l’aide d’un système expert basé sur
l’ontologie. Master’s thesis. École Polytechnique de Montréal.

[11] Abdelrahman Osman Elfaki, Somnuk Phon-Amnuaisuk, and Chin Kuan Ho.
2009. Investigating Inconsistency Detection as a Validation Operation in Software
Product Line. Springer Berlin Heidelberg, Berlin, Heidelberg, 159–168. https:
//doi.org/10.1007/978-3-642-05441-9_14

[12] Gerhard Eschelbeck and Michael Krieger. 2003. Eliminating noise from intrusion
detection systems. Information Security Technical Report 8 (04 2003), 26 – 33.
https://doi.org/10.1016/S1363-4127(03)00004-9

[13] Object Management Group. [n.d.]. The Real-time Publish-Subscribe Protocol
(RTPS) DDS Interoperability Wire Protocol Specification. https://www.omg.org/
spec/DDSI-RTPS/2.3/Beta1/PDF. Accessed: 2019-05-22.

[14] RDF Working Group. 2014. Resource Description Framework (RDF). https:
//www.w3.org/RDF/. (2014).

[15] SPARQL Working Group. 2008. SPARQL Query Language for RDF. https://www.
w3.org/TR/rdf-sparql-query/. (2008). Accessed: 2020-06-12.

[16] MD Siam Hasan, Thomas Dean, Fahim T. Imam, Francisco Garcia, Sylvain P.
Leblanc, and Mohammad Zulkernine. 2017. A Constraint-based Intrusion Detec-
tion System. In Proceedings of the Fifth European Conference on the Engineering
of Computer-Based Systems (Larnaca, Cyprus) (ECBS ’17). ACM, New York, NY,
USA, Article 12, 10 pages. https://doi.org/10.1145/3123779.3123812

[17] M. S. Hasan, A. ElShakankiry, T. Dean, and M. Zulkernine. 2016. Intrusion
detection in a private network by satisfying constraints. In 2016 14th Annual
Conference on Privacy, Security and Trust (PST) (Aukland, New Zealand). 623–628.
https://doi.org/10.1109/PST.2016.7906997

[18] Fahim Imam. 2020. Specifying Constraints in SCL5 for Intrusion Detection. Tech-
nical Report. http://pyxis.ece.queensu.ca/papers/compasstr20-1.pdf/ [Online;
Accessed: 2020.02.13].

[19] Legal Information Institute. [n.d.]. Aircraft approach category. https://www.
law.cornell.edu/cfr/text/14/97.3 [Online; accessed 14-June-2020].

[20] Abdul Majeed, Raihan ur Rasool, Farooq Ahmad, Masoom Alam, and Nadeem
Javaid. 2019. Near-miss situation based visual analysis of SIEM rules for real time
network security monitoring. Journal of Ambient Intelligence and Humanized
Computing 10, 4 (01 Apr 2019), 1509–1526. https://doi.org/10.1007/s12652-018-
0936-7

[21] Simon Malenfant-Corriveau. 2017. PROPOSAL FOR A METHOD OF DEVELOP-
ING ONTOLOGY FOR A SYSTEM EXPERT IN SECURITY. Master’s thesis. École
Polytechnique de Montréal.

[22] Mohsen Riahi Manesh and Maima Kaabouch. 2017. Analysis of Vulnerabil-
ities, Attacks, Countermeasures and Overall Risk of the Automatic Depen-
dent Surveillance-Broadcast (ADS-B) System. https://doi.org/10.1016/j.ijcip.
2017.10.002. Int. J. Crit. Infrastruct. Prot. 19, C (Dec. 2017), 16âĂŞ31. https:
//doi.org/10.1016/j.ijcip.2017.10.002

[23] Sylvain Marquis, Thomas R. Dean, and Scott Knight. 2005. SCL: A Language for
Security Testing of Network Applications. In Proceedings of the 2005 Conference
of the Centre for Advanced Studies on Collaborative Research (Toranto, Ontario,
Canada) (CASCON âĂŹ05). IBM Press, 155âĂŞ164.

[24] Pal Michelberger and Sandor Dombora. 2016. A Possible Tool for Development
of Information Security- Siem System. Ekonomika, Journal for Economic Theory
and Practice and Social Issues 1350-2019-2051 (2016). https://doi.org/10.22004/ag.
econ.288703

[25] Raydel Montesino, Stefan Fenz, and Walter Baluja GarcÃŋa. 2012. SIEM-based
framework for security controls automation. Information Management & Com-
puter Security 20 (10 2012). https://doi.org/10.1108/09685221211267639

[26] L.-P Morel. 2017. Using Ontologies to Detect Anomalies in the Sky. Master’s thesis.
[27] Ontotext. 2019. What is SPARQL. https://www.ontotext.com/knowledgehub/

fundamentals/what-is-sparql/. (2019). Accessed: 2020-02-13.
[28] David Parnas, Jan Madey, and G. Asmis. 1991. Assessment of safety-critical

software in nuclear power plants. Nuclear Safety 32 (04 1991).
[29] CFR Part. 91. Automatic Dependent Surveillance–Broadcast (ADS–B) Out Per-

formance Requirements to Support Air Traffic Control (ATC) Service. Final Rule
91 (91).

[30] Y. Raimond and G. Schreiber. 2014. RDF 1.1 primer. http://www.w3.org/TR/2014/
NOTE-rdf11-primer-20140624/. (2014).

[31] Mohamed Sami Rakha, Fahim T. Imam, and Thomas R. Dean. 2019. Generating a
Real-Time Constraint Engine for Network Protocols. In 12th IFIP International
Conference on Information Security Theory and Practice (WISTP) (Information
Security Theory and Practice, Vol. LNCS-11469), Olivier Blazy and Chan Yeob
Yeun (Eds.). Springer International Publishing, Brussels, Belgium, 44–60. https:
//doi.org/10.1007/978-3-030-20074-9_5 Part 2: Real World.

[32] Cyril Ray, Romain Gallen, Clement Iphar, Aldo Napoli, and Alain Boujou. 2015.
DeAIS project: Detection of AIS spoofing and resulting risks. IEEE, OCEANS 2015
- Genova, Genoa, Italy. https://doi.org/10.1109/OCEANS-Genova.2015.7271729

[33] SC-186. 2009. DO-282B, MinimumOperational Performance Standards for Universal
Access Transceiver (UAT) Automatic Dependent Surveillance-Broadcast (ADS-B).
Technical Report. 1150 18th NW, Suite 910 Washington, DC 20036 USA.

[34] Lucio Vismari and JoÃčo Junior. 2011. A safety assessment methodology applied
to CNS/ATM-based air traffic control system. Reliability Engineering & System
Safety - RELIAB ENG SYST SAFETY 96 (07 2011), 727–738. https://doi.org/10.
1016/j.ress.2011.02.007

[35] Peter Zegzhda, Dmitry Zegzhda, MaximKalinin, Alexander Pechenkin, Alexander
Minin, and Daria Lavrova. 2016. Safe Integration of SIEM Systems with Internet
of Things: Data Aggregation, Integrity Control, and Bioinspired Safe Routing.
In Proceedings of the 9th International Conference on Security of Information and
Networks (Newark, NJ, USA) (SIN ’16). ACM, New York, NY, USA, 81–87. https:
//doi.org/10.1145/2947626.2947639

62

https://doi.org/10.1109/ICNSurv.2012.6218454
https://doi.org/10.1109/ICNSurv.2012.6218454
https://doi.org/10.1007/978-3-642-05441-9_14
https://doi.org/10.1007/978-3-642-05441-9_14
https://doi.org/10.1016/S1363-4127(03)00004-9
 https://www.omg.org/spec/DDSI-RTPS/2.3/Beta1/PDF
 https://www.omg.org/spec/DDSI-RTPS/2.3/Beta1/PDF
https://www.w3.org/RDF/
https://www.w3.org/RDF/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://doi.org/10.1145/3123779.3123812
https://doi.org/10.1109/PST.2016.7906997
http://pyxis.ece.queensu.ca/papers/compasstr20-1.pdf/
https://www.law.cornell.edu/cfr/text/14/97.3
https://www.law.cornell.edu/cfr/text/14/97.3
https://doi.org/10.1007/s12652-018-0936-7
https://doi.org/10.1007/s12652-018-0936-7
https://doi.org/10.1016/j.ijcip.2017.10.002
https://doi.org/10.1016/j.ijcip.2017.10.002
https://doi.org/10.1016/j.ijcip.2017.10.002
https://doi.org/10.1016/j.ijcip.2017.10.002
https://doi.org/10.22004/ag.econ.288703
https://doi.org/10.22004/ag.econ.288703
https://doi.org/10.1108/09685221211267639
https://www.ontotext.com/knowledgehub/fundamentals/what-is-sparql/
https://www.ontotext.com/knowledgehub/fundamentals/what-is-sparql/
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
https://doi.org/10.1007/978-3-030-20074-9_5
https://doi.org/10.1007/978-3-030-20074-9_5
https://doi.org/10.1109/OCEANS-Genova.2015.7271729
https://doi.org/10.1016/j.ress.2011.02.007
https://doi.org/10.1016/j.ress.2011.02.007
https://doi.org/10.1145/2947626.2947639
https://doi.org/10.1145/2947626.2947639

Blockchain-based Security for Heterogeneous IoT Systems
Kale Yuzik

Department of Computer Science,
University of Saskatchewan
Saskatoon, SK, CANADA

kay851@usask.ca

Dwight Makaroff
Department of Computer Science,

University of Saskatchewan
Saskatoon, SK, CANADA
makaroff@cs.usask.ca

ABSTRACT
The Internet of Things (IoT) is being deployed in industry, public
services, and even homes. These devices are making information
more available and allow for greater automation and efficiencies.
With the rapid growth this industry is experiencing, the security of
IoT devices has not been given the attention it needs. Many of these
devices leave sensitive information exposed or may allow for mali-
cious actors to take control of them. The Internet of Things uses a
vast range of hardware which has led to many different approaches
to security. Administering a network with such variability makes it
easy for insecure configurations to be overlooked.

This paper proposes the use of blockchain technology as the
backbone to a security framework to unify IoT devices of vary-
ing resource constraints under one system. Ethereum is used to
create a secure system that is Denial of Service resistant, store en-
cryption keys, store encrypted data, and manage trust of devices.
Using the Proof-of-Authority consensus method instead of the more
common Proof-of-Work, allows for more efficient use of resources.
This system features mechanisms to include the use of LoRa LP-
WAN technology, which is often used in IoT. Tests were run on
a small network of devices while recording processor utilization.
Latencies were also measured, showing that devices with fewer
resources showed significant latencies, and suggestions as to how
these latencies can be reduced are proposed.

CCS CONCEPTS
• Information systems → Information systems applications; •
Computer systems organization→Peer-to-peer architectures;
• Security andprivacy→Keymanagement; Security services;
• Networks → Network services;
ACM Reference Format:
Kale Yuzik and Dwight Makaroff. 2020. Blockchain-based Security for Het-
erogeneous IoT Systems. In Proceedings of CASCON 2020 (CASCON’20).
IBM Corp., Riverton, NJ, USA, 10 pages.

1 INTRODUCTION
The Internet of Things (IoT) is experiencing a rapid expansion in
growth. ARM predicts that one trillion IoT devices will be manu-
factured between 2017 and 2035, and world will see a $5 trillion
boost in G.D.P. due to the industrial use of IoT technologies by
2035 [27]. The Internet of Things offers great value for uses such
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honoured.
For all other uses, contact the owner/author(s).
CASCON’20, Nov. 10–13, 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

as monitoring critical infrastructure, which will inevitably lead to
the deployment of these systems throughout cities. Manufacturers
are driven by economic factors and those fastest to market benefit
the most. This encourages manufacturers to cut corners and take
calculated risks and there is no exception when it comes to the
security of these products. Many of these IoT devices are deployed
in remote or inaccessible locations and use low bandwidth connec-
tions. This makes servicing or updating them far more challenging
than conventional computer networks. As the use of IoT systems ex-
pands, the risks involved with failure or security breaches become
increasingly severe.

IoT traffic lights have been developed to synchronize with other
traffic lights within road networks to minimize delays and reduce
congestion [1]. While the benefits of smart road infrastructure
are considerable, if targeted by an attacker, traffic collisions could
be caused, putting lives at risk. Commercially available, internet
connected cardiac implants were found to contain a critical secu-
rity vulnerability [28]. This not only exposed data collected by
the implants, but the administration of shocks by pacemakers and
defibrillators could be altered. This documented vulnerability is
irrefutable evidence that with the growing adoption of IoT tech-
nologies the benefits are immense, but the cost of breaches will be
financially expensive and may endanger lives. For these reasons, it
is critical these systems be secure at the time they are deployed.

Current approaches to IoT networks employ cloud-based services
to collect and process data from IoT devices. These cloud-based
IoT services (such as The Things Network1) introduce a single
point of failure by means of an external agency. Should the cloud
service become compromised, all guarantees of data confidentiality,
integrity, and availability are lost. This exposure may be acceptable
for some applications, but for critical services for which society may
come to depend upon, minimizing/eliminating these exposures is
vital. A blockchain-based security framework is proposed to address
these issues with cloud-based IoT services.

Due to the inexpensive and low-power hardware used for IoT
systems, five categories of constraints apply: compute power, mem-
ory capacity, persistent storage capacity, connectivity bandwidth,
and power source. Some limitations that may exist for one IoT de-
vice may not be an issue for another. Given this broad range of
devices, the question of how to design a security framework that
caters to the needs of these heterogeneous devices arises. Using
dissimilar solutions for devices of varying hardware resources is
not only cumbersome, but introduces security concerns itself. With
more solutions come greater potential for configuration errors and
complexity of administration.

1https://www.thethingsnetwork.org/

63

https://www.thethingsnetwork.org/

CASCON’20, Nov. 10–13, 2020, Toronto, Canada Kale Yuzik and Dwight Makaroff

This paper explores the application of blockchain technology to
create a unified security framework for IoT devices with heteroge-
neous compute resources. The remainder of this paper is organized
as follows. Section 2 describes the component technology of the
problem domain, while Section 3 gives a brief overview of similar
previous work. Section 4 outlines the implementation and configu-
ration of the test environment, Section 5 provides proof-of-concept
results for the test network, and Section 6 draws some insight
and analysis. Section 7 provides a summary and suggests future
directions.

2 BACKGROUND
When assessing information security there are three fundamental
qualities that must be considered. These qualities form what is
referred to as the CIA triad: Confidentiality, Integrity, and Avail-
ability [18]. Confidentiality refers to the secrecy of data from those
who are not authorized to view or access it. Data can be kept confi-
dential using cryptographic techniques. Integrity is an assurance
that the data can neither be altered or forged. The integrity of data
can be protected through the use of digital signatures. These signa-
tures provide means to authenticate the origin of the data as well
as detect if the data has been altered. Availability is the property
that adversaries cannot prevent or hinder access to data or services
required to process/transmit/receive that data. This can be guarded
using peer-to-peer technologies to provide redundancy, thereby
increasing the availability of data.

Decentralized technologies such as blockchain present a unique
advantage over the traditional client-server model. They offer a
resistance to Denial of Services (DoS) and Distributed Denial of
Service (DDoS) attacks [19], owing to the lack of a single point of
failure [2] and distributed ledger containing the desired data. Cisco
has projected 15.4 million DDoS attacks will occur in 2023, nearly
double the 7.9 million which were expected in 2018 [12].

2.1 Blockchain
Dwork and Naor [15] first introduced the idea of Proof-of-Work, a
way of providing means for making an assertion without the need
of cryptographic trust, a precursor to Blockchain. Vishnumurthy
et al. [29] made use of the concept of Proof-of-Work by creating a
credit system to incentivize equal contribution of all nodes within
peer-to-peer systems. This system provided a public ledger of trans-
actions and involved the payment of “karma”, a digital token for
work performed by peers. Nakamoto [24] developed the idea of a
decentralized, anonymous digital currency, now known as Bitcoin.

Blockchain is essentially a distributed database [21] that consists
of chunks of data (blocks) that are linked together in a linear order.
Each block contains the cryptographic hash of the block prior [24].

In the Proof-of-Work (PoW) consensus scheme, miners assemble
a block with pending transactions. A miner assigns an arbitrary
value to the nonce (number used once) field and calculates the
hash of this proposed new block. The miners then check if the
hash is less than the difficulty value [3]. When a miner succeeds,
it broadcasts its newly mined block to connected peers, who then
verify its validity. If valid, the network accepts the block, and work
begins on the next block. Miners race with others to find values
which satisfy these criteria. The difficulty is adjusted to maintain a

predetermined duration of time between creation of new blocks,
which is called the “block time”.

A change in any block along the chain will result in one of
these hashes not matching. For an attacker to successfully alter an
existing portion of a blockchain, they must re-mine every block
from the victim block on until the length of their altered blockchain
exceeds the length of the currently accepted chain.

Finding a hash which meets the required difficulty parameter
involves continual computation [3], and because mining is a race
for the next block, it is only viable on hardware above a threshold
of computational power. For this reason, Proof-of-Work is an im-
practical solution for securing a blockchain running on a network
of low power IoT devices.

As an alternative to Proof-of-Work consensus, a voting-based
system known as Proof-of-Authority (PoA) [13] may be used, in
which blocks are approved (or rejected) by authorized accounts
known as signers. The use of a PoA consensus algorithm creates a
permissioned blockchain, whereas with PoW the blockchain would
be permissionless. De Angelis et al. [13] analyzed permissioned
blockchain consensus algorithms in terms of the CAP (Consis-
tency/Availability/Partition tolerance) theorem [16] and perfor-
mance. The implementations of PoA known as Aura and Clique
were examined, as well as Practical Byzantine Fault-Tolerant (PBFT)
schemes. While there were trade-offs in terms of the CAP theorem,
Clique requires the least number of messages to achieve consensus,
thereby making it advantageous for use on resource constrained
systems.

On PoA, signers approve blocks by signing them with their cryp-
tographic key and for a network to consider a block as valid, it must
be signed by a majority of the authorized signers. Upon genesis of
the blockchain, initial signers are defined. Accounts which main-
tain the transaction process of the blockchain accumulate positive
reputation. Thus, signers can be voted in or out, based on their
reputation within the blockchain network. This system eliminates
the computationally demanding operations required by the Proof-
of-Work scheme. Additionally, PoA allows for the block time to be
explicitly set, thus allowing for some degree of control over the
latency of contract functions which mutate the contract state and
by extension, the latency in our proposed system.

2.2 Ethereum and Smart Contracts
Blockchain is best known for its use in implementing cryptocur-
rencies, but its applications are far more broad. Smart contracts are
compiled code that is uploaded to the blockchain [30, 31]. These
contracts contain functions that may be executed in a distributed
manner as required. Contracts can contain persistent state informa-
tion that is global to all devices on the blockchain. In order for the
results of contract execution to be accepted by the network, there
must be consensus on the postconditions of execution.

Smart contracts, as they are referred to in the context of Ethereum,
contain functions which are divided into two groups: those that
modify the contract state and those that do not. They have substan-
tially different performance properties. Contract functions modi-
fying the contract’s state are called by sending a transaction [30].
This is done by broadcasting the transaction data to other devices

64

Blockchain-based Security for Heterogeneous IoT Systems CASCON’20, Nov. 10–13, 2020, Toronto, Canada

mining on the blockchain, for which the outcome state of the con-
tract must be agreed upon by the miners. The mining nodes execute
the function and must come to a consensus, introducing a latency
which is primarily dependent upon the block time. Contract func-
tions that do not modify the state variables of a contract need only
be executed locally on the device. There is no need to come to a
consensus on the result of this computation, as it does not modify
public information in any way, so the latency is imperceptible.

The Ethereum Virtual Machine (EVM) is used to execute smart
contract functions. EVM allows for looping, and thus introduced
the possibility of poorly written or malicious code to invoke an
infinite loop. As a remedy, the concept of “gas” is introduced. Each
instruction depletes a finite quantity of gas allotted to a transaction.
The sender of a transaction may choose the initial amount of gas
available; the spent gas determines transaction fees charged to the
account from which the transaction originated.

Ethereum accounts each possess their own pair of cryptographic
keys that are used to sign transactions. These same keys are used
to sign blocks when using Proof-of-Authority consensus.

2.3 Cryptography
Symmetric cryptography uses the same key to both encrypt and de-
crypt information for both parties, whereas asymmetric cryptogra-
phy involves both actors having different cryptographic knowledge
and abilities [17]. Asymmetric ciphers are more computationally
expensive and a solely asymmetric approach to encryption is not
feasible in many domains. Algorithms such as Diffie-Hellman allow
for a shared key to be derived only from knowledge of one’s own
key-pairs and the partner’s public key, preventing third parties
from determining the shared key. Another unique advantage with
asymmetric cryptography is the possibility for data to be digitally
signed and verified [17], providing a very high degree of confidence
that the data originated from the believed source (the actor which
possesses the specific key-pair).

Both Rivest-Shamir-Adleman (RSA) and Elliptic Curve Cryptog-
raphy (ECC) are asymmetric cryptographic systems. They both
provide the same functionality, but differ in underlying mathemat-
ics, computation difficulty, and security [22]. As keys become larger,
the security the cipher provides increases. When an ECC key be-
comes larger, RSA keys must grow at a disproportional rate to be
able to match the level of security [20]. ECC can offer an equal level
of security with a much shorter set of keys.

The Advanced Encryption Standard (AES) symmetric cipher has
been heavily used since its acceptance by NIST in 2001 [25]. AES
uses keys of either 128, 192, or 256 bits, with 10, 12, and 14 rounds
respective of key length. There have been limitations and shortcom-
ings identified with AES in the intervening years. A cache timing-
based attack [6] on AES exposed the possibility of key recovery.
This not only breaks the confidentiality of the current ciphertext,
but all other messages that are encrypted with the same key.

The Salsa20 stream cipher [9] offers encryption that is consis-
tently faster than AES. Salsa20 may be applied using a differing
number of rounds, with Salsa20/20 (20 rounds) being the recom-
mended standard. Cryptanalysis of Salsa20 has shown Salsa20/8 or
fewer rounds to be vulnerable to attacks [5, 9].

The Salsa20 family of ciphers uses 3 operations: 32 bit addition, 32
bit XOR, and constant-distance 32-bit rotation. These instructions
are all CPU friendly, and therefore faster across a wider number of
platforms than other ciphers such as AES [9]. Due to the lack of
S-box lookup tables, Salsa20 also avoids the cache timing attacks
possible with AES.

XSalsa20 specifies a longer nonce than Salsa20 (128 bits vs. 64
bits) [8]. The nonce does not need to be secret; a third party ob-
taining the nonce does not compromise security of the cipher. The
longer nonce makes it safe to use a randomly-generated nonce.
XSalsa20 offers the exact same speed as Salsa20, with the minimal
extra cost of generating the larger nonce.

A cipher with a higher degree of diffusion does a better job in
hiding the relationship between plaintext and ciphertext. The fam-
ily of ChaCha ciphers [7] is based on the Salsa cipher and provides
improved diffusion. This modification does not increase the com-
putational expense, nor does it reduce the potential for parallelism.
In fact, ChaCha20 uses one fewer register than Salsa20, which on
some platforms may yield minor performance gains. Aumasson et
al. [5] performed a differential cryptanalysis of Salsa20 and ChaCha.
They found that while they could break up to 8 rounds of Salsa20,
they were only able to break up to 7 rounds of ChaCha (ChaCha7).
For symmetric encryption, XChaCha20 was selected due to its im-
proved strength against cryptanalysis over other variants in the
Salsa20 family, its imperviousness to side channel attacks, and CPU
friendly operations which allows for efficient operation on embed-
ded systems.

3 RELATEDWORK
Biswas and Muthukkumarasamy [10] conducted an analysis of
smart cities and how blockchain technology could be used to pro-
vide a security framework to protect them. These researchers point
out that IoT devices used in smart cities utilize various communica-
tion layer technologies such as Ethernet,Wifi, Bluetooth, 6LoWPAN,
3G, and 4G. They argue a security framework should support these
technologies and allow for communication between differing com-
munication systems. The recommendation for use of a permissioned
blockchain was made over an permissionless blockchain, due to
faster consensus and reduced potential for anonymous attacks.

Huh, Cho, and Kim [19] proposed an Ethereum-based system for
managing RSA public keys as an IoT management system. Their
proof of concept modelled electrical appliances and monitored
power consumption. Smart contracts provided an interface to set a
power usage limit when the devices would be automatically turned
off.

Özyilmaz and Yurdakul [26] investigated an Ethereum-based
IoT data collection system. Wireless nodes used LoRaWAN to com-
municate with a “smart proxy” that performed blockchain-related
functions. This work focused on blockchain technology for decen-
tralized storage and robust data availability, but did not employ
cryptography to ensure data confidentiality. Data was stored using
Ethereum’s SWARM storage service, a peer-to-peer data storage
system. Many of the design aspects of Özyilmaz’s work will be used
in the formulation of the system in this paper.

Minoli et al. [23] conducted an analysis of blockchain technology
in the scope of providing security for IoT. Proposals were made

65

CASCON’20, Nov. 10–13, 2020, Toronto, Canada Kale Yuzik and Dwight Makaroff

for the different roles a “Network Element” (NE) may serve in the
greater scope of the network/blockchain. Some of these configura-
tions defer protection of data integrity to other more powerful de-
vices within a network to account for NEswhichmay be less capable
of securing the integrity on their own. These devices include gate-
ways, and concentration nodes (routers, switches, firewalls, etc.).
Additional uses for blockchain systems for IoT are also suggested,
including device configuration, data storage, micro-payments, auto-
mated payments between things to create a shared economy, Digital
Rights Management (DRM), history of ownership throughout the
supply chain, smart cities, device communication/synchronization,
and software rollout.

Dorri et al. [14], examined the design of the blockchain itself in
the context of smart home IoT. The authors highlighted barriers to
using cryptocurrency-based blockchain systems with IoT systems.
These issues include high consumption of system resources, latency,
and scalability problems arising from the need for consensus among
nodes. A layered design of the network is proposed, involving no
need for use of Proof-of-Work. In one layer, a private blockchain
is used to connect a group of devices within a home. One device
in the home with plenty of computational resources is designated
the Smart Home Manager (SHM), which acts as the miner. At the
top layer, smart homes are connected to a public blockchain (inde-
pendent from the private blockchain), for which the SHM relays
transactions, and communicates with cloud-based services. This
separation of blockchains greatly reduces the storage needs of the
resource constrained IoT devices, as well as reduces the bandwidth
and energy demands placed on them.

4 METHOD
Ethereum will be used as the underlying blockchain technology
due to the Turing complete virtual machine it makes available for
distributed computation. While other blockchain technologies such
as Bitcoin also make scripting possible, these alternatives are not
Turing complete [11, 19], as looping is not possible. This design
choice greatly limits their practicality for use in our framework.

The resource constraints of the IoT devices restrict our design
parameters. In order to encompass this range of devices into one
system, a proxy is built into the design. This allows devices that
are incapable of running an Ethereum client to participate in the
network. The programming language used must allow for efficient
use of hardware, and allow for multiple threads to make best use of
resources. We chose C++ with a custom system to manage commu-
nication with our selected Ethereum client (Geth, see Section 4.2)
and its JSON API through Unix domain sockets, as the commonly
used Web3.js library is written for JavaScript.2 This keeps resource
consumption as low as possible.

A conceptual overview of the proposed system is found in Fig-
ure 1. Three different types of devices exist: devices running a
Geth client, without LoRa (Section 4.5.1), devices running a Geth
client and operating as a LoRa proxy (Section 4.5.2), and devices
not running Geth with LoRa, requiring the services of a proxy
(Section 4.5.3).

2https://web3js.readthedocs.io/en/v1.2.6/

IoT devices not running Ethereum client

Geth client

Blockchain

IoT Security
Framework

smart contract

Program using IoT
Security FrameworkLoRa radio

Other client #n

Other client #1

LoRa radio IoT Security Framework
communications code IoT device program

IoT devices running Ethereum client
LoRa Gateways

Figure 1: Architecture of the network

4.1 Design Considerations
4.1.1 Compute Power. Embedded systems generally possess low
compute power. This amplifies the trade-offs when selecting crypto-
graphic algorithms. The trade-offs between computational latency
and security become far more pronounced than on devices with
faster processors. Security will be prioritized when reasonable,
while minimizing computational complexity.

4.1.2 Memory and Storage. On some devices, memory and storage
become severely limited, in some cases as low as tens of kilobytes.
Offloading much of the work to a proxy/gateway will minimize the
memory footprint of the compiled binary for these platforms.

4.1.3 Network Bandwidth. Many IoT devices use wireless commu-
nications to perform their functions. One such common technology
is LoRa [4]. LoRa allows for throughput ranging from 0.3 Kbps to 50
Kbps, depending on configuration and regional differences [21]. The
proxy solution must operate over these low bandwidth connections,
while maintaining a high degree of security.

4.1.4 Power Source. Very often, IoT devices have limited power
supply such as batteries or solar power. Both the processor and
wireless radios can be significant consumers of energy; minimizing
power consumption is important for the feasibility of a solution.

4.1.5 Cryptographic Functions. The required cryptographic func-
tions consist of public/private key generation, Diffie-Helman key
exchange, a symmetric key cipher, and signature creation and verifi-
cation. ECC was selected over RSA, due to both its smaller key size
without compromised security and computational speed, which is
well suited to embedded systems [22].

4.2 Ethereum
The blockchain security frameworkwas tested on a private Ethereum
network, using Proof-of-Authority as the method of consensus. Us-
ing PoA over PoW allows for more devices to participate in the
voting process, as compared to the mining process in PoW. This
makes the security of the blockchain dependent on the quantity
of signers, rather than the mining compute power. In general, this
lends itself well to a network of IoT devices, since such networks

66

https://web3js.readthedocs.io/en/v1.2.6/

Blockchain-based Security for Heterogeneous IoT Systems CASCON’20, Nov. 10–13, 2020, Toronto, Canada

often consist of hundreds or thousands of devices. Additionally, con-
trol over block time is an advantage since this will directly impact
the latency of data sent by devices on the network.

A block time of 5 seconds was used, as it provides lower la-
tency than the block time of 12 seconds used on Ethereum’s public
blockchain which uses PoW consensus. While 1 second would re-
sult in even lower latency, the rate at which storage costs grow
must also be weighed. A test was carried out with an Ethereum
blockchain, a 5 second block time, 1 signer, and no transactions
being made. The size of chain data on the filesystem was recorded
at 5 second intervals, which showed the chain grew at an average
rate of 3465 bytes per block.

4.3 Go Ethereum Client
We selected the Go Ethereum client (Geth).3 The implementation of
Proof-of-Authority used in Geth is known as Clique. Geth provides
many options and modes which allow for control over the extent
that the blockchain is stored and verified locally. These settings
allow for some adjustment over the use of system resources, such
as processor, memory, storage, and bandwidth. It has three different
modes of operation/communication: full sync, fast sync, and light
sync.

In full sync mode, Geth stores the entire blockchain on the
device and verifies every block created and transaction contained
within the blocks. This is the most resource demanding mode of
the three. As the blockchain adds blocks to the chain, the costs of
storing the chain increases. Fast sync mode, like full sync mode,
obtains all blocks since genesis and verifies all blocks, but does
not verify transactions, until a set number of blocks behind the
present head of the blockchain.4 This mode trades some processing
power for bandwidth. Once a fast sync client has obtained the
entire chain, it functions the same as full sync mode. Light sync
mode consumes the least amount of system resources, with the
exception of bandwidth. In this mode, all block headers and data are
downloaded, but transactions are not obtained. Geth only randomly
validates blocks in light sync mode. The use of light mode requires
full sync mode devices on the network to serve light clients which
must be explicitly enabled on the full sync client.

4.4 Contract Design
The smart contracts will be used to store the following information
for each device:

• Human friendly name,
• Numeric ID (“device ID”),
• Device creation timestamp,
• Public encryption key,
• Public signature key,
• Encrypted data & nonce,
• Timestamp of when data was last received,
• Numeric ID of the decrypting device ("data receiver"), and
• whether this device is managed by a gateway/proxy (T/F)
("gateway managed").

3https://geth.ethereum.org/
4Szilágyi, Péter. October, 2015. eth/63 fast synchronization algorithm #1889. https:
//github.com/ethereum/go-ethereum/pull/1889

The contract facilitates the allocation of new devices, removal of
devices, changing of cryptographic keys, and storage and retrieval
of encrypted data. Some of these are administrative functions that
should only be callable by authorized Ethereum accounts. The
contract allows for an arbitrary number of Ethereum accounts to
be granted access to call such functions.

Each device is assigned a partner device which may decrypt
the sender’s data, termed a “data receiver”. Allowing for a specific
data receiver to access data from one or more devices permits
data privacy even with multiple users within a blockchain security
framework. This limits potential damage if a cryptographic key
becomes compromised.

4.5 Devices
The hardware utilized in the test network consists of 3 types Rasp-
berry Pi devices and AdaFruit Feather M0 devices5 as described
more fully in Table 1. In addition to the information in the table,
the Raspberry Pi 2B+s are equiped with a Dragino LoRa (SX1276)
& GPS HAT. One AdaFruit Feather M0 device uses a 1200mAh LiPo
battery and the other devices are mains powered. All LoRa chips are
of the RF9X family, operating in the 915MHz frequency range. All
Raspberry Pis ran Raspbian on a headless installation. The devices
were run in a network as illustrated in Figure 2.

4.5.1 Devices Running Geth Client, without LoRa. Devices which
are connected to the Internet and have sufficient system resources
will run the Go Ethereum client locally. The blockchain security
framework will communicate with Geth through Unix domain
sockets to request services of the smart contract. Only devices with
more capable hardware will run Geth in full sync mode as a signer.
Other devices will be tested in light sync mode.

4.5.2 LoRa Gateways/Proxies. Devices operating as a LoRa gate-
way constantly listen for transmissions from broadcasting LoRa
devices and run a local instance of Go Ethereum. When the gate-
way receives an incoming message, it retrieves the public signature
key that corresponds to the device ID in the LoRa packet from the
smart contract. If the signature is verified as valid using the public
key, the gateway can be confident the message originated from
the claimed device. Since the gateway is already registered on the
blockchain, the smart contract implicitly trusts the gateway and
the gateway may forward the already encrypted message payload
to the blockchain. In order for the smart contract to permit the
gateway acting on the behalf of the device, the device must be
registered on the blockchain as “gateway managed”. Any gateway
is capable of pushing the data of any registered LoRa device to the
blockchain. This allows for geographic mobility of these devices.

4.5.3 LoRa Connected Devices. Systems using LoRa for connectiv-
ity do not possess the bandwidth necessary to run Go Ethereum
locally. These devices may also lack other resources to run Go
Ethereum. The Adafruit Feather M0 meets none of these require-
ments, as is true for a large portion of IoT devices; mechanisms for
this category of device must be included.

Since these devices cannot run Go Ethereum, this must be done
by proxy/gateway. A protocol was created to allow for a LoRa

5https://www.adafruit.com/product/3178

67

https://geth.ethereum.org/
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://www.adafruit.com/product/3178

CASCON’20, Nov. 10–13, 2020, Toronto, Canada Kale Yuzik and Dwight Makaroff

Table 1: Test Devices (all ARM CPUs)

Device CPU Cores Frequency (MHz) RAM Network
Raspberry Pi 2B+ Cortex-A53 4 900 1 GB WiFi and LoRa
Raspberry Pi 4B Cortex-A72 4 1500 4 GB WiFi
Raspberry Pi Zero W 117676JZF-S 1 1000 512 MB WiFi
AdaFruit Feather M0 Cortex M0 ATSAMD21G18 1 1000 32 KB LoRa module (SX127X)

Wireless Router
802.11N

Raspberry Pi 4B

Raspberry Pi 2B+
Mains Power

Adafruit Feather M0
Mains Power

Adafruit Feather M0
Battery Power

Raspberry Pi Zero W Raspberry Pi 2B+
LoRa Gateway

WiFi

LoRa

Ethereum
Clients

Raspberry Pi Zero W

Figure 2: Configuration of test network

gateway to act upon a device’s behalf, while maintaining data con-
fidentiality and integrity. Devices communicating over LoRa must
be authenticated and cannot be implicitly trusted. Our protocol de-
tects forged/altered data and prevents eavesdropping as described
in Section 4.6.

The custom LoRa protocol allows for a payload of up to 154 bytes
which is three times larger than LoRaWAN and by extension, The
Things Network. The packet structure is as follows:

• Source and destination device ID (4 bytes each),
• Message ID (1 byte),
• Packet fragment number (1 byte),
• Flags (1 byte),
• Reserved (1 byte),
• Data length (1 byte),
• Message signature (64 bytes),
• Cryptographic nonce (24 bytes), and
• Encrypted data (max 154 bytes).

The “message ID” and “packet fragment number” are presently
unused, but are left in for future versions, to enable fragmented
messages, similar to packet fragmentation in IPv4.

When a LoRa device boots, it pre-calculates the shared key used
to encrypt data for its data receiver. This key is stored to avoid
having to recompute it, wasting processor cycles and power. Once
data is ready to be sent, it is encrypted (Section 4.6) and encapsulated
in a packet that is then digitally signed and transmitted.

4.6 Cryptography
The libSodium6 library provides the desired algorithms and sup-
ported all but one of the platforms being used for testing. Minor
changes7 were required to port the library to the ARM Cortex M0.

6https://libsodium.org
7Limited to removal of function pointers which permitted different functions to be
used. No alterations were made to functions which impact the integrity/security of
the cipher.

Since embedded LoRa devices do not run a local Go Ethereum
client, an external cryptography library will be used for digital sig-
natures in addition to key generation, key exchange, and symmetric
encryption. Digital signatures will utilize the Edwards-Curve Digi-
tal Signature Algorithm (ECDSA) using edwards25519 parameters.
This creates a 512-bit signature that the LoRa gateway can verify to
ensure the authenticity of the sender. Should the message have been
altered or corrupted after it is signed, it is discarded. libSodium’s
crypto_sign_init(), crypto_sign_update(), crypto_sign_final_create()
are used to create a signature and crypto_sign_final_verify() to ver-
ify a signature.8

Before data can be encrypted, the shared key must be computed
between the device and its data receiver using Elliptic Curve Diffie-
Hellman key exchange (ECDH). Once the shared key has been
determined, it is used with the symmetric XChaCha20 stream ci-
pher to encrypt the data being transmitted. A 192-bit, randomly
generated nonce is used during encryption and must also be trans-
mitted and stored on the blockchain. This nonce itself does not
need to be kept secret, but is required for decryption.

Data is encrypted on an end-to-end basis. Before a LoRa device
transmits data to a gateway, it is both encrypted and signed. Upon
receipt, the gateway verifies the signature. The gateway does not
decrypt the data, as it does possess the necessary key to do so, unless
it is designated as the data receiver for the originating device. In the
case of a device running its own instance of Geth, data is pushed to
the blockchain in encrypted format and the identity of the sender
is verified in the smart contract. Data remains in this encrypted
format while on the blockchain. A data receiver may choose to
subscribe to changes to new data on the blockchain for which they
are capable of decrypting. These notifications are implemented
through Ethereum’s event logs and Go Ethereum’s eth_subscribe
JSON API calls.

The public cryptographic keys of all devices are stored on the
blockchain and can be trusted as authentic. When a signed LoRa

8https://doc.libsodium.org/public-key_cryptography/public-key_signatures

68

https://libsodium.org
https://doc.libsodium.org/public-key_cryptography/public-key_signatures

Blockchain-based Security for Heterogeneous IoT Systems CASCON’20, Nov. 10–13, 2020, Toronto, Canada

message must be verified, the gateway retrieves the devices public
signature from the blockchain to perform the verification.

When a data receiver wishes to read encrypted data on the
blockchain, it obtains the public key of the device it is reading data
from, as well as the ciphertext, and nonce. The data receiver then
calculates the shared key using libSodium’s key exchange function
crypto_kx_server_session_keys() to perform ECDH key exchange.
This shared key is then used to decrypt the data.

5 RESULTS
In our experiments, devices pushed data to the blockchain every
6 seconds. This interval was selected so latency tests would not
be synchronized with the block time (5 seconds) and consequently
skewmeasurements. Data generated by each type of device consists
of the following:

• Adafruit Feather M0 (LoRa): power source voltage and uptime,
• RPi 2B+ (LoRa): `uptime`,
• RPi Zero W: `uname -a`, `nproc`, `uptime`, and `free -h`, and
• RPi 4B: `uname -a`, `nproc`, `uptime`, and `free -h`.

LoRa device transmissions have fewer bytes due to the limitations of
packet payload size, and for the Feather M0’s, the lack of a general-
purpose operating system. Since the Raspberry Pi Zero Ws are the
most resource constrained devices that run their own Go Ethereum
client, data was collected with Geth running in full sync and also in
light sync mode. Fast sync was not used as it only affects the speed
of joining a blockchain and not normal operation.

While attempting to run Geth in light sync mode on the Rasp-
berry Pi ZeroWs, issues withmemory usage arose. An initial --cache
value of 400 (MB) was used. This resulted in the system over-using
the swap space. The cache value was decreased to 128, but did
not alleviate the issue entirely. To further adjust for these memory
demands, the memory reserved for the GPU was decreased to 8
MB, all non-essential system services were disabled, and the system
“swappiness” value was set to 1. These changes resulted in stable
operation on the Raspberry Pi Zero Ws.

The LoRa gateway/proxy (Raspberry Pi 2B+) did not experience
any memory-related issues, as with the Raspberry Pi Zero Ws.
With 1GB of memory, the gateway is the second most memory
constrained device. This device was run with a --cache value of 512
(MB) and had a total of 969 MB of usable memory (the difference is
reserved for the GPU).

Latency was measured on The Things Network over LoRaWAN
using a Raspberry Pi 2B+ as a single channel gateway and the
other Raspberry Pi 2B+ as a LoRaWAN end node. The end node
also ran an MQTT client which subscribed to new data on this
The Things Network application. The node logged the UNIX epoch
time in milliseconds upon transmission and data notification. A
summary of the measured latencies is found in Table 2. The net-
work RTT from the LAN to The Things Network router was mea-
sured using the tcptraceroute utility, as the router does not reply
to pings. An average network latency of 63.9 ms was measured to
us-west.thethings.network:1883.

Figures 3 and 4 show latency under the experimental scenarios.
These measurements were made by transmitting text data. With
both The Things Network and the blockchain-based system, mes-
sages are subscribed to, and the time between transmission and

notification are recorded. The measurements on The Things Net-
work showed a mean latency of 353 milliseconds. Measurements on
the Raspberry Pi 4B, and Raspberry Pi Zero Ws with 1 light serve
node and 2 light serve nodes showed a mean latency of 3949 ms,
19488 ms, and 18934 ms respectively.

Figure 3: Measured Data Latency: The Things Network

Figure 4: Measured Data Latency: RPi 4B Full Sync and RPi
Zero W Light Sync

69

CASCON’20, Nov. 10–13, 2020, Toronto, Canada Kale Yuzik and Dwight Makaroff

Latency measurements made on the Raspberry Pi 4B in full
sync mode showed a larger standard deviation (529.2) than the
measurements from The Things Network (13.8), however, it showed
no outlier values. This is likely due to the lack of a dependence
on an external system to process the request and transport over
the public internet. The Raspberry Pi Zero Ws also resulted in
many larger outliers in both tests. The large variance in latency
observed on the Raspberry Pi Zero Ws may be an issue for some
IoT applications. Cloud-based services such as The Things Network
offer considerably lower latencies than the blockchain-based system
in all configurations examined.

From the latency measurements, it is clear that a blockchain-
based system introduces a considerable latency. This latency is
exacerbated when using Go Ethereum’s light sync mode to reduce
processor and memory requirements. Since IoT tends to run on
abundant, inexpensive hardware, it is clear that more IoT devices
would be likely to run an Ethereum client in a light sync mode over
full sync mode. This would restrict these devices to applications
where latencies of approximately 19.5 seconds is permissible. This
cannot rival cloud-based services, such as The Things Network,
for fast delivery of data. Even on devices with sufficient resources
to use full sync mode, the latencies will clearly exceed those of
cloud-based services.

The second latency test conducted on the Raspberry Pi Zero
Ws had an additional Raspberry Pi 4B on the test network (not
shown on Figure 2). Both Raspberry Pi 4Bs were run in full sync
mode and served the Raspberry Pi Zero Ws in light sync mode.
The measurements of this experiment are shown in the right-most
boxplot of Figure 4. The additional light serve node did not reduce
the average latency, but did reduce the variance in latency. Both of
these scenarios did, however, have a substantial number of outliers.

To assess the demand on the compute resources of the devices,
the load averages were sampled over time. Data from the first 16
minutes of each experiment was discarded to eliminate any startup
effects. The Raspberry Pi Zero W load averages were sampled at
intervals reflecting the observed latency whilst the other devices
were sampled every 6 seconds.

While running the Raspberry Pi 4B in full sync mode (Table 3)
and serving light clients, the load averages were well below the
systems total load capacity of 4.0. The demand on this client will
increase as additional light clients would be added to the blockchain.
It has the capacity to service more light sync clients, but how many
cannot be concluded without larger scale evaluation.

The Raspberry Pi 2B+ operating as a LoRa gateway/proxy was
run as a a full sync node with signing autority for the Proof-of-
Authority consesus scheme. The load averages measured on this
device during operation are found in Table 4. This device was
configured to not serve light sync clients at any point. Despite the
fact that this device has less compute power than the Raspberry
Pi 4B, it experienced less load on its processor due to the lack of
serving light clients.

In full sync mode, the Raspberry Pi Zero Ws (Table 5) were
observed to have load averages well above their capacity of 1.0.
On a single core device this indicates the system is overloaded.
The Raspberry Pi Zero W is therefore not capable of running Go
Ethereum as a full sync node. When tested as a light sync node
(Table 6), on average it did not overload the processors, although

the maximum load averages do indicate periods in which they were
overloaded.

Go Ethereum exhibited periodic bursts of heavier processor uti-
lization (Figure 5) on the Raspberry Pi 4B in full sync mode (Table 3).
This behaviour was not present on the Raspberry Pi Zero W in full
sync mode, which may be attributed to the system being overloaded.

Figure 5: Load Average: RPi 4B Full Sync Node, Light Serve

6 DISCUSSION
For IoT devices which provide real-time data, such as a security
camera, this system may not offer data storage, but other services
can be rendered by the blockchain. These services include a cryp-
tographic key management system, a registry of the devices IP
address, and a remote device administration platform.

The use of a private network allowed for greater control of
blockchain parameters. These included a degree of control over
latency, avoiding need for transaction fees, and the use of Proof-of-
Authority consensus over Proof-of-Work. This also allowed for the
inclusion of some IoT devices in the security of the blockchain itself
through the voting process used in Proof-of-Authority. This could be
further leveraged in scaled up networks through the use of multiple
segregated blockchains to limit blockchain growth rate, reduce the
network throughput on each device, and increase security through
isolation.

Although the Raspberry Pi Zero Ws did manage to run the
blockchain IoT security framework as a light client, it used the
vast majority of their resources and may border on being imprac-
tical. Due to the broad range of hardware used in IoT systems, an
all-encompassing system will require more modes of operation to
best tailor the system to the needs of each device. Future designs
for a blockchain-based IoT security framework could account for
such devices (IPv4/IPv6 connected, but limited compute or memory
resources), by extending the concept of the proxy used for LoRa
devices to devices over IP networks. This would not only serve to
shift a considerable amount of the demands on the processor and
memory to a more capable device, but also reduce the latency closer
to those measured on the Raspberry Pi 4B.

70

Blockchain-based Security for Heterogeneous IoT Systems CASCON’20, Nov. 10–13, 2020, Toronto, Canada

Table 2: Measured Data Latencies (ms)

System N Min Max Mean Std. Deviation
The Things Network 310 341 507 353 14
RPi 4B Full Sync 249 3,441 4,586 3,949 529
RPi Zero W Light Sync 104 16,706 24,364 19,488 1,689

Table 3: RPi 4B Load Avg as Full Sync, Light Serve

1 minutes 5 minutes 15 minutes
Mean 0.22 0.21 0.17
Minimum 0.00 0.00 0.00
Maximum 1.89 0.91 0.45

N = 1950 (after discarding)

Table 4: RPi 2B+ Load Avg as Full Sync, LoRa Gateway

1 minutes 5 minutes 15 minutes
Mean 0.10 0.10 0.13
Minimum 0.00 0.06 0.08
Maximum 0.34 0.18 0.18

N = 193 (after discarding)

Table 5: RPi Zero W x2 Load Avg as Full Sync

1 minutes 5 minutes 15 minutes
Mean 1.44 1.50 1.48
Minimum 0.43 1.00 1.04
Maximum 3.16 2.22 1.87

N = 2881 (after discarding)

Table 6: RPi Zero W x2 Load Avg as Light Sync

1 minutes 5 minutes 15 minutes
Mean 0.47 0.48 0.46
Minimum 0.00 0.21 0.21
Maximum 1.41 0.92 0.72

N = 1462 (after discarding)

Data in this system remains encrypted end-to-end. While the
data on the blockchain itself must be considered publicly visible,
data exists on the blockchain in encrypted form. The public keys
of devices also exist on the blockchain, and it is possible to pub-
licly determine the public key of the recipient device. Since the
blockchain is also an immutable ledger, this history will persist on
the blockchain. Although the cryptographic systems used are not
known to be insecure, it should be noted that if any of these ciphers
are broken, the history on the ledger will be exposed.

The integrity of data is maintained in two ways. Data that is
already on the blockchain remains immutable by virtue of the

design of the blockchain system itself. Secondly, data being sent to
the blockchain is validated for integrity either by the LoRa gateway
(which is trusted by the smart contract), or if the device is running
its own Go Ethereum client, the blockchain network will validate
the signature of the transaction sent to the contract. While the
gateways are not insecure, gaining control of a single gateway
would permit an attacker to exploit the smart contracts implicit
trust of the gateway. This would allow the attacker to submit data
to the blockchain on behalf of any LoRa device, but not devices
which do not use this proxy system. This level of exposure is due
to the design choice to allow any LoRa device to operate with any
LoRa gateway on the system to allow for geographic mobility of
devices. The alternative of this being each LoRa device may only
communicate with a specific gateway rendering nodes less mobile.

The availability of data that already exists on the blockchain is
extremely considerable, due to the distributed nature of blockchain
technologies. This makes the existing data almost impervious to
Denial of Service attacks. Individual nodes may be targeted and
temporarily disabled, but the greater system itself would continue
to function and previously received data from the victim device
would continue to be available.

The proposed system is vulnerable to jamming attacks by virtue
of the LoRa LPWAN technology itself. As with any wireless commu-
nications technology, a transmission can be disabled or interrupted
by overwheming the channel(s) with noise. LoRa is particulairly
succeptible to this due to its low transmission power and use of
license-free frequencies. While nothing can be done to eliminate
this vulnerability, monitoring of the most recent data timestamps
could provide an indication of potential communications issues.

Since the only devices that presently do not run their own
Ethereum client are devices communicating exclusively over LoRa,
these devices are the only class of device which cannot be implicitly
trusted. To address this, the use of digital signatures was used to
authenticate the sender. This addresses the potential issue of data
forgery, but the issue of replay attacks remains. While an attacker
cannot view the message due to it being encrypted, nor can they
alter the message due to the signatures, replaying the exact same
message will appear to LoRa gateways to be authentic. This can
be addressed by introducing a mechanism at the gateway which
examines a message identifier which must be incremented by the
sender.

While the system supports the changing of both encryption
and signature keys, issues exist regarding the communication of
new keys between LoRa-only devices and gateways. Since LoRa
is an unreliable communication network, this creates potential
inefficiencies/overhead when synchronizing keys between LoRa-
only devices and gateways. Should either class of device change one
of its keys, it would then need to inform the devices it communicates

71

CASCON’20, Nov. 10–13, 2020, Toronto, Canada Kale Yuzik and Dwight Makaroff

with over LoRa of its new public key. Should this message not be
properly received, this would lead to the public keys being out of
sync and breaking communications between the pair of devices. A
reliable protocol for the exchange of keys is therefore required for
this system to be practical in real-world applications, as changing
of cryptographic keys is paramount to the ongoing confidentiality
and integrity of data.

7 CONCLUSIONS AND FUTUREWORK
The Internet of Things is a rapidly growing industry that can solve
many novel problems and improve the efficiency of others, but it
also exposes much risk if it is not properly secured. The dangers of
vulnerable IoT devices is not merely hypothetical; security flaws
have already been found which endangered lives [28]. Blockchain
technology can provide the backbone required to create a strong,
unified security framework for a network of heterogeneous IoT
systems. Utilizing a blockchain-based solution introduced longer
latencies, but did successfully consolidate a broad range of hard-
ware into one security framework. Through additional modes of
operation, such as a proxy over IP, the maximum latencies of the
system could be reduced. In addition, our system delivers a superior
resistance to the growing threat of Denial of Service attacks, by
virtue of the distributed nature of blockchain systems. The sys-
tem presented caters well to wireless sensor networks and other
delay tolerant applications, and with further development can be
significantly improved.

Our system as described and implemented is useful for a subset
of IoT applications and could offer other functionality in a Denial
of Service resistant manner. As part of future work, the system will
be extended to more classes of devices to provide a comprehensive
framework. Ways of improving the usage of system resources will
be further explored and compared to lower the threshold of capa-
bilities that are required of devices in order to participate in the
Proof-of-Authority voting process. The use of distributed storage
systems, such as SWARM and IPFS will be explored for the use of
data storage, opposed to the smart contract state. Metrics will be
gathered with these technologies and compared to determine the
most feasible solution for resource constrained systems.

Many additional mechanisms could be added to further harden
the security of this system and expand its utility. Security can be
improved by addressing the issues of LoRa replay attacks and chang-
ing cryptographic keys described in Section 6. Additional features
could include a registry of IP addresses, and a secure remote device
administration platform. It will also be necessary to evaluate these
systems at scale and examine the tails of response time distributions
in more detail, because of the need for IoT security to be deployed
in real-time.

REFERENCES
[1] D. R. Aleko and S. Djahel. 2019. An IoT Enabled Traffic Light Controllers Synchro-

nization Method for Road Traffic Congestion Mitigation. In 2019 International
Smart Cities Conference (ISC2). IEEE, Casablanca, Morocco, 709–715.

[2] Pelin Angin, Melih Burak Mert, Okan Mete, Azer Ramazanli, Kaan Sarica, and
Bora Gungoren. 2018. A blockchain-based decentralized security architecture for
IoT. In International Conference on Internet of Things. Springer, Seattle, WA, 3–18.

[3] A.M. Antonopoulos. 2014. Mastering Bitcoin: Unlocking Digital Cryptocurrencies.
O’Reilly Media, Sebastapol, CA.

[4] A. Augustin, J. Yi, T. Clausen, and W.Wm. Townsley. 2016. A Study of LoRa: Long
Range & Low Power Networks for the Internet of Things. Sensors 16, 9 (2016),

1–18. Article 1466.
[5] J. P. Aumasson, S. Fischer, S. Khazaei, W. Meier, and C. Rechberger. 2008. New

features of Latin dances: Analysis of Salsa, ChaCha, and Rumba. In Fast Software
Encryption, Vol. 5086 LNCS. Springer, Lausanne, Switzerland, 470–488.

[6] Daniel J. Bernstein. 2004. Cache-timing attacks on AES.
[7] Daniel J. Bernstein. 2008. ChaCha, a variant of Salsa20. https://cr.yp.to/chacha/

chacha-20080128.pdf
[8] Daniel J. Bernstein. 2008. Extending the Salsa20 nonce. https://cr.yp.to/snuffle/

xsalsa-20110204.pdf
[9] Daniel J. Bernstein. 2008. The Salsa20 Family of Stream Ciphers. Springer Berlin

Heidelberg, Berlin, Heidelberg, 84–97.
[10] K. Biswas and V. Muthukkumarasamy. 2016. Securing Smart Cities Using

Blockchain Technology. In 2016 18th International Conference on High Performance
Computing and Communications; 14th International Conference on Smart City;
2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS).
IEEE, Sydney, Australia, 1392–1393.

[11] Vitalik Buterin. 2014. A next-generation smart contract and decentralized appli-
cation platform. (2014), 36 pages. White Paper.

[12] Cisco Systems Inc. 2020. Cisco Annual Internet Report (2018-2023) White Pa-
per. https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/
annual-internet-report/white-paper-c11-741490.html

[13] Stefano De Angelis, Leonardo Aniello, Roberto Baldoni, Federico Lombardi,
Andrea Margheri, and Vladimiro Sassone. 2018. PBFT vs Proof-of-Authority:
Applying the CAP Theorem to Permissioned Blockchain. In Italian Conference
on Cyber Security. CINI, Milan, Italy, 1–11.

[14] A. Dorri, S. S. Kanhere, and R. Jurdak. 2017. Towards an Optimized BlockChain
for IoT. In 2nd International Conference on Internet-of-Things Design and Imple-
mentation (IoTDI). IEEE/ACM, Pittsburgh, PA, 173–178.

[15] Cynthia Dwork and Moni Naor. 1993. Pricing via Processing or Combatting
Junk Mail. In Advances in Cryptology — CRYPTO’ 92. Springer Berlin Heidelberg,
Berlin, Heidelberg, 139–147.

[16] Seth Gilbert and Nancy Lynch. 2002. Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services. SIGACT News 33, 2 (June
2002), 51–59.

[17] J. Hoffstein, J. Pipher, and J.H. Silverman. 2014. An Introduction to Mathematical
Cryptography. Springer New York, New York, NY.

[18] Sunghyuck Hong. 2017. Secure and light IoT protocol (SLIP) for anti-hacking.
Journal of Computer Virology and Hacking Techniques 13, 4 (01 Nov. 2017), 241–
247.

[19] Seyoung Huh, Sangrae Cho, and Soohyung Kim. 2017. Managing IoT devices
using blockchain platform. In 2017 19th International Conference on Advanced
Communication Technology (ICACT). IEEE, Phoenix Park, PyeongChang, South
Korea, 464–467.

[20] K. Lauter. 2004. The advantages of elliptic curve cryptography for wireless
security. IEEE Wireless Communications 11, 1 (2004), 62–67.

[21] Jun Lin, Zhiqi Shen, and Chunyan Miao. 2017. Using Blockchain Technology to
Build Trust in Sharing LoRaWAN IoT. In Proceedings of the 2nd International Con-
ference on Crowd Science and Engineering. Association for Computing Machinery,
Beijing, China, 38–43.

[22] Kerry Maletsky. 2015. RSA vs ECC comparison for embedded systems. (2015),
4 pages.

[23] Daniel Minoli and Benedict Occhiogrosso. 2018. Blockchain mechanisms for IoT
security. Internet of Things 1-2 (2018), 1–13.

[24] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System.
[25] National Institute of Standards and Technology. 2001. FIPS PUB 197: Announcing

the ADVANCED ENCRYPTION STANDARD (AES). National Institute of Standards
and Technology, Gaithersburg, MD.

[26] K. R. Özyilmaz and A. Yurdakul. 2019. Designing a Blockchain-Based IoT With
Ethereum, Swarm, and LoRa: The Software Solution to Create High Availability
With Minimal Security Risks. IEEE Consumer Electronics Magazine 8, 2 (March
2019), 28–34.

[27] Phillip Sparks. 2017. White Paper: The route to a trillion de-
vices. https://community.arm.com/iot/b/internet-of-things/posts/
white-paper-the-route-to-a-trillion-devices

[28] US Food and Drug Administration. 2017. Cybersecurity vulnerabilities identified
in St. Jude Medical’s implantable cardiac devices and Merlin@ home transmit-
ter: FDA safety communication. https://www.fda.gov/MedicalDevices/Safety/
AlertsandNotices/ucm535843.htm

[29] Vivek Vishnumurthy, Sangeeth Chandrakumar, and Emin Gun Sirer. 2003. Karma:
A secure economic framework for peer-to-peer resource sharing. InWorkshop on
Economics of Peer-to-peer Systems. Berkeley School of Information, Berkeley, CA,
1–6.

[30] S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han, and F. Wang. 2019. Blockchain-
Enabled Smart Contracts: Architecture, Applications, and Future Trends. IEEE
Transactions on Systems, Man, and Cybernetics: Systems 49, 11 (2019), 2266–2277.

[31] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction
ledger. (Oct. 2014), 32 pages. https://ethereum.github.io/yellowpaper/paper.pdf.

72

https://cr.yp.to/chacha/chacha-20080128.pdf
https://cr.yp.to/chacha/chacha-20080128.pdf
https://cr.yp.to/snuffle/xsalsa-20110204.pdf
https://cr.yp.to/snuffle/xsalsa-20110204.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://community.arm.com/iot/b/internet-of-things/posts/white-paper-the-route-to-a-trillion-devices
https://community.arm.com/iot/b/internet-of-things/posts/white-paper-the-route-to-a-trillion-devices
https://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm535843.htm
https://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm535843.htm

A Survey of Security Vulnerabilities in Ethereum Smart
Contracts

Noama Fatima Samreen, Manar H. Alalfi
noama.samreen,manar.alalfi@ryerson.ca

Department of Computer Science, Ryerson University
Toronto, ON, Canada

ABSTRACT
Ethereum Smart Contracts based on Blockchain Technology (BT)
enables monetary transactions among peers on a blockchain net-
work independent of a central authorizing agency. Ethereum Smart
Contracts are programs that are deployed as decentralized appli-
cations, having the building blocks of the blockchain consensus
protocol. This enables consumers to make agreements in a trans-
parent and conflict-free environment. However, there exists some
security vulnerabilities within these smart contracts that are a po-
tential threat to the applications and their consumers and have
shown in the past to cause huge financial losses. In this study, we
review the existing literature and broadly classify the BT applica-
tions. As Ethereum smart contracts find their application mostly
in e-commerce applications, we believe these are more commonly
vulnerable to attacks. In these smart contracts, we mainly focus
on identifying vulnerabilities that programmers and users of smart
contracts must avoid. This paper aims at explaining eight vulnera-
bilities that are specific to the application level of BT by analyzing
the past exploitation case scenarios of these security vulnerabilities.
We also review some of the available tools and applications that
detect these vulnerabilities in terms of their approach and effec-
tiveness. We also investigated the availability of detection tools
for identifying these security vulnerabilities and lack thereof to
identify some of them.

CCS CONCEPTS
• Security and privacy → Software and application security;
Cryptography; Vulnerability management.

KEYWORDS
blockchain, ethereum, smart contracts

1 INTRODUCTION
Attributing to the wide range applicability of Blockchain Techhnol-
ogy(BT), it has been finding popularity in many domains. Bitcoin
was the first version of cryptocurrency applied using BT [6] and has
since been used in many other applications such as e-commerce,
trade and commerce, production and manufacturing, banking, and
gaming. BT uses a peer-to-peer (peers are known as miners in
BT) framework which is a more decentralized approach to storing

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CASCON’20, November 10 - 13 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

transactions and data registers. As there is no single point of failure
or a third-party centralized control of transactions, BT has been
standing out from cryptocurrency-based other technologies. It uses
a chain of blocks in which each block is locked cryptographically
using the hash of the previous block it is linked to, which creates
an immutable database of all transactions stored as a digital ledger,
and it cannot be changed without affecting all the blocks linked
together in the chain [14]. However, recent research to identify the
existence of security vulnerabilities in Ethereum Smart Contracts
have shown that many applications have been exposed to attacks
because of vulnerabilities found in application level of Ethereum
Smart Contracts [18].

Ethereum Smart Contracts are typically written in Solidity Lan-
guage and this paper presents a classification for vulnerabilities in
these Solidity-based Ethereum Smart Contracts. Our methodology
can be characterized as targeting security from three perspectives:
vulnerabilities, exploitation case studies, and preventive techniques.
For each vulnerability, we discuss, among other things, its research
statistics (i.e., detection tools available to identify the vulnerabil-
ity, analysis method most preferred by researchers to identify the
vulnerability). For each exploitation case, we discuss, among other
things, the vulnerability exploited, tactic, and financial losses in-
curred in terms of ether. For each preventive technique, we discuss
its mechanism and the vulnerability it aims to protect from exploita-
tion. We aim to provide future research directions by providing
statistics of research done on each vulnerability to address the
severity of a vulnerability and the requirement of further work on
open problems.

We identify eight application level security vulnerabilities and
classify them according to the NIST’s Bugs Framework [11]. To
do so, we collected information from the NIST’s website to match
the descriptions of existing bug classes with the Ethereum Smart
Contracts security vulnerabilities discussed. As highlighted in Ta-
ble[1], most of these vulnerabilities are classified as Not Available
(NA) concerning NIST-BF classification. This is because most of
these vulnerabilities are specific to developmental methodology of
a Solidity based Ethereum Smart Contract and BT and do not match
an exact Bugs Framework (BF) category outlined by NIST. This clas-
sification concerning NIST categorization of software bugs will aim
at a better understanding of the nature of each of the Ethereum
Smart Contract’s application level security vulnerabilities.

2 BACKGROUND
2.1 Blockchain Technology (BT)
Based on the industry they target, BT applications can be broadly
classified into three categories: Public Blockchain 1.0, Public Blockchain
2.0 and Private Blockchain 3.0.

1

73

CASCON’20, November 10 - 13 2020, Toronto, Canada Noama Fatima Samreen, Manar H. Alalfi

• Public Blockchain 1.0 is used predominantly in the finance
industry for digital payments and currency transfers.

• Public Blockchain 2.0 is used in the e-commerce industry
and it includes Ethereum Smart Contracts, such applica-
tions process financial contracts intelligently and provide a
foundation for digital asset ownership. As Ethereum smart
contracts find their application mostly in e-commerce appli-
cations, we believe these are more commonly vulnerable to
attacks caused by simple coding errors.
In this paper, we mainly focus on identifying vulnerabilities
in these smart contracts that programmers and users of smart
contracts must avoid. Case studies outline that Ethereum
smart contracts are vulnerable to simple coding errors such
as re-entrance (recursive calling of functions: A calling B
while B is calling A), wrong constructor name, typecasts,
unintended function exposure, stack overflow, etc. as this
generation of BT is public and distributed. These coding
errors can aid an attacker in manipulating transactions to
successfully launch an intrusion attack by techniques such as
publishing malicious contract on the BT network to receive
more transactions than it sends out thereby collecting Ether
(digital asset bearer or a token by which applications are
processed on an Ethereum network) many times over within
a single transaction, exploiting the visibility modifiers to
misuse function delegation etc.

• Private Blockchain 3.0 is used in the government, health,
science industries and are hence considered private.

2.2 NIST Bugs Framework
In this paper, we leverage the National Institute of Standards and
Technologies Bugs (NIST’S) Framework to provide another classifi-
cation of these vulnerabilities to provide a basis of comparison with
other common software bugs reported by NIST[11]. This categoriza-
tion by NIST is an effort to accurately describe a commonly occur-
ring software bug and it incorporates definitions and attributes of
each software bug class along with their causes and consequences.
This classification provides researchers and developers to match
vulnerabilities in new technologies to the previously researched
bugs and adopt appropriate preventive techniques.

2.3 Analysis Methodologies
Literature review of the selected Smart Contracts vulnerabilities
detection tools/frameworks for this paper shows that these tool-
s/frameworks adopted one of the following methods of smart con-
tract analysis,

2.3.1 Static Analysis.

(1) Symbolic Execution - The execution of code using symbols
rather than real values for the variables. This analysis results
in algebraic terms of operating these symbols and the con-
ditional statements in the program result in propositional
formulas that direct the flow of execution. The feasibility of
a path of flow is determining if the conjunction of formulas
on the path is satisfied.

(2) CFG (Control FlowGraph) Construction - The representation
of a program in a directed graph. An edge of this graph

represents the flow of execution with conditions mentioned
on the edge as a label.

(3) Pattern Recognition - The classification of a program’s basics
units or data depending on the prior knowledge or statistical
information gained from patterns.

(4) Rule-basedAnalysis - The checking/analyzing of code against
a rule-based specification of its behaviour. The rule-based
specification describes scenarios during execution and en-
forces constraints on the sequence of operations and data
inputs.

(5) De-compilation Analysis - The representation of Ethereum
Virtual Machine (EVM) bytecode with a higher abstraction
level to improve the parsing of the code and data flow analy-
sis.

2.3.2 Dynamic Analysis.

(1) Execution Trace at Run time - Tracing the sequence of in-
structions that are executed during a particular run of the
code

(2) Fuzzing Input Generation - Fuzzing is an automated analysis
method that tests program execution by providing structured
data as inputs to a computer program. The program under
analysis is then monitored for unexpected behaviour such
as unusual code path, or crashes.

3 RELATEDWORK
We conducted a literature review and we inferred that there is a lack
of a comprehensive study of these security vulnerabilities in Solidity
based Ethereum Smart Contracts. A survey of vulnerabilities by L.
Luu et al. [26] focuses only on the security vulnerabilities that exist
in the Ethereum Smart Contracts without providing a detailed study
of their exploitation cases or preventive techniques. Another study
by N. Atzei et al. [15] discusses security vulnerabilities and some
of their real world attack scenarios in general without providing a
mapping between the vulnerabilities and the attacks. Then there is
a survey of the current research available in the field of ethereum
smart contract by Alharby and Moorsel. [13] that characterizes
the surveys available depending on their nature of survey as the
surveys identifying codifying issues, security issues, privacy issues,
and performance issues. One of the most recent surveys in this area
is by Praitheeshan et al. [27] which lists 13 security vulnerabilities
(involving application level, BT level and EthereumVirtualMachine-
EVM level security vulnerabilities) in Ethereum Smart Contracts
but maps them to only four major attacks scenarios. Therefore, it
fails to give an example pattern or a real world exploitation case
scenario for each of the security vulnerability discussed.

On the other hand, there has been extensive development of au-
tomated tools in the industry to detect these vulnerabilities. These
developers utilize the research available in this area to produce
highly efficient state-of-the-art tools to detect these vulnerabilities.
Some of the research work in developing automated tools for detect-
ing these vulnerabilities focuses on detecting only a specific type
of vulnerability without analyzing the vulnerability in detail with
its exploitation cases and preventive techniques. [25],[4], [23] One
such recent tool is ETHPLOIT by Q. Zhang et al. [33] to automati-
cally detect vulnerabilities that have been exploited in Ethereum
smart contracts. This tool adopts light-weight techniques to answer

2

74

A Survey of Security Vulnerabilities in Ethereum Smart Contracts CASCON’20, November 10 - 13 2020, Toronto, Canada

the problems of previously developed tools. These problems con-
sisted of unsolvable constraints and Blockchain effects. It is claimed
by Q. Zhang et al. [33] that this tool achieves precise and efficient
smart contract analysis and successfully detects more exploits than
previous exploit generation tools.

However, a new research paper SMARTSHIELD by Y. Zhang et al.
[34] utilizes EVM bytecode analysis and provides an automatic cor-
rection mechanism to avoid vulnerable patterns in Ethereum smart
contracts. It does this rectification by extracting EVM bytecode level
semantic data to transform the vulnerable smart contracts into se-
cure ones. And then, there are also some surveys like the one by
Angelo and Salzer [17] that compare only the detection tools avail-
able in the market without actually discussing the characteristics
of the vulnerabilities these tools excel or fail at detecting.

One of the most recent surveys published in Feb. 2020 by Durieux
et al. covers three research questions regarding these automated
tools available in the market. This research work by Durieux et
al. questions the effectiveness of these tools in terms of precision
in detecting these vulnerabilities in Ethereum Smart Contracts.
Durieux et al. next articulates about the quantitative analysis of the
vulnerabilities present in the Ethereum blockchain main network.

Different from the existing surveys discussed above, our paper
aims to particularly analyse the vulnerability pattern, their real
world exploitation cases, their preventive techniques and the de-
tection methods adopted by currently available tools for analyzing
ethereum smart contracts. We highlight the need for a comprehen-
sive study on the security analysis methods of vulnerable smart
contracts on the Ethereum platform. Furthermore, this paper is dif-
ferent from the existing ethereum smart contracts surveys because
we investigate each security vulnerability in detail along with the
available detection tools to analyse the security vulnerability and
the methodology adopted by these detection tools to identify this
vulnerability in ethereum smart contracts.

4 VULNERABILITIES
This paper combines the identification and analysis of eight of the
application level security vulnerabilities along with their real-world
exploitation cases to better capture the vulnerabilities scenarios
in Solidity-based Ethereum Smart Contracts. Table[1] shows the
vulnerable contracts used in exploitation cases, their preventive
techniques respectively along with the matching NIST bug class
for each vulnerability.

4.1 Reentrancy
A reentrancy attack can drain a smart contract of its ether, can aid
an intrusion into the contract code. When an external call function
to another untrustworthy contract is made and an attacker gains
control of this untrustworthy contract, they can make a recursive
call back to the original function, unexpectedly repeating transac-
tions that would have otherwise not run, and eventually consume
all the gas.

Exploitation Case of Reentrancy Vulnerability - The DAO Attack. The
Decentralized Autonomous Organization (known as the DAO) was
initiated in May 2016 as a venture capital fund for the crypto and
decentralized space[14]. During the creation period of the DAO,
anyone could send Ether to a unique wallet address in exchange for

DAO tokens. Anyone with DAO tokens could vote on the pitch and
receive rewards in return if the projects turned a profit. However,
on June 17, 2016, a hacker was able to attack this Smart contract by
exploiting a vulnerability in the code that allowed him to transfer
funds from the DAO. As reported by M. Saad et al.[29] approxi-
mately, 3.6 million Ether was stolen, the equivalent of USD 70M
at the time. The reentrancy vulnerability exploitation in the DAO
attack(as shown in Listing 1) was accomplished in four steps,

• The Attacker initiates a transaction by calling withdraw
function of Victim;

• The Victim transfers the money and calls the fallback func-
tion of the Attacker;

• The fallback function recursively calls the withdraw function
again, i.e., Reentrancy;

• Within an iteration bound, extra ether will be transferred
multiple times to the Attacker.

1 contract Vic t im {
2 bool e t h e r T r a n s f e r r e d = f a l s e ;
3 //Attacker calls the withdraw() function to initiate

the attack
4 function withdraw () {
5 //Victim transfers ether which invokes the fallback

function of the attacker
6 i f (e t h e r T r a n s f e r r e d | |
7 !msg . sender . c a l l . value (1) ()) throw ;
8 e t h e r T r a n s f e r r e d = true ;
9 } }
10 contract At t a ck e r {
11 uint count = 0 ;
12 function () payable {
13 i f (++ count < 1 0) V i c t im (msg . sender) . withdraw () ;
14 } }

Listing 1: Simplified DAOAttack - Reentrancy Vulnerability

Preventive Techniques. Reentrancy vulnerability can be prevented
by ensuring that state changing logic is committed before ether is
sent out of the contract through an external call. It is also a good
coding practice to put any logic that performs external calls to
unknown addresses at the last operation in a program’s execution.
This is known as the checks-effects-interactions pattern. Another
technique is to use a mutex by adding a state variable which locks
the contract during code execution, thus preventing re-entrant
function calls.

4.2 Out-of-Gas exception
The primitive function send may cause an unexpected out-of-gas
exception when transferring ether among contracts. There is a
prefixed units of gas available to allow execution of a limited set
of bytecode instructions and the call function will end up in an
out-of-gas exception if not enough gas units are available.

Exploitation Case of Out-of-Gas Exception Vulnerability - King Of
Ether Throne Attack. The King of the Ether Throne contract ("KotET
contract") is a game, where players compete to become the king
by paying some ether as the claim price to the current king plus
some fees to the contract owner [14]. After the contract declares a
new King of the Ether Throne, the new claim price for the throne
goes up by 50%. When the KotET contract sent ether to the new
King aspirant, it inadvertently included 2300 gas with the payment.

3

75

CASCON’20, November 10 - 13 2020, Toronto, Canada Noama Fatima Samreen, Manar H. Alalfi

Table 1: Smart contract vulnerabilities, their preventive techniques and their NIST bug classification;NIST-BF - National In-
stitute of Standards and Technology- Bugs Framework; NA - Not Available, UCE - Unchecked Error, ARC - Arithmetic or
Conversion Fault

S.no. Contract Name Vulnerability Vulnerability Level NIST-BF Class Preventive Technique
1. The DAO Re-entrancy(recursive-calling

vulnerability: A calling B
calling A)

Security NA Placing external call logic as the
last piece of code in a program

2. King of the ether Out-of-Gas Exception Handling Functional NA use transfer() instead of send()
3. Governmental (Ponzi

Scheme)
Unpredictable state due to mis-
handled exceptions

Security/Functional NA Updating Solidity Language to
handle exceptions in a uniform
manner is required

4. Second Parity MultiSig
Wallet

Call-to-Unknown vulnerability Security UCE Making stateless libraries of vul-
nerable contracts to avoid exter-
nal state changing of the con-
tract

5. Reentrancy Honey Pot Typecast vulnerability Developmental NA Using new to create an instance
of referenced contract

6. Odd and Even Game Weak Field Modifiers vulnera-
bility

Developmental NA Using internal to protect infor-
mation leakage

7. Proof of Weak Hands
Coin (PoWHC)

Integer Underflow/Overflow
vulnerability

Arithmetic or Conver-
sion Fault

ARC Using mathematical libraries in-
stead of the standard math op-
erations (addition, subtraction
and multiplication)

8. HYIP DoS by external call vulnerabil-
ity

Unchecked Error Class UCE Asking recipient to pull funds
out rather than sender using
push to send out the funds.
Removing dependence of condi-
tional statements or iterational
statements on an external call.

As this was not enough gas to successfully process the payment
and declare a new king, the wallet contract failed. This failure
resulted in the ether being returned to the KotET contract. The
KotET continued processing, therebymaking the caller King despite
the compensation payment not having been sent to the previous
king (see listing 2).
1 contract KoEth {
2 address public king ;
3 uint public c l a imP r i z e = 1 0 0 ;
4 address owner ;
5 function KoEth () {
6 owner = msg . sender ; k ing = msg . sender ; }
7 function () payable {
8 i f (msg . value < c l a imP r i z e) throw ;
9 uint compensat ion = c a l c u l a t eCompen s a t i on () ;
10 //"send" fails if the fallback function of

reciever is expensive
11 k ing . send (compensat ion) ;
12 k ing = msg . sender ;
13 c l a imP r i z e = c a l c u l a t eNewP r i c e () ; }
14 }

Listing 2: Simplified Vulnerable King of Ether Attack - Out-
Of-Gas Exception Vulnerability

Preventive Technique. This vulnerability can be prevented by using
transfer() function instead of send() as the former will revert the
local transactions if the external transaction reverts. However, if
send() is required then the return value of this function needs to

be monitored. Another technique is to adopt a withdrawal pat-
tern, wherein, each user is required to call an isolated function
that manages ether transactions and does not affect the rest of the
contract execution. Therefore, making the transaction management
independent of the consequences of failed send() transactions.

4.3 Call to the unknown
When a function invocation or an ether transfer unexpectedly in-
vokes the fallback function of the callee/recipient. Some of the
primitives of Solidity language that causes this are:

• call used to invoke a function or transfer ether
• send, used to transfer ether from the running contract to
some other contract

• delegatecall, used to invoke a function or transfer ether in
the caller environment

• direct call (see listing 3)

1 contract A l i c e { function ping (uint) { returns (uint) ; } }
2 contract Bob { function pong (A l i c e c) { c . p ing (4 2) ; } }

Listing 3: Call to the unknown - Direct Call

If an invoked function’s signature does not match with any
existing function, then the call results in a call to recipient’s fallback
function.

Exploitation Case of Call-to-Unknown Vulnerability - Second Parity
MultiSig Wallet Attack. On July 19, 2017, a major attack, in terms of

4

76

A Survey of Security Vulnerabilities in Ethereum Smart Contracts CASCON’20, November 10 - 13 2020, Toronto, Canada

Ether stolen, on the Ethereum network took place. The attacker’s
account had drained 153,037 ETH from three high-profile multi-
signature contracts used to store funds from past token sales [5].
The vulnerable MultiSig wallet was divided into two contracts(as
shown in Listing 4) to reduce the size of each wallet and save gas:

• A library contract called “WalletLibrary”,
• An actual “Wallet” contract

To begin with, the vulnerable contract had a simple constructor
that delegates the initialization of the contract’s state toWalletLi-
brary, followed by a withdraw() function which also delegates its
execution to WalletLibrary. Using these two functions, the attacker
initiated two transactions to each of the vulnerable contracts: the
first to obtain exclusive ownership of the MultiSig, and the second
to transfer all of its funds to itself. To obtain the ownership of the
contract, the attacker needs to executeWallet.initWallet(attacker).
This triggers the Wallet’s fallback function. In the Wallet’s fallback
function then initiates the delegatecall in the WalletLibrary. When
WalletLibrary receives the call, it finds that it’s initWallet function
matches the function selector and runs initWallet(attacker). Thereby
making the attacker the owner of the wallet and allowing him to
be able to withdraw funds.
1 contract Wa l l e t L i b r a r y {
2 address owner ;
3 function i n i tW a l l e t (address _owner) {
4 owner = _owner ;
5 function changeOwner (address _new_owner) external {
6 i f (msg . sender == owner) {
7 owner = _new_owner ; } }
8 function () payable { // receive money}
9 function withdraw (uint amount) external returns (

bool s u c c e s s) {
10 i f (msg . sender == owner) {
11 return owner . send (amount) ; }
12 e l se {
13 return fa l s e ; } } }

Listing 4: Simplified Vulnerable MultiSig Wallet [5]

Preventive Technique. Solidity has provision for implementing li-
brary contracts by using the keyword library (see [9]). These library
contracts are stateless and non-self-destructive. Forcing libraries to
be stateless mitigates attacks whereby attackers modify the state
of the library directly to affect the contracts that depend on the
library’s code. Therefore, when using call, DelegateCall, the call-
to-the-unknown attack that may change the state of the victim
contract can be prevented by building stateless libraries.

4.4 Typecasts
The fact that the Solidity compiler can detect some type errors
may cause the programmers to believe that it also checks for the
address of the contract being called and the interface declared by
the caller function matches callee’s actual interface. The execution
of a contract in the presence of such type mismatch errors will not
throw exceptions at run-time and the caller is unaware of the error
resulting in three different cases at run-time:

• Incorrect contract address of callee function, the call returns
without executing any code,

• Contact address of callee function matches with any other
function’s signature, then that function is executed

• Contact address of callee function does not match with any
function’s signature, then its fallback is executed.

Exploitation Case of Typecasts Vulnerability - Reentrancy honey-
Pot Attack. Honey pot contracts are deployed on the Ethereum
main network to capture Ethereum hackers who try to exploit the
contracts. A small scale attack using the typecasts vulnerability was
successfully launched on a honey pot developed to capture hackers
trying to exploit the reentrancy vulnerabilities in smart contracts
(see listing 5) In listing 5, this vulnerability can be exploited by
replacing an expected contract address with a malicious address in
the constructor.
1 contract Bank_Contrac t {
2 mapping (address => uint) public b a l a n c e s ;
3 uint public MinDepos i t = 1 ;
4 function Bank_Contrac t (address _sende r) {
5 //update malicious address here
6 }
7 function s endDepos i t () public payable {
8 i f (msg . value >= MinDepos i t) {
9 b a l a n c e s [msg . sender] += msg . value ;
10 } }
11 function withdraw (uint _am) {
12 i f (_am <= ba l a n c e s [msg . sender]) {
13 i f (msg . sender . c a l l . value (_am) ()) {
14 b a l a n c e s [msg . sender] −= _am ; } } }
15 function () public payable { } }

Listing 5: Reentrancy Honey Pot Contract - Typecasts
vulnerability

Preventive Technique. To prevent typecasting to malicious contract,
the new keyword can be used. This way an instance of the refer-
enced contract cannot be changed without modifying the contract
as this is created at deployment time. In listing 6, the constructor
could be written like:
1 constructor () { r e f e r e n c eCon t r a c t = new r e f e r e n c e () ; }

Listing 6: Using new to create an instance of a contract

Another technique is to hard code any external contract addresses
in the contract to avoid malicious contracts getting referenced.

4.5 Mishandled Exceptions
There are many situations when an exception can be raised in
Solidity but the way these exceptions are handled is not always
the same. The exception handling is based on the interaction be-
tween contracts. This makes the contracts vulnerable to attacks
because programmers will be unaware of any ether that is lost if
these exceptions are not handled properly and the transactions are
reverted.
1 contract A l i c e {
2 function ping (uint) {
3 // this function throws an exception
4 returns (uint) ; } }
5 contract Bob {
6 uint x =0 ;
7 function pong (A l i c e c) { x =1 ; c . p ing (4 2) ; x = 2 ; } }

Listing 7: function ping of contract Alice throws an
exception

5

77

CASCON’20, November 10 - 13 2020, Toronto, Canada Noama Fatima Samreen, Manar H. Alalfi

In Listing 7, the value of variable x after the execution of contract
Bob varies depending on the method of the function call. If the
ping function of contract Alice is called using a direct call, then the
value of x will be 0. Whereas, if the same function is called using
the in-built function call of Solidity, then the value of x will be 2.
Moreover, in case of exceptions, if no bound is specified then all
the available gas is lost.

Exploitation Case of Mishandled Exceptions Vulnerability - Gov-
ernmental scheme Attack. (as shown in Listing 8) In this attack, a
contract that implements a flawed Ponzi scheme is targeted [14].
This attack is executed by exploiting the mishandled exceptions
vulnerability in smart contracts. This scheme requires a participant
to send a certain amount of ether to the scheme contract. If no one
joins the scheme for 12 hours, the owner of the contract keeps his
fee and transfers the remaining ether to the last participant. To join
the scheme, a player must invest at least half of the claim prize.
This claim prize increases upon each new investment. Anyone can
invoke resetInvestment, which transfers the claim prize (half of the
invested total) to the last participant and sends the remaining ether
to the contract owner. There is a key assumption in this contract
that players are either users or contracts with empty fallback, and
so will not cause an out-of-gas exception during send (as shown in
Listing[8]
1 contract Governmental {
2 address public owner ;
3 address public l a s t I n v e s t o r ;
4 uint public c l a imP r i z e = 1 ;
5 function Governmental () {
6 owner = msg . sender ;
7 i f (msg . value < 1) throw ; }
8 function i n v e s t () {
9 i f (msg . value < c l a imP r i z e / 2) throw ;
10 l a s t I n v e s t o r = msg . sender ;
11 c l a imP r i z e += msg . value / 2 ; }
12 function () r e s e t I n v e s tmen t {
13 l a s t I n v e s t o r . send (c l a imP r i z e) ;
14 //contract sends the prize money to the winner
15 owner . send (th i s . balance − 1) ;
16 // and sends the remaining ether to the owner
17 l a s t I n v e s t o r = 0 ;
18 c l a imP r i z e = 1 ; }
19 }

Listing 8: Simplified Governmental Attack - Mishandled
Exceptions Vulnerability

Preventive Technique. One technique to avoid this vulnerability
would be to use one method of external call throughout. However,
this is not an ideal preventive technique as different variations of an
external call can be a necessity. Therefore, this vulnerability requires
an update on the Solidity Language to make the consequences of a
thrown exception uniform.

4.6 Weak Field Modifiers
Fields in smart contracts can be labelled as Public or Private. How-
ever, these attributes are not enough to protect a field’s value. This
is because the default access modifier of afield in Solidity is public.
Whenever a field’s value is changed, this change is published on
the BT chain and there is a chance that an attacker would infer the
changed value through previous hashes and new transaction hash.

1 contract OddsAndEvens {
2 s t ruc t P l a y e r { address addr ; uint number ; }
3 P l a y e r [2] pr ivate p l a y e r s ;
4 uint t o t = 0 ;
5 address public owner ;
6 function OddsAndEvens () {
7 owner = msg . sender ; }
8 function p l ay (uint number) {
9 i f (msg . value != 1) throw ;
10 p l a y e r [t o t] = P l a y e r (msg . sender , number) ;
11 t o t ++ ;
12 i f (t o t == 2) winner () ; }
13 function winner () pr ivate {
14 uint n = p l a y e r s [0] . number + p l a y e r s [1] . number ;
15 //contract sends 1.8 ether to the winner
16 p l a y e r s [n %2] . addr . send (1 . 8) ;
17 dele te p l a y e r s ;
18 t o t = 0 ; }
19 function g e t P r o f i t () {
20 //and sends remaining ether to the contract owner
21 owner . send (th i s . balance) ; }
22 }

Listing 9: SimplifiedMultiplayer Games Attack -Weak Field
Modifiers Vulnerability

Exploitation Case of Weak Field Modifier Vulnerability - Odd and
Even Game Attack. In this attack, a contract that implements a
simple “odds and evens” game between two players is exploited
[14]. An attacker impersonates the second player and when the
first player makes his bet, the attacker infers this by BT network
transactions. After inferring the first player’s bet value, the attacker
adjusts his bet accordingly that would guarantee his win. (as shown
in Listing [9])

Preventive Technique. To avoid this smart contract’s vulnerability,
use the internal modifier for functions instead of public.

4.7 Integer Underflow/Overflow Vulnerability
An Integer overflow/underflow occurs when an arithmetic opera-
tion is performed that requires a fixed size variable to store data
that falls outside the range of the variable’s data type. The EVM [7]
specifies data types with fixed-size for integers. Therefore, an inte-
ger variable can be represented by only a certain range of numbers.
This vulnerability may be exploited by attackers by misusing the
smart contract code and create unexpected logic flows.

Exploitation Case of Integer Underflow/Overflow Vulnerability - BEC-
Token Attack. On 22nd April 2018, there was an unusual token
transfer in an ERC20 Smart contract that prompted the contract
owners to analyse the related smart contract code. The analysis
resulted that the transfer was initiated as an “in-the-wild” attack
that exploited the arithmetic overflow vulnerability in the contract.

Preventive Technique. This vulnerability can be avoided by Using
mathematical libraries instead of the standard math operations
(addition, subtraction and multiplication).

4.8 DoS By An External Call Vulnerability
When the flow of control is transferred to an external contract, the
execution of the caller contract can fail accidentally or deliberately,

6

78

A Survey of Security Vulnerabilities in Ethereum Smart Contracts CASCON’20, November 10 - 13 2020, Toronto, Canada

which can cause a DoS state in the caller contract. The caller con-
tract can be in a DoS state when a transaction is reverted due to a
failure in an external call, or the callee contract deliberately causes
the transaction to be reverted to disrupt the execution of the caller
contract.

Exploitation case of DoS By An External Call - HYIP (High Yield In-
vestment Program). The contract HYIP is yet another Ponzi scheme.
This contract sends payments to lenders from funds collected via
new lenders each day. The function sendPayment() in Listing[10]
contains the DoS by an external call vulnerability. The attack pro-
ceeds as follows:

(1) The AttackerContract lends funds to the HYIP contract and
throws an exception in its fallback function.

(2) When function sendPayment() is called to pay the lenders,
the fallback function of all the lenders is invoked and and
the fall back function of this AttackerContract throws an
exception, causing a deliberate revert of the transaction and
subsequently, a DoS to contract HYIP.

1 contract HYIP {
2 Lenders [] pr ivate l e n d e r ;
3 function sendPayment () {
4 for (uint i = l e n d e r . length ; i > 0 ;) {
5 uint payment =(l e n d e r s [i] . amount ∗ / 1 0 0 0 ;
6 i f (! l e n d e r s [i] . addr . send (payment)) throw ;
7 } } }
8 contract At t a c k e rCon t r a c t {
9 bool pr ivate a t t a c k = true ;
10 function () payable {
11 i f (a t t a c k) throw ;
12 // callee fails the caller execution deliberately

}
13 } }

Listing 10: Contract HYIP - Exploited for DoS by an External
Call Vulnerability

Preventive Technique. This vulnerability exists because of inade-
quate exception handling around conditional and iteration state-
ments. Placing any external calls initiated by a callee contract into
a separate transaction can help reduce the damage caused by this
vulnerability. Isolating statements with the following pattern can
help avoid this vulnerability: • an if-statement with an external
function call in the condition and a throw or a revert in the body;
• a for- or an if-statement with an external function call in the
condition. Also, by asking the recipient to pull funds out rather
than sender using push to send out funds.

5 RESEARCH ANALYSIS AND INSIGHTS
There has been extensive research going on to identify, characterize
and prevent vulnerabilities in Ethereum Smart Contracts. For this
paper, we considered the following research studies,

• Luu et al.[4] developed the Oyente analyzer that performs
symbolic execution on contract functions and identifies vul-
nerabilities based on simple patterns. According to this frame-
work, the vulnerabilities are classified into the following
groups: transaction-ordering dependent, timestamp depen-
dence, re-entrance handling, and mishandled exceptions.

• SmartCheck [30] is a pattern-based analysis tool that uses
XPath to detect if any vulnerabilities pattern exists in a Smart
Contract. To do so, it transforms the Smart Contract into
XML representation.

• ReGuard [25] is a combined static and dynamic analysis tool
to detect reentrancy vulnerabilities in Smart-Contracts de-
veloped by Liu et al.[25]. This tool tests the Smart-Contracts
by initially transforming the Smart-Contract code into C++
and then generating fuzzing inputs to recreate Blockchain
transactions as possible attacks. Then, ReGuard performs
vulnerability detection through dynamic analysis.

• Contract Fuzzer [23] is a tool developed by Jiang et al. that
tests the Smart-Contracts for identifying vulnerabilities in
them by using the fuzzing technique. To detect the vulnera-
bilities this tool starts with an initial analysis of the interfaces
that the Smart-Contract exposes, it then randomly develops
fuzzing inputs for these interfaces and observes the execu-
tion logs of the application.

• Mythril [3] is a command-line tool in Python developed by
ConsenSys for analyzing smart contracts interactively. It
executes EVM bytecode symbolically and represents it in
the form of a CFG, with the nodes containing disassembled
code and the edges being labelled by path formulas.

• MAIAN [2] is a python based tool that uses Oyente [4] for
the detection of vulnerabilities that require multiple trans-
actions. It executes EVM bytecode symbolically and checks
for execution traces. To discard false positives, the contracts
are dynamically analyzed by deploying them on a private
blockchain and attacking them with the computed transac-
tions.

• Securify [32] uses EVM bytecode and security properties of
a smart contract as inputs. A Security property consists of
compliance and violation patterns. This tool uses the decom-
pilation analysis method and represents the code as Data Log
facts. This framework infers that if a pattern is detected, then
the code possesses the corresponding security vulnerability.

• Vandal [16] is a command-line tool written in Python which
disassembles and decompiles EVM bytecode into an inter-
mediate representation and constructs a CFG.

• Zeus [24] is a tool developed by IBM Research India. Similar
to Securify [32], this tool takes Solidity code and policies as
input. These policies are checks that specify if the code meets
a safety property expressed in the policy. Zeus converts
Solidity code into LLVM bitcode, which is then instrumented
with assertions corresponding to the policy.

• EthIR [12] is written in Python and analyzes only particular
versions of the Solidity compiler, and Go-Ethereum. This
framework transforms bytecode into an intermediate repre-
sentation compatible with a static analyzer built by the same
developers as of EthIR. This framework extends Oyente [4].
The CFG is represented as guarded rules and this rule-based
representation is then supplied as an input to the general
purpose static analyzer.

Figure[2] shows the statistics surrounding the research of in-
dividual vulnerabilities. It is evident from Figure[2] that the reen-
trancy vulnerability has been talked about the most and there has

7

79

CASCON’20, November 10 - 13 2020, Toronto, Canada Noama Fatima Samreen, Manar H. Alalfi

Table 2: Classification of Framework/Detection Tools Available for Vulnerabilities; ✗: None Available

(a
)C

la
ss
ifi
ca
ti
on

of
Fr
am

ew
or
k/
D
et
ec
ti
on

To
ol
s
A
va

il
ab

le
fo
r
V
ul
ne

ra
bi
li
ti
es

S.
no

.
V
ul
ne

ra
bi
li
ty

St
at
ic

A
na

ly
si
s

D
yn

am
ic

A
na

ly
si
s

R
ec
ti
fi
ca
ti
on

pr
ov

id
ed

at
Le

ve
l

Symbolic.Execution

CFGConstruction

PatternRecognition

Rule-BasedAnalysis

DecompilationAnalysis

ExecutionTraceatRuntime

FuzzingTransactions

SolidityLevel

BytecodeLevel

BlockchainLevel

1.
Re

-e
nt
ra
nc
y

O
ye
nt
e

[4
],

M
yt
hr
il

[3
],

Se
cu
rif
y

[3
2]
,

Sm
ar
tC
he
ck

[3
0]

O
ye
nt
e
[4
],
Co

n-
tr
ac
tF
uz
ze
r

[2
3]
,

Sm
ar
tC
he
ck

[3
0]
,

Sm
ar
tS
hi
el
d
[3
4]

Re
gu

ar
d

[2
5]
,

Se
cu
rif
y

[3
2]
,

Sm
ar
tC
he
ck

[3
0]

M
yt
hr
il
[3
],
Et
hI
R

[1
2]

Va
nd

al
[1
6]

Re
gu

ar
d

[2
5]
,

Sm
ar
tS
hi
el
d
[3
4]

Co
nt
ra
ct
Fu

zz
er

[2
3]
,E
th
pl
oi
t[
33
]

Sm
ar
tC
he
ck

[3
0]

Sm
ar
tS
hi
el
d

[3
4]

✗

2.
O
ut
-o
f-G

as
-F

ai
le
d

Se
nd

Ex
ce
pt
io
n

M
yt
hr
il[
3]

✗
✗

M
yt
hr
il[
3]

Va
nd

al
[1
6]

✗
✗

✗
✗

✗

3.
Un

pr
ed
ic
ta
bl
e
st
at
e

du
e
to

m
ish

an
dl
ed

ex
ce
pt
io
ns

Sm
ar
tC
he
ck

[3
0]
,

Se
cu
rif
y
[3
2]

Co
nt
ra
ct
Fu

zz
er

[2
3]
,S
m
ar
tC
he
ck

[3
0]

Se
cu
rif
y

[3
2]
,

Sm
ar
tC
he
ck

[3
0]

Et
hI
R[
12
]

✗
✗

Co
nt
ra
ct
Fu

zz
er

[2
3]

✗
✗

✗

4.
Ca

ll-
to
-U
nk

no
w
n

M
yt
hr
il[
3]
,

Sm
ar
tC
he
ck

[3
0]
,

Se
cu
rif
y
[3
2]

Sm
ar
tC
he
ck

[3
0]
,

Sm
ar
tS
hi
el
d
[3
4]

Se
cu
rif
y

[3
2]

,
Sm

ar
tC
he
ck

[3
0]

M
yt
hr
il
[3
]

✗
M
A
IA
N

[2
],

Sm
ar
tS
hi
el
d
[3
4]

Co
nt
ra
ct
Fu

zz
er

[2
3]
,E
th
pl
oi
t[
33
]

Sm
ar
tC
he
ck

[3
0]

Sm
ar
tS
hi
el
d

[3
4]

✗

5.
Ty

pe
ca
st

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

6.
W
ea
k

Fi
el
d

M
od

i-
fie

rs
Sm

ar
tC
he
ck

[3
0]

Sm
ar
tC
he
ck

[3
0]

Sm
ar
tC
he
ck

[3
0]

✗
✗

✗
Et
hp

lo
it
[3
3]

Sm
ar
tC
he
ck

[3
0]

✗
✗

7.
In
te
ge
r

Un
de
r-

flo
w
/O

ve
rF
lo
w

Ze
us

[2
4]
,

M
yt
hr
il
[3
]

Sm
ar
tS
hi
el
d
[3
4]

✗
M
yt
hr
il
[3
]

✗
Sm

ar
tS
hi
el
d
[3
4]

✗
Sm

ar
tC
he
ck

[3
0]

Sm
ar
tS
hi
el
d

[3
4]

✗

8.
D
oS

by
an

Ex
te
rn
al

Ca
ll

Sm
ar
tC
he
ck

[3
0]

Sm
ar
tC
he
ck

[3
0]
,

Sm
ar
tS
hi
el
d
[3
4]

Sm
ar
tC
he
ck

[3
0]

✗
✗

Sm
ar
tS
hi
el
d
[3
4]

Et
hp

lo
it
[3
3]

Sm
ar
tC
he
ck

[3
0]

Sm
ar
tS
hi
el
d

[3
4]

✗

(b
) U

sa
ge

of
Et
he

re
um

Sm
ar
tC

on
tr
ac
ts

Fo
rm

at
fo
r
A
na

ly
si
s
by

Fr
am

ew
or
ks

/D
et
ec
ti
on

To
ol
s

S.
no

.
Fr
am

ew
or
k/
D
et
ec
ti
on

To
ol

A
bs
tr
ac
tS

yn
ta
x
T
re
e

So
li
di
ty

C
o d

e
In
te
rm

ed
ia
te

R
ep

re
-

se
nt
at
io
n

of
So

li
di
ty

co
de

B
yt
ec
o d

e

1.
M
yt
hr
il

✗
✗

✗
✓

2.
Ze

us
✓

✗
✗

✗

3.
O
ye
nt
e

✓
✗

✗
✓

4.
Co

nt
ra
ct
Fu

zz
er

✓
✗

✗
✓

5.
Et
hI
R

✓
✗

✗
✓

6.
M
A
IA
N

✓
✗

✗
✗

7.
Sm

ar
tC
he
ck

✓
✓

✗
✓

8.
Re

gu
ar
d

✓
✗

✓
✗

9.
Se
cu
rif
y

✗
✓

✓
✓

10
.

Va
nd

al
✓

✗
✗

✓

11
.

Sm
ar
tS
hi
el
d

✗
✗

✓
✓

12
.

Et
hp

lo
it

✗
✓

✗
✗

8

80

A Survey of Security Vulnerabilities in Ethereum Smart Contracts CASCON’20, November 10 - 13 2020, Toronto, Canada

been almost no research related to typecasts vulnerability. However,
Figure[2] suggests that the most amount of Ether was lost due to
Parity Multisig Wallet Attack which was an exploitation of this
vulnerability that cost $150 Million worth of Ether, followed by the
DAO attack which was an exploitation of reentrancy vulnerability
that cost $70 Million worth of Ether. Literature review of the se-
lected detection tools/frameworks for this paper shows that these
tools/frameworks adopted one of the analysis methodologies men-
tioned in the background section of this paper to analyse Ethereum
Smart Contracts Figure [1] illustrates the adopted analysis method-
ology by various research frameworks and detection tools for each
vulnerability respectively.

The reentrancy vulnerability’s statistics illustrated in Figure[1]
show that most of the frameworks and detection tools Oyente [4],
Mythril [3], SmartCheck [30], Vandal [16], Securify [32], EthIR [12]
surveyed in this paper, adopted the static analysis method to detect
this vulnerability in smart contracts. Static analysis methods can
detect the existence of the pattern defined for this vulnerability,
however, defining the pattern of this vulnerability is also a chal-
lenge. The confirmation of the existence of this vulnerability can
be more accurately outlined by a successful reentrancy generat-
ing transaction from an external contract to the contract under
test. Only two of the analyzed research works, ContractFuzzer [23],
Reguard [25], utilized the combined static and dynamic analysis
method which is believed to be a better analysis methodology for
this vulnerability.

The out-of-gas due to failed send vulnerability’s statistics de-
picted in Figure[1] shows that only static analysis methods were
adopted by detection tools/frameworks to detect this vulnerability
[16], [3].

Figure[1] shows that the vulnerability caused by mishandled
exceptions where the state of a smart contract becomes unpre-
dictable was found to be identified mostly by using static analysis
SmartCheck [30], EthIR [12], Securify [32]. However, Contract-
Fuzzer [23] also successfully detects this vulnerability using the
fuzzing technique to generate multiple transaction scenarios. The
Call-to-Unknown vulnerability was found to be detected by us-
ing combined static and dynamic analysis approach by two of the
detection tools surveyed [23], [2]. (See Figure[1]) The weak field
modifiers vulnerability was addressed by only one vulnerability
detection tool [30] (See Figure[1]. The vulnerability caused due
to unchecked math or more specifically Integer underflow/over-
flow ignorance was detected by two of the detection tools [24], [3].
Whereas, none of the detection tools had an analysis method to
detect the vulnerability caused due to typecasting in Solidity.

6 CONCLUSION
This paper presents an analysis of the security vulnerabilities of
Ethereum smart contracts, real-world exploitation cases of these
vulnerabilities and their preventive techniques. Our paper targets
eight security vulnerabilities in Blockchain 2.0 applications, specifi-
cally in Ethereum Smart Contracts. The vulnerabilities discussed
are at the level of the application layer. The preventive techniques
thus require alterations at the programming level. The research
analysis and insights provided in this paper aim at directing the

future study in this field towards the development of more robust
vulnerabilities detection tools. Our analysis is based on

• the growing academic literature on the topic,
• the discussion forums and Internet blogs of smart contracts
programmers.

ACKNOWLEDGMENTS
This work is supported in part by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

REFERENCES
[1] Accessed on 01-09-2019. Etherscan Home Page. https://etherscan.io/
[2] Accessed on 01-09-2019. MAIAN. https://github.com/MAIAN-tool/MAIAN
[3] Accessed on 01-09-2019. Mythril. https://github.com/ConsenSys/
[4] Accessed on 01-09-2019. Oyente. https://github.com/ethereum/oyente
[5] Accessed on 01-09-2019. Parity Multi-Sig Wallet Attack. https://blog.

openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
[6] Accessed on 01-10-2019. Bitcoin Home Page. https://bitcoin.org/
[7] Accessed on 01-10-2019. Ethereum Home Page. https://www.ethereum.org/
[8] Accessed on 01-10-2019. Geth Home Page. https://geth.ethereum.org/downloads/
[9] Accessed on 01-10-2019. Solidity Home Page. https://solidity.readthedocs.io/en/

v0.5.1/
[10] Accessed on 01-10-2019. TXL Home Page. http://txl.ca/
[11] Accessed on 05-09-2019. NIST Bug Framework. https://www.nist.gov/

publications/bugs-framework-bf-structured-approach-express-bugs
[12] Elvira Albert, Pablo Gordillo, Benjamin Livshits, Albert Rubio, and Ilya Sergey.

2018. EthIR: A Framework for High-Level Analysis of Ethereum Bytecode: 16th
International Symposium, ATVA 2018, Los Angeles, CA, USA, October 7-10, 2018,
Proceedings.

[13] M. Alharby, A. Aldweesh, and A. v. Moorsel. 2018. Blockchain-based Smart
Contracts: A Systematic Mapping Study of Academic Research (2018). In 2018
International Conference on Cloud Computing, Big Data and Blockchain (ICCBB).

[14] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A Survey of Attacks
on Ethereum Smart Contracts SoK. Springer-Verlag New York, Inc., New York,
NY, USA.

[15] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A Survey of Attacks
on Ethereum Smart Contracts SoK. In Proceedings of the 6th International Confer-
ence on Principles of Security and Trust - Volume 10204. Springer-Verlag, Berlin,
Heidelberg.

[16] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, François Gauthier, Vincent
Gramoli, Ralph Holz, and Bernhard Scholz. 2018. Vandal: A Scalable Security
Analysis Framework for Smart Contracts. CoRR abs/1809.03981 (2018).

[17] M. di Angelo and G. Salzer. 2019. A Survey of Tools for Analyzing Ethereum
Smart Contracts.

[18] A. Dika and M. Nowostawski. 2018. Security Vulnerabilities in Ethereum Smart
Contracts.

[19] Wesley Dingman, Aviel Cohen, Nick Ferrara, Adam Lynch, Patrick Jasinski, Paul
Black, and Lin Deng. [n.d.]. Defects and Vulnerabilities in Smart Contracts, a
Classification using the NIST Bugs Framework. International Journal of Networked
and Distributed Computing.

[20] Thomas Durieux, João Filipe Ferreira, Rui Abreu, and Pedro Rodrigues Souza
Cruz. 2019. Empirical Review of Automated Analysis Tools on 47, 587 Ethereum
Smart Contracts. ArXiv (2019).

[21] J. Feist, G. Grieco, and A. Groce. 2019. Slither: A Static Analysis Framework
for Smart Contracts. In 2019 IEEE/ACM 2nd International Workshop on Emerging
Trends in Software Engineering for Blockchain (WETSEB).

[22] Huru Hasanova, Ui-jun Baek, Mu-gon Shin, Kyunghee Cho, and Myung-Sup
Kim. 2019. A survey on blockchain cybersecurity vulnerabilities and possible
countermeasures. International Journal of Network Management 29 (01 2019).

[23] Bo Jiang, Ye Liu, and W. K. Chan. 2018. ContractFuzzer: Fuzzing Smart Contracts
for Vulnerability Detection (ASE 2018). ACM, New York, NY, USA.

[24] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts.

[25] Chao Liu, Han Liu, Zhao Cao, Zhong Chen, Bangdao Chen, and Bill Roscoe. 2018.
ReGuard: finding reentrancy bugs in smart contracts. ACM.

[26] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (Vienna, Austria) (CCS
’16). Association for Computing Machinery, New York, NY, USA.

[27] Purathani Praitheeshan, Lei Pan, Jiangshan Yu, Joseph Liu, and Robin Doss.
2019. Security Analysis Methods on Ethereum Smart Contract Vulnerabilities: A
Survey.

9

81

https://etherscan.io/
https://github.com/MAIAN-tool/MAIAN
https://github.com/ConsenSys/
https://github.com/ethereum/oyente
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://bitcoin.org/
https://www.ethereum.org/
https://geth.ethereum.org/downloads/
https://solidity.readthedocs.io/en/v0.5.1/
https://solidity.readthedocs.io/en/v0.5.1/
http://txl.ca/
https://www.nist.gov/publications/bugs-framework-bf-structured-approach-express-bugs
https://www.nist.gov/publications/bugs-framework-bf-structured-approach-express-bugs

CASCON’20, November 10 - 13 2020, Toronto, Canada Noama Fatima Samreen, Manar H. Alalfi

Dynamic
Analysis

Fuzzing Input Generation

Execution Trace at Run-time

Static Analysis

Symbolic Execution

Rule-based Analysis

CFG Construction

Pattern Recognition

De-compilation Analysis

SmartCheck

ReGuard

Contract Fuzzer

Oyente

Securify

EthIR

Vandal

Zeus

MAIAN

Mythril Out-Of-Gas - Failed Send

Reentrancy

Unexpected State – Mishandled
Exceptions

Integer Underflow/Overflow

DoS by an External Contract

Call-to-Unknown

Weak Field Modifiers

Typecasts

Analysis Method Detection Tool/Framework Vulnerability

1

1

4

2

4

3

2

1

3
1

1

5

1

2

3

4

5

1

2

1

5

4

3

2

6

7

9

8

X

1

1

1

2

3

4

4

4

5

5

6

7

7

7

7

7

8

9

9

9

X

X

1

2

SmartShield

Ethploit 2

1

1

3

1
23

X

X

X

X

X

X

Figure 1: Relationship between Framework/Detection Tools Available and Vulnerabilities

$0

$20

$40

$60

$80

$100

$120

$140

$160

Et
h

er
 L

o
st

 in
 M

ill
io

n
s

U
SD

Attacks

(a) Most Severe Attack in terms of Ether lost

0

2

4

6

8

10

12

R
es

ea
rc

h
/D

et
ec

ti
o

n
 T

o
o

ls
 a

va
ila

b
le

Vulnerabilities

(b) Most Researched Vulnerability

Figure 2: Research Statistics of vulnerabilities

[28] Purathani Praitheeshan, Lei Pan, Jiangshan Yu, Joseph Liu, and Robin Doss.
2019. Security Analysis Methods on Ethereum Smart Contract Vulnerabilities: A
Survey.

[29] Muhammad Saad, Jeffrey Spaulding, Laurent Njilla, Charles A. Kamhoua, Sachin
Shetty, DaeHun Nyang, and Aziz Mohaisen. 2019. Exploring the Attack Surface
of Blockchain: A Systematic Overview. CoRR (2019).

[30] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko, and
Y. Alexandrov. 2018. SmartCheck: Static Analysis of Ethereum Smart Contracts.

[31] Christof Ferreira Torres, Julian Schütte, and Radu State. 2018. Osiris: Hunting
for Integer Bugs in Ethereum Smart Contracts. In Proceedings of the 34th Annual

Computer Security Applications Conference (San Juan, PR, USA) (ACSAC ’18).
Association for Computing Machinery, New York, NY, USA.

[32] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian
Bünzli, and Martin Vechev. 2018. Securify: Practical Security Analysis of Smart
Contracts.

[33] Q. Zhang, Y. Wang, J. Li, and S. Ma. 2020. EthPloit: From Fuzzing to Efficient
Exploit Generation against Smart Contracts. In 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengineering (SANER).

[34] Yuyao Zhang, Siqi Ma, Juanru Li, Kailai Li, Surya Nepal, and Dawu Gu. 2020.
SMARTSHIELD: Automatic Smart Contract Protection Made Easy.

10

82

Towards Topology Aware Pre-Emptive Job Scheduling with
Deep Reinforcement Learning

Bon Ryu

York University

Toronto, ON

bonryu@eecs.yorku.ca

Aijun An

York University

Toronto, ON

aan@eecs.yorku.ca

Zana Rashidi

York University

Toronto, ON

zrashidi@eecs.yorku.ca

Junfeng Liu

IBM Canada

Markham, ON

jfliu@ca.ibm.com

Yonggang Hu

IBM Canada

Markham, ON

yhu@ca.ibm.com

ABSTRACT
We present a topology aware Deep Reinforcement Learning (DRL)

scheduler that simultaneously chooses jobs to run and elastically

allocates resources to them for Distributed Deep Learning data

parallel jobs in a multi-GPU, multi-machine cluster. This work ad-

dresses multiple limitations in the state-of-the-art methods: 1) Not

sufficiently accounting for the bandwidth sharing between multiple

jobs running simultaneously in a cluster, 2) Using overly simply

heuristics to solve the resource allocation problem, 3) Pretending

that job speed is not affected by the topology of allocated resources

in simulation environments. This DRL method calculates unique

job speeds by taking advantage of a graph representation of the

cluster topology. This enables modeling realistic sharing of inter

and intra machine bandwidths such as QPI speed, CPU-GPU speed,

GPU-GPU speed, Infiniband card to Top-of-Rack Switch, etc. Our

neural network model is trained using the REINFORCE algorithm

which is a policy gradient method. The model outputs a multiple

softmax designed to represent an assignment table that specifies

the resource allocation of GPU’s to Jobs. Using this design we can

dynamically choose/change which GPUs to assign to which jobs

at discrete time steps. Our simulation experiments show that our

method can outperform baseline schedulers that use heuristics for

job picking and resource allocation.

CCS CONCEPTS
•Computingmethodologies→Planning and scheduling;Re-
inforcement learning; Parallel computing methodologies.

KEYWORDS
GPU job scheduling, reinforcement learning, neural networks

ACM Reference Format:
Bon Ryu, Aijun An, Zana Rashidi, Junfeng Liu, and Yonggang Hu. 2020.

Towards Topology Aware Pre-Emptive Job Scheduling with Deep Reinforce-

ment Learning. In Proceedings of the 30th Annual International Conference

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

CASCON ’20, Nov 10–13, 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

on Computer Science and Software Engineering (CASCON ’20). Toronto, ON,
IBM Corp., USA, 10 pages.

1 INTRODUCTION
Job scheduling is an important part of running a computing cluster,

which could be a massively parallel supercomputing centre, a cloud

data centre, or an on-site group of servers at a university research

lab, or even possibly a small cluster of edge devices. Jobs must be

scheduled both in terms of when they should run, as well as what

resources to assign them. Colloquially, job scheduling refers to both

tasks. In this paper, scheduling a job in time will also be referred

to as job picking, and resource to job assignment will be referred

to as resource assignment or resource allocation. In this paper, we

focus on the problem of both job picking and assigning resources

to data parallel Deep Neural Network (DNN) jobs that are meant to

run on GPU-capable cloud-based data centres. In short, we present

a Deep Reinforcement Learning (DRL) method that leverages the

modeling of intra and inter machine network topology and decides

which jobs to run by elastically assigning GPU resources to them.

Most schedulers use heuristics (such as the shortest job first) for

GPU resource scheduling. Heuristic-based methods can produce

good solutions in some situations, but they often lead to a solution

far from an optimal one in many other situations. Recently, deep

reinforcement learning has been used for GPU resource scheduling

[8], which uses a DNN as the policy function for reinforcement

learning to learn a scheduler by interacting with the environment.

However, these DRL-based methods fail to consider the topology

of the resources within the cluster. Further, these schedulers usu-

ally solve the job picking problem and do not deal with resource

allocation which is crucial in order to design an effective sched-

uler. Preemption is also another issue not dealt with in schedulers

currently in use. We discuss some of these in detail below.

Currently, there exists no "intra" and "inter" machine topology

aware DRL-based scheduler that can schedule and assign resources

to multiple jobs on a multiple machine, multiple GPU cluster. This

includes most of the intra and inter machine bandwiths such as

QPI speed, CPU-GPU speed, GPU-GPU speed, Infiniband card to

Top-of-Rack Switch speeds, etc. Both the topology of resources

allocated to a job and the resulting bandwidth sharing between

multiple jobs affect the unique speeds of jobs. In other words, job

speeds and resource assignments (aka allocations) have a non-linear

relationship. Schedulers that fail to sufficiently taking into account

83

CASCON ’20, Nov 10–13, 2020, Toronto, Canada Bon Ryu, Aijun An, Zana Rashidi, Junfeng Liu, and Yonggang Hu

topology in their decision making, will fail to make optimal job

picking and resource to job assignment decisions, resulting in sub-

optimal scheduling performance. This study addresses this issue

through detailed modelling of intra and inter network topology,

bandwidth sharing, and unique job speeds. Unlike heuristic meth-

ods, DRL schedulers can in theory avoid modeling the topology

by training their policy function (modeled by a neural network

function approximator) directly on bare metal of one’s cluster, but

one loses the ability to use simulations to initialize the training of

the neural network (NN) function approximator. In fact, the model

parallelization work by [9] used DRL to train a NN scheduler on

bare metal on a single machine for single jobs at a time, but would

need time consuming re-training on bare metal if the topology or

cluster machines changes.

Another issue not thoroughly explored in literature are preemp-

tion strategies for DDL. Preemption means that resource allocation

of a running job can be changed after the job has started but not yet

completed. For example, in the no-preemption case, the resources

(i.e. GPUs) allocated to a job does not change, and a job cannot be

paused/resumed once started. In what we call partial preemption,
the number of GPUs assigned to a job can be changed during run-

time but the job is not allowed to be totally paused. In what we call

full preemption, jobs can also be paused/resumed but the number

of GPUs assigned upon resuming can be different than before the

job was paused. Full preemption allows the most elasticity of job

scheduling, and better/fuller use of resources, potentially leading

to a shorter makespan for a set/sequence of jobs.

In this study, we address both intra and inter network topology

considerations, job scheduling, and resource assignment/allocation.

We make some initial investigations into using a DNN as a full

preemption scheduler that is trained with RL, and compare this to

no-preemption heuristic baselines. To hasten the development and

investigation of DRL to solve DNN job scheduling/resource alloca-

tion problem, this work remains in a simulation environment. Still,

our initial findings compel us to believe full preemptive schedulers

could can make better/fuller use of resources than schedulers that

can only perform no preemption at all.

Our contributions are summarized as follows. We propose a rein-

forcement learning based GPU resource scheduler, calledRL-TAPS
(Reinforcement Learning based Topology-Aware Preemptive Sched-

uler), that considers the topology of the underlying infrastructure.

RL-TAPS solves both the job selection and resource allocation

problems at the same time. Furthermore, our method allows for pre-

emption. Our use case in this paper is data parallel distributing deep

learning jobs across multiple GPUs in multiple machines, although

RL-TAPS can be applied to other job types with different resources.

The results from both streaming and non-streaming scenarios show

the superiority of our method compared to three baseline methods.

The paper is organized as follows: In section 2 we discuss related

work and section 3 gives a brief background in reinforcement learn-

ing and the policy gradient algorithm. In section 4 we describe our

proposed method and we report the evaluation results in section 5.

Finally we share related insights and discuss future work.

2 RELATEDWORK
2.1 Mathematical Programming vs Heuristics
It is quite useful to note for context that many combinatorial opti-

mization problems have traditionally been solved by formulating

a mathematical program and using algorithmic methods such as

simplex, or branch and bound, to solve them. If mathematical pro-

gramming approaches are too slow, then a custom heuristic would

be designed. The general problem of which fraction of which re-

source to assign to which job can be formulated as a Mixed Integer

Non-Linear Programming (MINLP) problem. By constraining deci-

sion variables to be discrete (i.e we assign whole GPUs to jobs), we

can formulate an Integer Non-Linear Programming (INLP) prob-

lem. We can further relax the problem to be an Integer Linear

Programming (ILP) problem by making some big assumptions such

as pretending to know the job completion times ahead of time or

setting the number of GPUs assigned per job to be equal and fair.

Two notable recent works in literature for scheduling and as-

signing resources for data parallel, parameter server (PS) based,

Distributed Deep Learning (DDL) jobs on clusters, are Tiresias [7]

and Optimus [11]. With respect to the resource assignment prob-

lem (aka job/device placement), the authors of Tiresias first tried

to formulate an ILP program that minimized network bandwidth

usage. Even despite assuming equal resource assignment to lin-

earize the problem, their ILP solution was too slow. The authors

of Optimus merely described their resource assignment problem

as an INLP problem that minimized Job Completion Times. They

state that the problem is NP-hard, and decided instead to use a

heuristic for assigning resources to jobs. Both Tiresius and Optmius

ultimately used heuristics for both time based job scheduling and

the resource assignment. For added context, even prior to learning

of these works, we attempted to solve the general MINLP problem

with mathematical programming, but failed to find a formulation

that produced fast nor close to optimal results.

Popular cloud-based cluster computing schedulers such as Yarn

and Slurm use very simple heuristics for time based job schedul-

ing, such as DRF [5], First in First Out (FIFO), Shortest Job First

(SJF), etc., or some combination of these. They also use very simple

heuristics for resource allocation. These heuristics do not properly

consider network topology nor do they adjust resource assignment

to existing jobs to better utilize resources. We believe that heuris-

tic methods for job scheduling and resource allocation, will be

ultimately inferior to the potential benefits that DRL can provide,

namely due to the ability of DRL to solve highly non-linear and

complex problems.

2.2 DRL-based schedulers
There have been a resurgence in the study of using Neural Net-

works to solve optimization problems with the creation of pointer

networks by [14]. Vinyals et al. [14] used existing algorithmic math-

ematical programming approaches to supervise the training of their

pointer networks. More recently though, Bello et al. [1] built upon

the work of [14] by using Deep Reinforcement Learning (DRL) to

train pointer networks. Deep Reinforcement Learning (DRL) can

train a Deep Neural Network (DNN) function approximator to solve

complex non-linear decision problems without explicitly labeled

data, by instead using scalar reward signals to guide the iterative

84

Towards Topology Aware Pre-Emptive Job Scheduling with Deep Reinforcement Learning CASCON ’20, Nov 10–13, 2020, Toronto, Canada

training of NNs. The first known cases of using DRL for job-shop

scheduling problems, however, were by Zhang and Dietterich in

1995 and 1996 [16–18].

Some recent works have begun to use DRL for GPU resource

management [4, 8, 9]. Mao et al. [8] used a DRL policy gradient

method to choose jobs in a queue in a simple simulation environ-

ment with no network topology considerations. Their input layer

for their simple Multi Linear Percepteron (MLP) policy network

was a rectangular grid that represented the resources as contigu-

ous columns, with each row representing a discrete time snapshot.

Thanks to the simplicity of their design and availability of their

code on github, this work has become very influential to subsequent

investigations into using DRL for resource management for not just

the field of cluster scheduling but also networking. [4] was inspired

by [8] for example to pipe the input into a convolutional neural

network (CNN) to choose a job, and then subsequently use a small

NN to choose one of two heuristic placement algorithms. Both of

these works ([4, 8]) are applicable only to data parallel jobs, as is

our current work, which is also based on the work of Mao et al. [8].

Device placement/allocation for model parallelism of DL jobs is

a much more complicated problem, which has been investigated

on a single job and single machine basis by [9, 10]. Those authors

brilliantly used sequence to sequence pointer networks to take a

computation graph as input, and output a sequence of devices to

assign to the nodes of the computation graph. Perhaps in the future,

a DRL based method of automatically performing model and data

parallelism simultaneously will be developed. For the time being,

however, our current work attempts to address some of the many

unsolved issues in DRL for data parallel DDL.

3 BACKGROUND
We give a short background on reinforcement learning and the

policy gradient algorithm that will be used in the proposed method.

3.1 Reinforcement Learning
In reinforcement learning, an agent interacts with an environment

and learns to take actions such that it maximizes some performance

measure. The environment is represented via a state space and the

agent sees a state 𝑠𝑡 at each time step 𝑡 . It then takes an action 𝑎𝑡
based on the current state and is rewarded 𝑟𝑡 by the environment

while transitioning to the next state 𝑠𝑡+1. An episode is defined as

a sequence of triples of state, action, reward, ((𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡))𝑡=1..𝑇𝑚𝑎𝑥
,

where 𝑇𝑚𝑎𝑥 is the maximum length of the episode, and is finite.

Reinforcement learning is different from other forms of learning

in that the agent has no explicit labelled data about the environment

and other variables (i.e. states, reward, action). The agent collects

data via interacting with the environment and learns optimal action

sequences through experience.

3.2 Policy Gradients
In the theoretical development of the policy gradient algorithm for

the episodic case, one first starts with the objective,

𝐽 (𝜃) � 𝑣𝜋𝜃 (𝑠0), (1)

where 𝑠0 is the start state of an episode, 𝜃 are the parameters of

a function 𝜋𝜃 , the policy determined by the parameters. A policy

function 𝜋 is a mapping from states 𝑆 to actions 𝐴 and can be de-

fined as a probability distribution over actions 𝑎 given a state 𝑠 .

Since the number of state and actions pairs can be very prohibi-

tively large, function approximators such as neural networks are

used to represent a policy. Thus a policy defined through a neural

network with parameters 𝜃 is written as 𝜋𝜃 . 𝑣𝜋𝜃 is the performance

measure called "true value function" and is the only function that

can inform us of what actions to take (in transitioning between

states) to get the highest possible performance. Theoretically, it is

difficult if not impossible to determine 𝑣𝜋 . In practice, it is com-

mon to approximate the objective as the expected return, E𝜋𝜃 [𝐺𝑡],
where 𝐺𝑡 = [

∑𝑇𝑚𝑎𝑥

𝑡 𝛾𝑡𝑟𝑡] [13, 15]. The discount factor 𝛾 is set be-

tween 0 and 1 and is used to put more weight on immediate rewards

and discount later rewards. For the episodic case it is commonly

set to 1 for simplicity. The REINFORCE algorithm [15] then uses

the following update to the parameters:

𝜃 ← 𝜃 + 𝛼E𝜋𝜃 [𝐺𝑡∇𝜃 log𝜋𝜃 (𝑠𝑡 , 𝑎𝑡)] , (2)

where we are taking the expectation over many trials and time

steps, sampled using 𝜋𝜃 . While we use the original formulation of

𝐺𝑡 , it can be tailored to the problem being solved.

4 PROPOSED METHOD
In this section, we describe the problem we are solving, our pro-

posed approach to solving the problem, and the simulation envi-

ronment we train and test our proposed model.

4.1 Problem statement
Given a cluster of computers, each with one or more GPUs, and

a set of deep learning jobs including the ones that are currently

running on the cluster and the ones that were submitted and are

waiting for GPU allocation, the goal is to determine:

(1) which jobs should be chosen to run.

(2) which GPUs should be assigned to jobs chosen to run.

so that the average job slowdown among all the jobs is minimized.

A job’s slowdown is defined as the difference between its finish and

enter time, divided by its estimated time to run alone.

Note that we do not separate job selection and job allocation in

this problem definition, and consider them simultaneously so that

jobs are selected only if they can lead to an allocation that achieve

a better outcome. Also, we allow preempting the already running

jobs and elastically changing their resource allocations to improve

overall performance.

4.2 Topology Awareness
Our scheduler is topology-aware in two ways: 1) intra and inter

machine bandwidths in the cluster’s topology are modelled in detail

as part of the environment, and affect the observed reward signal;

2) the current GPU to job assignments (partially representing the

cluster topology) are presented as input to an NN policy function.

An NN input design that incorporates topology bandwidth informa-

tion is left for future work. Even without bandwidth information

directly incorporated into the input, the NN can in theory find GPU

to job assignment combinations that make better use of the cluster

topology and thus increase the reward signal.

85

CASCON ’20, Nov 10–13, 2020, Toronto, Canada Bon Ryu, Aijun An, Zana Rashidi, Junfeng Liu, and Yonggang Hu

4.3 State representation
The state 𝑆 describes the status of the cluster in terms of GPU

usage and the jobs in the job queue. Assume that the cluster has a

set of 𝑋 machines, {𝑛𝑖 |𝑖 = 1..𝑋 }, with a total number of 𝑀 GPUs,

G = {𝑔𝑖 |𝑖 = 1 . . . 𝑀}. Also assume that the job queue can take up to

𝑁 jobs and each element of the queue is called a job slot. Each job

slot can hold one job, and the slots are sequentially filled up as jobs

arrive. We represent the set of 𝑁 job slots as J = { 𝑗𝑖 |𝑖 = 1 . . . 𝑁 }.
Similar to [8], we use a set of matrices to represent the state,

shown in the top part of Figure 1. Firstly, 𝑋 two-dimensional matri-

ces are dedicated for the cluster representation, one matrix per

machine. Next, 𝑁 two-dimensional matrices represent the 𝑁 job

slots in the job queue, one matrix per job slot. Finally, there is a

matrix to represent a backlog.

The state representation in Figure 1 shows of a small cluster of

𝑋 = 4 machines (labeled 𝑛1 to 𝑛4) and a job queue with 𝑁 = 3 job

slots (labelled 𝑗1 to 𝑗3). The first two job slots are occupied by a

running job. The job in the third slot is waiting. In Figure 1, the

number of columns of the matrix for machine 𝑛𝑖 is the number

of GPUs it has (e.g., 𝑛1 has 4 GPUs). The number of columns of

the matrix for a job slot 𝑗𝑖 is the maximum number GPUs a job

can request (e.g., 6 GPUs in the figure). In general, the rows of the

matrices represent the time dimension, and the columns represent

the resource dimension. Each row of thematrices is a representation

of the entire environment along the columns (cluster usage, job

resource request, etc.) during a specific discrete span of time. The

multiple rows then allows for the presence of sequential information

to be represented in the state.

The highlighted cells in the matrices representing machines

indicate that the corresponding GPUs are occupied by the current

running jobs. The highlighted columns in a matrix representing

a job slot in the queue indicate the number of GPUs requested

by the job, 𝑔𝑝𝑢𝑠𝑟𝑒𝑞(𝑗). The time span of each row of the image is

calibrated to have a constant value in seconds (see Appendix A).

Thus if we know the amount of computation a job has left, and

its estimated speed, we can determine the number of times steps

required for this job. In a job slot, the number of highlighted rows

of a job is the number of time steps it is expected to run for if the

job is 1) running alone, 2) is allocated exactly the number of GPUs

it requests, and 3) there is zero communication time between GPUs.

In the cluster representation, the number of highlighted rows of

a job is the number of time steps left for it to complete, given its

current unique topology-dependent speed, and the calibrated time

span of the row. Job modelling is further explained in section 4.6.2.

When a job arrives at the cluster, but there are no empty job

slots, the job gets appended to the small backlog matrix (illustrated

at the right most end of the top part of Figure 1), for which a single

job is represented by a single unit.

When a job is assigned GPUs by RL-TAPS, we paint the corre-
sponding GPU columns in the cluster representation with the same

color. In our full preemptive method, RL-TAPS, jobs that arrive to
the job slots remain there as long as they are not finished. They

can be not-started, paused, or currently running. Only when the

jobs are finished are they removed. This way, currently running,

paused, and not-started jobs in the queue are all candidates for

being chosen by RL-TAPS. In contrast, in the RL simulation for

n2 n3 n4n1 j1

backlog

ti
m

e
 s

te
p
s

machines with GPUs

j2

jobs in queue

GPU1 … GPU8 GPU9 … GPU16

j1 j2 j3 Ø … j1 j2 j3 Ø j1 j2 j3 Ø … j1 j2 j3 Ø

1 0 0 0 … 1 0 0 0 0 1 0 0 … 0 1 0 0

Fully Connected Hidden Layer(s)

Multiple Softmaxes

j3

Figure 1: The architecture of the NN function approximator.
Above there are three jobs in the queue. The first two are
running, and the third is waiting. This assignment is not op-
timal but possible, depending on the level of training.

no-preemption schedulers, jobs that are chosen (and thus assigned

a static number of GPUs), are removed from their jobslot, so they

only occupy the cluster representation and are no longer candidates

for being chosen.

To simplify the "painting" of the cluster representation, we do not

stack jobs vertically in the cluster representation. In other words,

each column of the cluster representation is assigned to at most

one job. This state representation will be used as the input to the

neural network policy function.

4.4 Actions and Rewards
4.4.1 Actions, 𝐴. The NN takes multiple simultaneous actions us-

ing a multiple softmax approach. If there are𝑀 GPUs in the cluster,

there are 𝑀 output softmaxes, and all softmaxes share the previ-

ous hidden layer. Each softmax, as shown in Figure 1, consists of

𝑁 + 1 units, where 𝑁 is the number of job slots. The corresponding

GPU-to-job assignment table is shown on the right hand side of

Figure 2. In this study, each GPU can be assigned to at most one

job slot, or not assigned to any job slot, i.e., the null job slot ∅. The

decision of which job to assign a single GPU to, is done using a

single softmax. With multiple GPUs in a cluster, we have multiple

softmaxes, one per GPU. Note that if the job slot corresponding to

a currently-running job is not assigned to any GPUs, it is paused.

In this manner, we can solve the problem of choosing a job

and assigning resources to it, simultaneously. Furthermore, this

approach is naturally pre-emptive. A job that has not finished,

remains in its slot, and can be paused or resumed simply by not

assigning or assigning GPUs to it. If a job is not assigned any GPUs,

then it is not chosen. Thus, job picking and resource assignment

are performed at the same time.

4.4.2 Topology-Aware Reward, 𝑅. In RL, a scalar signal for reward

is needed to guide the training of the policy function (a neural

network in our case). It can also be helpful to subtract penalties

from the reward to discourage bad decisions. We describe exactly

how we formulate rewards and penalties. The main measure of

reward we use is computational throughput in units of FLOPS

(Floating Point Operations Per Second), which we interchangeably

refer to as speed. In general, we calculate the aggregate sum of

speeds of all jobs.

86

Towards Topology Aware Pre-Emptive Job Scheduling with Deep Reinforcement Learning CASCON ’20, Nov 10–13, 2020, Toronto, Canada

Job index,

j = 1 .. N

1 2 3

G
P

U
 i
n
d

e
x
,

g
 =

 1
 .

.M

1 1

2 1

… …

8 1

9 1

10 1

… …

16 1

𝒋

𝒙𝒈,𝒋 8 8 0

Director switch

CPU

GPU

job 1

IB IB

TOR switch

GPU

job 1

CPU

GPU

job 1

GPU

job 1

CPU

GPU

job 2

IB IB

GPU

job 2

CPU

GPU

job 2

GPU

job 2

Figure 2: (Left) A rack is shown with its Top of Rack Switch
(TRS), and two of its machines. The vertical ellipsis mean
that there exists additional machines. Horizontal ellipsis on
either side mean there may exist additional racks. The dark
red arrows pointing to the DS indicate connections from two
additional TRS’s on either side. (Right) Example assignment
of GPUs 1 to 8 for job 1 and GPUs 9 to 16 for job 2.

Rather than considering the instantaneous speed of a job, we

prefer for simplicity to think about the average speed that a job

experiences while interacting with other running jobs. Since time

steps are not instantaneous but rather span two time points, it is

suitable to consider the average speed of a job. The job’s average

speed at a discrete time step contributes to the total reward for the

time step. This contribution is expressed as,

𝑅𝑡 (𝑗) = 𝑣𝑡 (𝑗) =
𝑑𝑚 (𝑗) |G(𝑗) |
tt𝑚 (𝑗) + rt (𝑗)

, (3)

where 𝑑𝑚 (𝑗) is the computational "distance" of job 𝑗 per minibatch.

I.e. 𝑑𝑚 (𝑗) = 𝑑𝑒𝑥 (𝑗)𝑚 (𝑗) , where 𝑑𝑒𝑥 (𝑗) is the computational "dis-

tance" of job 𝑗 on a single example, and𝑚 (𝑗) is the minibatch size.

The computational distance is defined as the number of FLOPs

(Floating Point Operations)
1
. G(𝑗) is the subset of GPUs assigned

to job 𝑗 . |G(𝑗) | is thus the number of GPUs assigned to job 𝑗 . In

the denominator, tt𝑚 (𝑗) is the training time of a minibatch for job

𝑗 . rt (𝑗) is the time it takes for a reduction operation at the end of

a minibatch such as gradient averaging across the GPUs of a job.

Since reduction time is independent of the minibatch size, but is

still characteristic of a job running in job slot 𝑗 , rt (𝑗) lacks a 𝑚
subscript.

For each time step 𝑡 of an episode 𝑖 , we calculate a reward value

for the time step as a sum of the throughputs (equation 3) across

currently running jobs, in addition to any penalties associated with

that time step.

𝑅𝑖𝑡 =
∑
𝑗

𝑅𝑡 (𝑗) + 𝑃𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠 (4)

The superscript episode index, 𝑖 , is omitted on the RHS of equations

3 and 4 for simplicity.

There were two main penalties designed to help aid the neural

network to train.

1
We use the term distance as proxy for computation (FLOPs not FLOPS) to intuitively

use kinematic equations such as Δ𝑑 = 𝑣𝑡

(1) The cost of a job sitting idle in a jobslot or backlog, whose

magnitude is calculated as

𝐶𝑡 (𝑗) =
𝑑𝑚 (𝑗)gpusreq(j)
tt𝑚 (𝑗) + srrt (𝑗)

, (5)

where srrt (𝑗) is called the single rack reduction time and is

an estimate of the job’s reduction time if the job running

alone on a single rack using 𝑔𝑝𝑢𝑠𝑟𝑒𝑞(𝑗) GPUs.
(2) The cost of fewer than requested GPUs being assigned to

the job in a jobslot, whose magnitude is calculated as

𝐶𝑡 (𝑗) =
𝑑𝑚 (𝑗) [gpusreq(j) − |G(𝑗) |]

tt𝑚 (𝑗) + rt (𝑗)
, (6)

The first penalty applies to both RL-TAPS and no-preemption

methods. Without this penalty, RL-TAPS would fail to learn to

decrease slowdown by running multiple jobs simultaneously. This

is because running one job at a time with high resource usage could

also increase throughput but comes at the expense of longer idle

time for waiting jobs. The second penalty only applies to RL-TAPS
and it is necessary for training the NN to learn to assign GPUs close

to the number that is requested. Assigning more GPUs to a job than

requested can be beneficial and is counted in equation 3.

4.5 Policy Function Design and Training
We use a neural network to represent the policy function.

4.5.1 Neural Network Structure. The overall NN architecture is

shown in Figure 1. Its input, described in section 4.3, represents

the state of the environment. The input is connected to the output

using a single fully connected hidden layer. The output layer of the

NN consists of multiple softmaxes (one for each GPU), all sharing

the previous hidden layer. Each softmax represents a probability

distribution over job slots given a GPU. The bottom part of Figure 1

illustrates the output layer of the NN. Each softmax corresponds to

a decision to assign a GPU to a job slot, with the highest probability

element of the softmax corresponding to the most favoured job slot.

In addition, a GPU may not be assigned to any job slot. Thus, a null

job slot ∅ is used to represent such a situation.

At a given time step 𝑡 , let𝐴𝑔 be the event that a GPU𝑔 is assigned

to one of 𝑁 + 1 job slots, which corresponds to the action with the

highest probability outputted by GPU 𝑔’s softmax, 𝑝 (𝐴𝑔 |𝑠). We

use 𝐴𝑡 to represent the event that events 𝐴𝑔 for all GPUs occur

simultaneously, that is, 𝐴𝑡 =
⋂𝑀

𝑔=1𝐴𝑔 . Assuming independence

among 𝐴𝑔 ’s, we can use the product rule of probability to express

a single policy function as:

𝜋𝜃 (𝐴𝑡 , 𝑆𝑡) = 𝑝 (𝐴𝑡 |𝑆𝑡) =
𝑀∏
𝑔=1

𝑝 (𝐴𝑔 |𝑆𝑡) (7)

where 𝑆𝑡 is the given input at 𝑡 to the NN. Note the capitalized states,

actions, and rewards (𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡) signify that they are sampled using

the policy. Such a single function is needed in the policy gradient

training algorithm described below.

4.5.2 Training Algorithm. As described in the background section,

the REINFORCE algorithm is a result of direct policy differentiation

where the goal is to maximize the expected return. However, the

policy gradients suffers from high variance. This is in part alleviated

87

CASCON ’20, Nov 10–13, 2020, Toronto, Canada Bon Ryu, Aijun An, Zana Rashidi, Junfeng Liu, and Yonggang Hu

by using the "REINFORCE with baseline" algorithm, which calls for

subtracting an appropriate baseline, 𝑏𝑡 from the return:

𝜃 ← 𝜃 + 𝛼E𝜋𝜃 [(𝐺𝑡 − 𝑏𝑡)∇𝜃 log𝜋𝜃 (𝑠𝑡 , 𝑎𝑡)] (8)

where the choice of 𝑏𝑡 should leave the expectation of the gradient

on the RHS unchanged. The expected reward 𝐺𝑡 and baseline 𝑏𝑡
are computed over a set of episodes generated based on a set of

training job sequences. In our training algorithm, 𝑏𝑡 is the average

of the return over multiple episodic simulations,

𝑏𝑡 =
1

𝐸

𝐸∑
𝑖=1

𝐺𝑖
𝑡 , (9)

where 𝑖 = 1..𝐸 is an index for episode. The expectation on the

RHS of equation (8) is taken simply by averaging across all job

sequences and episodes involved in calculating the gradient prior

to a parameter update.

In order to generate multiple episodes per job sequence during

training, a softmax for a GPU is treated as a probability distribution,

from which a sample is taken to determine which job to assign the

GPU to. During inference, a GPU is assigned to the job slot with

highest probability outputted by the corresponding softmax.

At each time step 𝑡 of an episodes, the NN would be required to

make a decision of which GPUs to assign to which job slot, with

the option of GPUs not be assigned to any slot (i.e. the null job slot).

Then the actions are implemented by the scheduler, followed by

a calculation of the reward for the current step 𝑡 . Then finally the

time step 𝑡 is advanced by 1, and a new job can arrive for this new

time step.

We trained the policy gradient method with two kinds of training

loops. First we trained using a method akin to the usual mini-batch

gradient based training method in a static dataset scenario. This

training loop is shown in Algorithm 1. Second, we trained the NN

in a streaming data scenario.

In both scenarios, multiple sequence of jobs, representing job

arrivals, are made before running finite length episodic simulations.

Each job sequence represents an arrival of one job per time step 𝑡 .

Each epoch involves multiple job sequences.

A single job sequence is used to generate multiple episodes. At

each step of an episode 𝑖 , as usual, we calculate a cumulative dis-

counted reward, the return𝐺𝑖
𝑡 . An aggregate baseline for each time

step, 𝑏𝑡 , is calculated by averaging 𝑣
𝑖
𝑡 across all episodes. A gradient,

Δ𝜃 , is accumulated across multiple job sequences, episodes, and

time steps,

There are three main differences between [8] and our study with

respect to the training algorithm. Firstly, in contrast, we test the

performance of our model on separate test scenarios. Secondly, [8]

employed epoch based learning, in which NN updates occur once

per epoch. In our work, we update the NN multiple times per epoch.

Thirdly, we additionally test the performance of our method in the

face of changing simulation data.

The training loop for minibatch style training is shown in algo-

rithm 1. Training and test job sequences are pre-made and remain

static, and thus we refer to this as the Non-Streaming training
method.

Algorithm 1 was modified in two small ways to simulate Stream-
ing Data training. Firstly, before shuffling the job sequences, one

would simply re-initialize a new set of 𝐽 training job sequences

Algorithm 1: Minibatch Training with Static Job Se-

quences

1 Initialize network parameters 𝜃

2 Initialize 𝐽 training job sequences

3 Initialize batchsize 𝐵

4 for each epoch:
5 Shuffle training job sequences

6 for job sequence 𝑙 = 1..𝐽 :
7 for episode 𝑖 = 1..𝐸:
8 Generate episode sequence ((𝑆𝑖𝑡 , 𝐴𝑖

𝑡 , 𝑅
𝑖
𝑡))𝑡=1..𝑇𝑖

9 for 𝑡 = 1..𝑇𝑚𝑎𝑥 :
10 𝐺𝑖

𝑡 ←
∑𝑇𝑚𝑎𝑥

𝑘=𝑡
𝛾𝑘−𝑡𝑅𝑖

𝑘

11 for 𝑡 = 1..𝑇𝑚𝑎𝑥 :
12 𝑏𝑡 ← 1

𝐸

∑𝐸
𝑖=1𝐺

𝑖
𝑡

13 for episode 𝑖 = 1..𝐸:
14 Δ𝜃 ← Δ𝜃 + (𝐺𝑖

𝑡 − 𝑏𝑡)∇𝜃 log𝜋𝑖𝜃 (𝐴𝑡 , 𝑆
𝑖
𝑡)

15 if 𝑙 mod 𝐵 is 0:
16 𝜃 ← 𝜃 + 𝛼 1

𝐵𝐸
Δ𝜃

every few epochs. Secondly, a new testing job sequence was gen-

erated for every epoch. This approach was used to investigate the

potential for the NN to train with new incoming job sequences.

4.6 Simulation Environment
4.6.1 Modeling Cluster Topology. The RL scheduler is trained on

a simulated environment. A neural network designed in Theano

is used as a function approximator. All code is written in Python.

The graph representation of the cluster was modelled using the

NetworkX python package.

The main benefit of building a simulation environment is it

enables quick testing of different ideas, without having to wait for

real DL jobs to run on a cluster.

Intra and inter machine network topology is simulated by mod-

eling the cluster as a graph. We assume that each machine in the

cluster is an IBM Power8 Minsky box (model S822LC [2]), and

that the cluster can consist up to 4 racks. The main idea was to

model elements such as CPUs, GPUs, network cards and switches

as nodes in the cluster and the communication links between them

as edges. The full list of nodes modelled is shown in Table 1. Each

machine consists of 4 GPUs, 2 CPUs, and 2 Infiniband cards. Two

GPUs are connected to each CPU. This type of configuration was

described in [3], which benchmarked the use of IBM’s PowerAI

library for performing DDL on a 256 GPU cluster of IBM Power8

Minsky boxes.

The following edge weights between the nodes were modelled:

default bandwidth, run-time bandwidth, number of jobs per edge.

The node and edge types modelled are described in table 1, and

a visual representation of the nodes and edges are shown in a

graphical representation of a portion of the cluster on the left hand

side of Figure 2.

The main idea behind topology modeling is to count the number

of jobs using each edge in the graph, that is, the number of jobs per

edge. To do so, we need to keep track of the links used by GPU to

GPU pair paths. With a large number of resources, it is infeasible

88

Towards Topology Aware Pre-Emptive Job Scheduling with Deep Reinforcement Learning CASCON ’20, Nov 10–13, 2020, Toronto, Canada

Table 1: Nodes and Edges modelled

Nodes

CPU, GPU,

Infiniband card (IBC),

Top-of-Rack Switch (TRS),

Director Switch (DS)
1

Edges (Default BW in GB/s)
2

CPU-CPU (38.5),

CPU-GPU(40),

CPU-IBC(1000),

IBC-TOR(12.5),

TRS-DS(6.25)

Edges Weights
3

Default BW,

Run-Time BW
4
,

Number of Jobs per Edge

1
Only one Director Switch was simulated.

2
BW = Bandwidth

3
Each edge has three weights

4
Run-Time BW = Default BW / Number of Jobs per Edge

to list all possible combinations of GPU-GPU assignments ahead of

time. Thus we pre-compute the shortest paths between each unique

GPU-GPU pair. During run time, for each job, we build up a set of

edges, which is the set summation of all edges in the paths of all

unique GPU-GPU pairs being used by a job. Obviously, if a job was

only assigned a single GPU, that job would not contribute to the

job count of any edge. The "Number of Jobs per Edge" edge weight

value is used in determining the effective speed of simulated jobs.

The speed of jobs become important in the reward formulation

which is described in section 4.4.2.

4.6.2 Job Modelling. As already mentioned, our job picking and

resource allocation method is meant for DNN type jobs. Here we

discuss the attributes of the simulated DNN jobs that our scheduler

tries to schedule as they arrive in our simulation, not the attributes

of the NN function approximate used in our DRL method. Symbols

representing modelled job attributes are suffixed with "(𝑗)".
Let us assume for simplicity that the time it takes for a minibatch

of data to feed into a GPU to be negligible compared to the time it

takes for a job to complete one minibatch of computation. Further-

more, consider a job that runs on a single GPU, which has a Floating

Points Operations Per Second (FLOPS) rating of 𝑣𝑃100. 𝑃100 is an

NVIDIA GPU model. Let us think about the complexity of a DNN

model, i.e. the Floating Point Operations (FLOPs not FLOPS) of

a single forward pass on a single data example, as a distance per

example, 𝑑𝑒𝑥 (𝑗) .
The speed of a single GPU job, 𝑣𝑡 (𝑗) , at a given time step 𝑡

during the simulation, can be expressed as follows and is roughly

equivalent to speed of the GPU.

𝑣𝑡 (𝑗) ≈
𝑑𝑚 (𝑗)
tt𝑚 (𝑗)

≈ 0.9𝑣𝑃100, (10)

where the 0.9 on right hand side is to simulate the fact that the

actual FLOPS observed is less than the advertised FLOPS.

To use realistic values of attributes of DNN jobs, a table of 35

Convolutional Neural Network (CNN) architectures and their prop-

erties such as model complexity (𝑑𝑒𝑥 (𝑗)), gradient size (same as

the memory footprint of all model parameters), etc. were conve-

niently obtained from [12]. During job initialization, it is randomly

assigned a CNN architecture’s model complexity, and gradient size.

Also during job initialization, the training time of a job’s mini-

batch, 𝑡𝑡𝑚 (𝑗) , is obtained from equation 10, where 𝑣𝑃100 is a con-

stant, 𝑑𝑚 (𝑗) = 𝑑𝑒𝑥 (𝑗)𝑚 (𝑗) is known because 𝑑𝑒𝑥 (𝑗) is simply the

complexity a of model as reported by [12].𝑚 (𝑗) is a job’s assigned
mini-batch size randomly chosen as one of {32, 64, 128, 256, 512}.
Finally, borrowing from [8], we sample from uniform distributions

(see section 5.1) to assign a job a length 𝑙𝑒𝑛(𝑗) and number of

resources (only GPUs in our case) requested by the job, 𝑔𝑝𝑢𝑠𝑟𝑒𝑞(𝑗).
During the simulation, a job finishes once it has undergone a total

amount of computation, which we refer to as "total computational

distance":

𝑑𝑡𝑜𝑡 (𝑗) = 𝑙𝑒𝑛(𝑗) × 𝑔𝑝𝑢𝑠𝑟𝑒𝑞(𝑗) × 𝑑𝑐𝑒𝑙𝑙 , (11)

where 𝑙𝑒𝑛(𝑗) and𝑔𝑝𝑢𝑠𝑟𝑒𝑞(𝑗) multiply to give the number of colored

cells of a job slot (see figure 1), and 𝑑𝑐𝑒𝑙𝑙 is a calibrated computa-

tional distance associated with a single cell, in units of FLOPs. The

details of this calibration is included in the Appendix A. The purpose

of the calibration process is two fold. One, it ensures that the input

image can represent the entirety of the computational distance of

the job, whether that be in the queue, or in the cluster portion of the

input. Secondly, the calibration associates a time value in seconds,

𝑡𝑠𝑡𝑒𝑝 , with a row of the input image. Every time the simulation

advances one step, the computational distance in FLOPs each job

has "travelled" can be computed uniquely as 𝑣𝑡 (𝑗) × 𝑡𝑠𝑡𝑒𝑝 .

4.6.3 Reduction Time Measurement and Formulation. The reduc-
tion time of a job, rt (𝑗) is modelled using a combination of measured

data and a heuristic. In our modeling, it is expressed as follows:

rt (𝑗) = srrt (𝑗) (1 + (𝑟 − 1)/5)𝑠 (𝑗) (12)

The right hand side of equation 12 consists of three terms. The

first, srrt (𝑗) , is the single rack ring reduction time, derived from

ring reduction measurements on a single rack for up to 16 GPUs.

The second factor in parentheses is a simple heuristic to model

the increase in reduction time due to using increasing number of

racks, 𝑟 . The third, 𝑠 (𝑗) is a scale factor that accounts for bandwidth
sharing. These three terms are explained in more detail below.

Single Rack Ring Reduction Time, srrt (𝑗) : Ring reduction mea-

surements were taken for up to 4 machines on a single rack, for a

total of 16 GPU’s. It was measured for 100 MB and 500 MB gradient

sizes, and the measurements are shown in Figure 3. The measure-

ments were fitted with square root functions. In order to estimate

the reduction time for different gradient sizes and GPU counts, we

interpolate linearly between the two curves by drawing a vertical

line at the desired GPU count. At 0 MB, we set the reduction time

to be 0, and for all gradient sizes greater than 100 MB, we simply

use the equation of the line between the 100 MB and 500 MB curves.

We use the two fitted curves in Figure 3 to account for different

number of GPUs allocated to a job, and interpolated between them

as explained above, to account for different gradient sizes.

89

CASCON ’20, Nov 10–13, 2020, Toronto, Canada Bon Ryu, Aijun An, Zana Rashidi, Junfeng Liu, and Yonggang Hu

Figure 3: Single Rack Reduction Time measurements

Extrapolating Reduction time for Multiple Racks: Since at the time

of measurement and data collection, reduction time measurements

between racks were not available, wemodel between rack reduction

times with the second term on the right hand side of 12. For example,

if we require the reduction time of using 8 GPUs on 2 racks instead

of 1 rack, we multiply the right hand side by (1 + (2 − 1)/5) = 1.2.

Thus, for 2, 3, and 4 racks, this factor would be 1.2, 1.4 and 1.6

respectively.

Scale factor, 𝑠 (𝑗) : Finally, the scale factor, 𝑠 (𝑗) is expressed as

𝑠 (𝑗) =
limbwsingle (𝑗)
limbwmulti (𝑗)

, (13)

where the numerator, limbwsingle (𝑗) , represents the limiting band-

width of a job 𝑗 if that job was running alone in the cluster. The

denominator, limbwmulti (𝑗) , represents the limiting bandwidth of a

job 𝑗 while there are multiple jobs running in the cluster. Given that

a job 𝑗 is assigned a set of GPUs, let 𝑝𝑎𝑡ℎ𝑠 (𝑗) be the collection of

shortest paths between unique GPU-GPU pairs among the assigned

GPUs. Further, let E(𝑗) be the set of all undirected edges in 𝑝𝑎𝑡ℎ𝑠 (𝑗) .
limbwsingle (𝑗) and limbwmulti (𝑗) are defined as,

limbwsingle (𝑗) = min
𝑒∈E(j)

Default BW(𝑒) (14)

limbwmulti (𝑗) = min
𝑒∈E(j)

Run-time BW(𝑒). (15)

To help remember the meaning of limbwsingle (𝑗) and limbwmulti (𝑗) ,
one can call them "single job limiting bandwidth" and "multiple job

limiting bandwidth", respectively.

The main reason for using the scale factor is that it is impossible

to pre-measure reduction times for the huge number of combina-

tions of GPU to job assignments. The scale factor helps account

for the difference between a job’s reduction time due to sharing

of bandwidth with other jobs during the RL simulation, versus the

reduction time the job would have if it was running alone. This is

needed since the reduction time measurements were carried out for

one reduction process at a time on a cluster of four Minksy Boxes.

5 EVALUATION
We describe specifics of the cluster topology, dimensions of the NN,

and the performance measures used for evaluation. Also, we briefly

describe the non-topology aware baseline methods of comparison.

Finally we present the results of our method.

5.1 Experimental Setup
We tested our method on a simulated cluster with a total of 8

machines on 4 racks, with 2 machines on each rack (which can be

written down as [2,2,2,2]). Each machine has 4 GPUs, thus there is

a total of 4 GPUs x 8 machines = 32 GPUs. Thus𝑀 = 32. Normally,

one would keep as many machines on the same cluster as possible.

However, as a proof of concept, we wished to investigate the effects

of topology on the performance of our method compared to the

non-topology aware baselines, while allowing a NN to train within

a reasonable amount of time.

The number of job slots we used in the input image is 𝑁 = 10,

and the backlog could hold 60 jobs. The maximum 𝑔𝑝𝑢𝑠𝑟𝑒𝑞(𝑗) was
limited to 12 per job, to limit the number of columns needed to

represent a jobslot in the input image.

The number of hidden units used for the hidden layer was set

to 1.5 times the total number of output units, rounded up. The

total number of output units is 32 × 11 = 352. Updates to the

NN parameters were done with an Adam optimizer and an initial

learning rate of 0.001.

During each episode, one job per time-step would arrive for

the first 400 consecutive time-steps. The maximum episode length,

𝑇𝑚𝑎𝑥 was set to 1000. The number of episodes, 𝐸, per job sequence

was set to 20. The number of job sequences, 𝐽 , was different for the

minibatch and streaming training experiments.

The length of the job, 𝑙𝑒𝑛(𝑗), and its resource request,𝑔𝑝𝑢𝑠𝑟𝑒𝑞(𝑗),
were sampled from uniform distributions. Roughly half the jobs

had 𝑙𝑒𝑛(𝑗) between 1 and 3, and the other half between 6 and 10.

Similarly, roughly half of the jobs had 𝑔𝑝𝑢𝑠𝑟𝑒𝑞(𝑗) between 1 and 7,

and the other half between 8 and 12.

5.1.1 Non-Streaming vs Streaming Training. For non-streaming

data training, a static set 200 training and 200 testing job sequences

were created before the start of an epoch.

For streaming data training, a fresh set of 60 training job se-

quences were used every 10 epochs. At the end of every epoch, a

fresh set of 60 testing job sequences were used for testing.

For both training scenarios, the training and testing perfor-

mances were plotted for 50 epochs, every epoch.

5.2 Performance Measures
5.2.1 Mean Reward. To display the reward across all 𝐸 episodes

and 𝐽 job sequences of a single epoch, the first return, 𝐺𝑖
1
of each

episode 𝑖 is collected for every job sequence. Notice that the usual

formula for the first return,𝐺𝑖
1
, is already an aggregate (a discounted

sum) of all rewards of a single episode. In this paper, we refer to

Mean Reward as the mean of all 𝐺𝑖
𝑖
across all job sequences and

episodes of an epoch:

𝑀𝑒𝑎𝑛 𝑅𝑒𝑤𝑎𝑟𝑑 =
1

𝐽

1

𝐸

∑
𝑗

∑
𝑖

𝐺𝑖
1
. (16)

where job sequence index j is omitted in the return for simplicity.

5.2.2 Slowdown. In scheduling studies, it is also instructive to plot

the slowdown. Slowdown for a single job is defined as,

𝑆𝑙𝑜𝑤𝑑𝑜𝑤𝑛(𝑗) = 𝑓 𝑖𝑛𝑖𝑠ℎ𝑡𝑖𝑚𝑒 (𝑗) − 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑡𝑖𝑚𝑒 (𝑗)
𝑙𝑒𝑛(𝑗) , (17)

90

Towards Topology Aware Pre-Emptive Job Scheduling with Deep Reinforcement Learning CASCON ’20, Nov 10–13, 2020, Toronto, Canada

where 𝑓 𝑖𝑛𝑖𝑠ℎ𝑡𝑖𝑚𝑒 (𝑗) is the time step at which a job finished. If by

time step 𝑇𝑚𝑎𝑥 there exists unfinished jobs, then those jobs are

assigned 𝑇𝑚𝑎𝑥 as the finish time. 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑡𝑖𝑚𝑒 (𝑗) is the time-step at

which a job arrives.

To associate an aggregate slowdown for an entire epoch, we

calculate the Mean Slowdown by simply taking the average job

slowdowns across all jobs that arrived during an epoch. This mean

is taken across all job sequences and all episodes of an epoch.

5.3 Evaluation baselines
To compare with baseline job picking and resource allocation meth-

ods, we used the following static schedulers from [8]: Random,

Shortest-Job-First (SJF), and Tetris. These schedulers only performed

job picking, by selecting one job at a time among the jobs in the slots.

The Random and SJF job pickers are self-explanatory. Tetris is based

on [6]. Its implementation in our environment works by picking

the job whose resource request 𝑔𝑝𝑢𝑠𝑟𝑒𝑞(𝑗), when multiplied by the

number of available GPUs, leads to the largest value. For resource

allocation for these schedulers, the behaviour of heuristic resource

allocator from [8] was preserved. This baseline resource allocator

simply numbered the resources of a certain type consecutively,

then picked the first x resources to assign, where x is the number

resources of a certain type requested by a job. The allocator would

search for free resources in the cluster representation of the input

image from left to right starting at the top of the image. For a given

job, its resource allocations across the GPUs were required to begin

at the same time step. Although this baseline resource allocator is

not topology aware, we made sure to use the capabilities of our

simulator to calculate the unique speed of jobs scheduled by these

schedulers.

The Total Rewards and Average Slowdowns were also computed

for these baseline schedulers. The extra penalties explained in sec-

tion (4.4.2) were of course not used because they are not applicable

to static resource allocators.

5.4 Performance Results
The results of measuring Mean Reward and Mean Slowdown for the

non-streaming data and streaming data training experiments are

shown in figure 4 and 5, respectively. The figures show that mean

reward and slowdown performance of RL-TAPS is clearly better

than the baseline schedulers. The baseline schedulers performed

poorer because they do not learn to, nor even heuristically, take into

account topology. In order for an NN to take into account topology,

there must be some signal to guide it to understand that certain

values of units in the input correspond to desirable choices made by

the output. In the case of our prototype, this signal only came in the

form of a topology-sensitive reward signal and current GPU to job

assignments. To our surprise, the NN was able to learn even though

the bandwidth usages of the topology were not explicit features in

the input.

The non-streaming training method showed slightly better per-

formance than the streaming training method with respect to the

mean reward, but the performance with respect to mean slowdown

were similar. This is good news as the end goal is to first train

RL-TAPS in a simulation environment, but deploy and continue to

train in a real cluster. The big benefit of detailed topology modelling

0 10 20 30 40 50
Epoch

1200

1100

1000

900

800

700

M
ea

n
Re

wa
rd

0 10 20 30 40 50
Epoch

60

70

80

90

100

M
ea

n
Sl

ow
do

wn

Tetris test
SJF test

Random test
RL-TAPS test

RL-TAPS train

Figure 4: Mean Reward (top) and Slowdown (bottom) for the
non-streaming data training scenario (see 5.1.1).

0 10 20 30 40 50
Epoch

1300

1200

1100

1000

900

800

M
ea

n
Re

wa
rd

0 10 20 30 40 50
Epoch

60

70

80

90

100

110

M
ea

n
Sl

ow
do

wn

Tetris test
SJF test

Random test
RL-TAPS test

RL-TAPS train

Figure 5: Total Reward (left) and Slowdown (right) for the
streaming data training described (see5.1.1).

is that training can start in simulation and thus the scheduler could

potentially be useful when it is deployed, without having to wait

months to be trained.

6 DISCUSSION
Training NNs with the Policy Gradient method is often fraught with

difficulties such as unstable policy parameters. Interesting and also

concerning is that most of the learning in our experiment happens

very early on and quickly plateaus. Further investigation is needed

with regard to whether learning is stopping prematurely, or actually

progressing well very quickly. With respect to the environment

modelling, one limitation is that we have not yet modelled the

cost of pausing and restarting DDL type jobs. Given the strong

performance of RL-TAPS thus far, however, we are hopeful that
RL-TAPS will still be capable of outperforming the no-preemption

methods. Making this improvement may require some change to the

input or the RL simulation. Another limitation currently is that the

NN input design makes simulating large cluster sizes prohibitive.

The jobslot representations are quite wasteful as many units of the

input may end up with zeros. A fully connected hidden layer to

a large input layer is not scalable. The large output search space

also contributes to the high parameter count of our NN (roughly

1 million). Nonetheless, once trained, our NN completes a single

inference step in less than 0.1 seconds on CPU. If incorporated into

a production scheduler, RL-TAPS will not require many resources.

91

CASCON ’20, Nov 10–13, 2020, Toronto, Canada Bon Ryu, Aijun An, Zana Rashidi, Junfeng Liu, and Yonggang Hu

7 CONCLUSION AND FUTURE WORK
We proposed a deep reinforcement learning based scheduler that

simultaneously selects jobs and assigns resources to them. Job se-

lection and resource allocation are non-linearly related and this

scheduler addresses the challenge associated with attempting to

simultaneously solve these two dependent combinatorial optimiza-

tion problems. Our scheduler RL-TAPS considers the topology of

the environment and allows for full preemption. We evaluated the

performance of RL-TAPS in different scenarios and compared it

against various baselines demonstrating the efficiency and effec-

tiveness of our method.

Going forward, we wish to address the scalability issue of the NN.

In the short term, we will try reformulating the input into some-

thing that is more compact, with room to incorporate topology

bandwidth information. There is also the need to solve additional

assignment problems such as which reduction algorithm to assign

to a job for both intra-machine and inter-machine communication.

For example, Nvidia’s NCCL library as well as IBM’s DDL library

consists of various different gradient reduction (i.e. averaging) al-

gorithms for both within and between machine communication.

The question of how to solve multiple simultaneous assignment

problems without exploding the search space must be investigated.

In addition to the full preemption scheduling of RL-TAPS, we
wish to explore other preemption methods mentioned in section

1. Designing a full-preemption NN was less complicated then de-

signing an NN that can handle partial-preemption decisions due to

the requirement of enforcing constraints in the latter. Currently, to

our knowledge, there exists no NN architecture method that would

allow one to enforce inequality constraints. The combinatorial op-

timization techniques with NNs to date have all avoided tackling

such problems. We approached this issue in our work through

penalties, but RL-TAPS fails to enforce them strictly. Likely this

problem may require novel NN ideas to solve, and would be a very

interesting endeavour.

REFERENCES
[1] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio.

2017. Neural Combinatorial Optimization with Reinforcement Learning. ArXiv
(Jan. 2017). http://arxiv.org/abs/1611.09940 arXiv: 1611.09940.

[2] Alexandre Caldeira, M. Kahle, Gerard Saverimuthu, and K. C. Vearner. 2015. IBM

power systems S822LC technical overview and introduction. IBM Red Paper
(2015).

[3] Minsik Cho, Ulrich Finkler, Sameer Kumar, David Kung, Vaibhav Saxena, and

Dheeraj Sreedhar. 2017. PowerAI DDL. (Aug. 2017). https://arxiv.org/abs/1708.

02188

[4] Giacomo Domeniconi, Eun Kyung Lee, and Alessandro Morari. 2019. CuSH:

Cognitive ScHeduler for Heterogeneous High Performance Computing System.

InDRL4KDD 19:Workshop on Deep Reinforcement Learning for Knowledge Discover.
7.

[5] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker,

and Ion Stoica. 2011. Dominant resource fairness: fair allocation of multiple

resource types. In Proceedings of the 8th USENIX conference on Networked systems
design and implementation (NSDI’11). USENIX Association, Boston, MA, 323–336.

[6] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and

Aditya Akella. 2014. Multi-resource packing for cluster schedulers. In Proceedings
of the 2014 ACM conference on SIGCOMM - SIGCOMM ’14. ACM Press, Chicago,

Illinois, USA, 455–466. https://doi.org/10.1145/2619239.2626334

[7] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeongjae Jeon,

Junjie Qian, Hongqiang Liu, and Chuanxiong Guo. 2019. Tiresias: A {GPU}

Cluster Manager for Distributed Deep Learning. 485–500. https://www.usenix.

org/conference/nsdi19/presentation/gu

[8] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. 2016.

Resource Management with Deep Reinforcement Learning. In Proceedings of the
15th ACM Workshop on Hot Topics in Networks (HotNets ’16). ACM, New York,

NY, USA, 50–56. https://doi.org/10.1145/3005745.3005750

[9] Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V. Le, and Jeff

Dean. 2018. A Hierarchical Model for Device Placement. (Feb. 2018). https:

//openreview.net/forum?id=Hkc-TeZ0W

[10] Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Rasmus Larsen,

Yuefeng Zhou, Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff

Dean. 2017. Device Placement Optimization with Reinforcement Learning.

arXiv:1706.04972 [cs] (June 2017). http://arxiv.org/abs/1706.04972 arXiv:

1706.04972.

[11] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo. 2018.

Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters.

In Proceedings of the Thirteenth EuroSys Conference (EuroSys ’18). ACM, New York,

NY, USA, 3:1–3:14. https://doi.org/10.1145/3190508.3190517 event-place: Porto,

Portugal.

[12] Samuel. 2020. albanie/convnet-burden. https://github.com/albanie/convnet-

burden original-date: 2017-08-04T10:11:16Z.

[13] Richard S. Sutton. 2018. Reinforcement learning: an introduction (second edition.

ed.). The MIT Press, Cambridge, Massachusetts.

[14] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2017. Pointer Networks.

arXiv:1506.03134 [cs, stat] (Jan. 2017). http://arxiv.org/abs/1506.03134 arXiv:

1506.03134.

[15] Ronald J. Williams. 1992. Simple statistical gradient-following algorithms for

connectionist reinforcement learning. Mach Learn 8, 3 (May 1992), 229–256.

https://doi.org/10.1007/BF00992696

[16] Wei Zhang. 1996. Reinforcement learning for job-shop scheduling. (1996).

[17] Wei Zhang and Thomas G. Dietterich. 1995. A reinforcement learning approach

to job-shop scheduling. In IJCAI, Vol. 95. Citeseer, 1114–1120.
[18] Wei Zhang and Thomas G. Dietterich. 1996. High-performance job-shop schedul-

ingwith a time-delay TD (λ) network. InAdvances in neural information processing
systems. 1024–1030.

A INPUT CALIBRATION
To integrate the simulation with the reduction time measurements,

we associate a time span in seconds, 𝑡𝑟𝑜𝑤𝑠 (𝑐) , with each row of the

input image, and a computational distance for per cell, 𝑑𝑐𝑒𝑙𝑙 . The

table below shows how 𝑡𝑟𝑜𝑤𝑠 (𝑐) is calibrated as the time in sec-

onds it would take a vgg-vd-19 model to complete 1000 minibatch

iterations using a single GPU, over the horizon of the input image.

Table 2: Formulas to derive 𝑡𝑟𝑜𝑤 (𝑐) and 𝑑𝑐𝑒𝑙𝑙

subscript 𝑐 calibration variable

subscript 𝑓 means final or total

vgg-vd-19 calibration DNN model

𝑑𝑒𝑥 (𝑐) 20 × 109 FLOPs, complexity of model

𝑚 (𝑐) 256, minibatch size of model

𝑑𝑚 (𝑐) = 𝑑𝑒𝑥 (𝑐)𝑚 (𝑐) computational distance per minibatch

it 𝑓 (𝑐) 1000, total number of job iterations

𝑔(𝑐) 1, number of columns to represent the job

𝑑𝑓 (𝑐) = it 𝑓 (𝑐)𝑑𝑚 (𝑐)𝑔(𝑐) total computational distance of the job

𝑣 (𝑐) = 𝑣𝑃100 GPU speed

𝑡𝑓 (𝑐) =
𝑑𝑓 (𝑐)
𝑣(𝑐)

total job run time in seconds

rows (𝑐) 10, number of rows (horizon)

𝑛 (𝑐) = 𝑟𝑜𝑤𝑠 (𝑐)𝑔(𝑐) number of highlighted cells for job in

jobslot

𝑑𝑐𝑒𝑙𝑙 =
𝑑𝑓 (𝑐)
𝑛 (𝑐)

calibrated computational distance per cell

𝑡𝑟𝑜𝑤 (𝑐) =
𝑡𝑓 (𝑐)

𝑟𝑜𝑤𝑠 (𝑐)
calibration time of each row in seconds

92

http://arxiv.org/abs/1611.09940
https://arxiv.org/abs/1708.02188
https://arxiv.org/abs/1708.02188
https://doi.org/10.1145/2619239.2626334
https://www.usenix.org/conference/nsdi19/presentation/gu
https://www.usenix.org/conference/nsdi19/presentation/gu
https://doi.org/10.1145/3005745.3005750
https://openreview.net/forum?id=Hkc-TeZ0W
https://openreview.net/forum?id=Hkc-TeZ0W
http://arxiv.org/abs/1706.04972
https://doi.org/10.1145/3190508.3190517
https://github.com/albanie/convnet-burden
https://github.com/albanie/convnet-burden
http://arxiv.org/abs/1506.03134
https://doi.org/10.1007/BF00992696

Pred-Cache: A Predictive Caching Method in Database Systems
Omar El Zarif, Safwat Hassan
(oelzarif,shassan)@cs.queensu.ca

Queen’s University
School Of Computing

Kingston, Ontario, Canada

Ying Zou
ying.zou@queensu.ca
Queen’s University

Department of Electrical and
Computer Engineering

Kingston, Ontario, Canada

Calisto Zuzarte, Vincent
Corvinelli, Mohammed

Alhamid
(calisto,vcorvine)@ca.ibm.com
mohammed.alhamid@ibm.com

IBM Canada Ltd

ABSTRACT
The performance of large-scale systems (LSS) depends heavily on
the time consumed in retrieving users’ data from the databases.
The database management system (DBMS) is essential to handle
the storage and retrieval of users’ data. Recent studies show that
performance degradation in retrieving users’ data can cause a severe
revenue loss. Hence, improving the performance of the DBMS is
essential for maintaining and enhancing user experience.

Query caching is a technique employed by theDBMS that presents
immense improvements to the overall performance of the system.
Prior work improves query caching techniques by maximizing the
reuse of the cached queries (e.g., deciding on the beneficial queries
to cache and deciding on the cache eviction and replacement poli-
cies). However, the existing work is tailored to specific server query
languages and lacks in the adaptation to the different changing
factors in the system, such as the occurrences of queries, the time
of their occurrence, and query coupling.

In this work, we propose a predictive database caching frame-
work, which can be deployed as a middleware layer independently
from the database system. Our framework uses deep learning mod-
els to predict expensiveness (in terms of execution time) and the
occurrences of queries to guide the caching process. We evaluate
our framework using the TPC Benchmark DS (TPC-DS) database
where we generate a 50GB database with 100,000 queries. Remark-
ably, our framework improves the cache hit ratio by 6% to 29% over
the existing query caching mechanisms in the different benchmark
scenarios that simulate the different types of query histories.

KEYWORDS
database systems, deep learning, neural networks, query caching

1 INTRODUCTION
The composition of modern software systems, particularly large-
scale software systems, relies heavily on the interaction of the
software with the database system to process the imposed huge
amounts of data. Query caching is considered an essential technique
to improve the performance of the software systems by improving
the execution times in the database [8, 16, 17, 55].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CASCON’20, November 10 - 13 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

If Q(t) exists in the cache,
then the system reuses the

cached query
Query at

time t. Q(t)

The query caching
mechanism

updates the cache

Cache at time t

Cache at time t +1

Figure 1: An overview of the query caching mechanism.

Query caching increases the performance of a system as it elimi-
nates the re-execution of queries. Figure 1 shows an overview of
the query caching mechanism. As shown in Figure 1, the new com-
ing query at time t Q(t) is matched against the cache to eliminate
the re-execution of queries in the system [38, 59]. Then, the query
caching mechanisms decide whether to update the content of the
cached queries if Q(t) is not already cached. The decision to cache a
query should aim to maximize the reuse of the query, and thereby
increase the system performance while adhering to the memory
constraints of the system [36, 44]. Query caching is an extensively
studied topic in database systems [4, 20, 38, 40, 42, 43, 59]. It has
been approached by different aspects, such as identifying benefi-
cial queries to cache in a system and deciding the optimum query
eviction or replacement policies [4, 5, 40, 42].

Prior work proposes reactive caching mechanisms that main-
tain the cache content by controlling the cache eviction mecha-
nisms, such as Least Recently Used (LRU) [36], Least Frequently
Used (LFU) [44], and Least Recently Frequently Used (LRFU) [37]
mechanisms. The content cached by applying reactive mechanisms
is driven by the current access patterns in the system (e.g., caching
the most frequently used queries). The reactive caching mecha-
nisms are easy to implement. They proved their efficiency in the
cases of repetitive data in the system. However, under constrained
cache sizes these strategies lead to thrashing in the system [14].
The mechanisms are passive and slow as they start by caching a
huge amount of insignificant data until popular data patterns start
to emerge [10, 12, 61].

In contrast, proactive caching mechanisms are introduced to
solve the slow responsiveness of the reactive cachingmechanisms [40,
43, 62]. Proactive caching tends to evaluate the cost of queries (in
terms of execution time) before deciding on the caching process.
For example, prior work relies on the execution time estimation
using query execution plans (QEPs) to cache the queries with a
high-execution time [26, 43]. However, query execution plans are
system-oriented and require manual work and tuning of the data-
base system for better cost estimation [13, 31, 52].

To introduce a cache between the software’s query request and
its execution in the database system, we present a framework for

93

CASCON’20, November 10 - 13 2020, Toronto, Canada El Zarif, et al.

proactive query caching in database systems as follows. First, the
frameworkpredicts the upcoming queries using a recurrent neu-
ral network (RNN) [47]. Second, the framework predicts the cost
(as the execution time and memory requirements) of the upcoming
queries using a feed-forward neural network (FFNN) [65]. Finally,
our framework caches the upcoming queries with long-execution
time and low-memory requirements predictions (i.e., prefetch and
cache the cost-efficient queries).

We assess the impact of using our framework on the perfor-
mance of the system by calculating the cache hit ratio [71]. In
particular, we compare the performance of our framework with the
traditional reactive caching mechanisms (i.e., LRU, LFU, and LRFU
mechanisms). We benchmark our work following various generated
scenarios of query executions (e.g., running queries in sequential
order) in the system. Each scenario was produced from the TPC-DS
workload benchmark [49, 56] where we generated 100,000 queries
on a 50GB database to simulate our study. In particular, we analyze
the following research questions (RQs) to evaluate our framework:
RQ1: How accurate are the cost estimation and the prefetch-
ing functions?

The feed-forward neural network exhibits high accuracy in
the prediction of memory and runtime with AUC above 0.9. In
addition, the recurrent neural network exhibits high accuracy
in predicting the next queries with a perplexity score of 25.

RQ2: What mechanisms exceed in terms of the cache hit ra-
tio in the different benchmark scenarios?

The prefetching of the predicted queries (i.e., using RNN) and
the prefetching of the cost-efficient queries (i.e., using both
RNN and FFNN) outperform the traditional reactive caching
mechanisms in all of our benchmark scenarios.

RQ3: What is the percentage of improvement of our frame-
work over the traditional mechanisms?

Using our proactive caching framework, the percentage of im-
provement in the cache hit ratio ranges from 6% to 29%, on
average, over the traditional reactive caching mechanisms (i.e.,
LRU, LFU, and LRFU).

Our main contributions can be described as follows:

(1) We present a proactive caching framework that combines the
query cost estimation and the prefetching of future cached
queries in the system.

(2) Our framework can be deployed as an independent in-memory
middleware layer between any software and database as the
queries are abstracted. Hence, it does not require any config-
uration or modification in the database system.

(3) The benchmark results exhibit improvements of our proac-
tive caching mechanisms over the work of the traditional
reactive caching mechanisms.

Paper Organization: The rest of the paper is organized as fol-
lows, we provide a background on FFNN and RNN in Section 2. We
describe the data collection process in Section 3. We describe our
framework in Section 4. We showcase the results in Section 5. We
discuss the threats to validity in Section 6. We present the related
work in Section 7. Finally, we conclude the paper in Section 8.

 100 queries
template

100k queries
and 50GB DB

100k queries
labelled

with runtime and
memory usage

Generate the
queries and DB

(TPC-DS)

Execute the
queries
(Spark)

Figure 2: The data labeling process.

2 FFNN AND RNN BACKGROUND
We use the RNN and the FFNN to predict the upcoming queries
and prefetch the cost-efficient queries.

The FFNN is the basis of supervised deep learning problems.
FFNN is a form of the basic neural networks where the information
flow from one layer to the next layer in a unidirectional manner,
unlike recurrent neural networks where the information flow bidi-
rectionally from next and previous layers [65]. The FFNN works
by estimating a function 𝑓 ∗. The problem is defined as a classifier
𝑦 = 𝑓 ∗ (𝑥) that maps an input 𝑥 to a class 𝑦. The FFNN defines a
function 𝑦 = 𝑓 (𝑥, 𝜃), where it learns the parameter 𝜃 to approx-
imate the value of 𝑓 ∗ (𝑥). The input x defines the first layer, the
function 𝑓 represents the intermediate layers, and the output y
defines the last layer. The information flows from the first to the
last layer, where the parameter 𝜃 is evaluated at the output layer,
and recalculated for the next 𝑓 ∗ (𝑥) estimation [23].

The RNN is a descendant of the FFNN. The work of the RNN
suits the problem of classifying a sequence of inputs to a sequence
of outputs. The RNN maps a sequence of inputs 𝑥 ...𝑥𝑛 to outputs
𝑦...𝑦𝑛 . Where the function𝑦 = 𝑓 ∗ (𝑥) maps each 𝑥 to𝑦 over the time-
steps of 𝑡1 ...𝑡𝑛 . To approximate the function 𝑓 ∗, the RNN defines the
functions𝑦𝑡 = 𝑓 (𝑥, 𝜃𝑡 +𝜃𝑡−1), where the parameter 𝜃 is reevaluated
at each time step to approximate the value of 𝑓 ∗ (𝑥) [23, 47].

3 DATA COLLECTION
Our study is based on the TPC-DS database [49]. The database
represents a data warehouse that revolves around online analytical
processing tasks. TPC-DS database emulates a decision-support
system of a retail product supplier with 100 defined queries that
represent reporting jobs, which covers all the database tables. The
database schema constitutes of 24 tables with an average of 18
columns per table, and 108 foreign keys, which signifies the com-
plexity of the system.

The TPC-DS database employs benchmarking capabilities where
it allows scaling and augmenting the database size and queries [56,
57]. Neural networks require data samples in the order of thousands
to be trained [6, 67]. Hence, we augmented the number of original
queries in the TPC-DS database to attain a sufficient number for
the training and validation of our neural networks.

The augmentation of queries uses each of the 100 most used
queries as templates. We augment to 1,000 queries from each tem-
plate query by replacing the conditional operations that follow the
WHERE clause in the query with random values. In the end, we gen-
erate a 50 GB SQL database, with 100 thousand queries augmented
from the 100 most used queries in TPC-DS.

We showcase the labeling process in Figure 2. The queries need
to be labeled by their execution time and memory consumption
to train our FFNN model, as the FFNN serves as a cost estimator.
The FFNN model predicts the runtime and memory consumption
of a new incoming query to guide the caching decision. We labeled

94

Pred-Cache: A Predictive Caching Method in Database Systems CASCON’20, November 10 - 13 2020, Toronto, Canada

Table 1: The data set description.

Data Set # of
queries

of
unique
queries

Description

Full data 100,000 29,000 The whole number of generated
queries.

Training data 70,000 23,000 Data used to train and validate the
FFNN.

Benchmarking
data

30,000 6,000 Data used to train the RNN and bench-
mark our approach.

the queries by loading the TPC-DS dataset to Spark [74]. Then, we
execute the 100 thousand queries using Spark framework. Spark is
an open-source parallel computing framework that allows import-
ing large-scale databases and the parallelization of the execution
of multiple queries in the system. This process allows an accurate
memory and runtime recording in terms of milliseconds and bytes.

The initial data collection process allows us to establish a bench-
mark of 100 thousand queries that serve as the basis of our approach
for training, testing and benchmarking our two neural networks in
different scenarios. As shown in Table 1, the 100 thousand queries
were cut into 70% to train and validate the FFNN and 30% to train
the RNN. The same 30% of the queries were also used to benchmark
our approach.

4 OVERVIEW OF OUR FRAMEWORK
Figure 3 shows an overview of our approach. For each incoming
query in the system, first, our framework generates the query em-
beddings that converts the input query text to an embedding vector.
Second, our framework predicts the next upcoming five queries using
the RNN. We chose the number five since the RNN is able to cor-
rectly predict the next five queries with high accuracy of 95%, on
average, in our hyperparameter tuning experiments. The accuracy
in predicting more than five upcoming queries drops by 15% when
that number is incremented by five progressively (i.e., next 10, next
15, etc.). We discuss that process further in Section 6. Third, the
FFNN predicts the cost (i.e., the runtime and memory consumption)
of the upcoming queries. Finally, the framework prefetches the cost-
efficient queries among the upcoming ones. Our framework evicts
queries based on any reactive caching algorithm (e.g., LRU, LFU,
and LRFU) when the cache size would not fit the upcoming queries.
In the next sections, we describe the steps for generating query
embeddings, the architecture of the used neural networks (i.e., RNN
and FFNN), and the benchmark process.

4.1 Generate Word Embeddings for Queries
The FFNN processes the text embeddings of queries as an input. The
FFNN is trained to estimate the memory consumption and runtime
of the queries. Transforming the query text to query embeddings
inherently guards the meaning of the operations of the query which
makes the cost estimation achievable.

To extract embeddings for each query, we employWord2Vec [21]
to transform each word in the query text to a 64 bits array. The
Word2Vec algorithm works by reducing each word in the input
(i.e., corpus) into a unique vector. The vectors are positioned in a

hyperdimensional space where words that share common contexts
are positioned close to each other [60]. To represent the overall
embedding of a query, the vectors for each word in a query text
are summed and normalized using L2 normalization [70, 72]. To
validate the correctness of the final query embeddings, we use
the cosine similarity metric [53]. The cosine similarity measures
the angle between two vectors projected in a hyperdimensional
plane where a value of 1 signifies a total overlay of the two vectors
meaning that the vectors are identical [69].

To verify the contextual similarity of the generated embeddings
that are derived from the same template, we measure the cosine
similarity among the generated 1,000 queries of each template of
the 100 TPC-DS query templates. The mean cosine similarity varies
from 0.85 to 0.92 in the 100 query templates, which proves the
correctness of our embedding extraction.

The RNN extracts the patterns from a sequence of executed
queries. Hence, RNN needs to represent every query as a unique
value in the input sequence of queries [7]. To represent the queries
as unique values, we hashed the whole query text into 256 bits
hash using SHA256 [58]. The algorithm secures collision resistance
giving a unique hash for each text [33], thus securing unique words
for each unique query.

4.2 Architecture of Neural Networks
The Feed-Forward Neural Network. The FFNN [65] is used to
estimate the cost of executing a query. It consists of two hidden
layers with rectified linear units (ReLU) [48]. The input layer of the
neural network is of size 64 bits and accepts the aforementioned
extracted embeddings of the queries. The neural network has two
outputs layers: the first layer is used for predicting the memory
consumption of the query, and the second layer is used to predict
the execution time of the query. The two outputs employ a Soft-
max activation function. Softmax serves a multi-class probability
prediction at the last layer of the neural network by normalizing
the outputs by the sum of their exponents to represent them as a
probability distribution [22].

To adhere to the usage of Softmax as output layers, we quan-
tized the runtime and memory consumption. Quantization serves
in increasing the accuracy of predictions in neural networks by
predicting the quantiles (i.e., the classes) instead of predicting a
distribution of real numbers [18]. We quantize the runtime and
memory distributions to three classes (e.g., low, medium, and high).
The first class represents the quantile from 0% to 33% that is the
low-level memory consumption or runtime, the second class de-
scribes the 34% to 66% quantile that is the medium-level memory
consumption or runtime, and the last class from 67% to 100% quan-
tile represents the high-level runtime or memory consumption.
This process avoids predicting the exact runtimes or memory con-
sumption to a classification task that predicts ranges of runtime or
memory consumption described as low, medium, and high.

The FFNN is trained on 70 thousand of the 100 thousand gen-
erated queries (i.e., training and validation dataset) as shown in
Table 1. We guarantee the uniqueness in the training dataset to
eliminate overfitting in the neural network that may occur if the
same data appears in the training and the validation process. Hence,
we train and validate the FFNN on the 23 thousand unique queries

95

CASCON’20, November 10 - 13 2020, Toronto, Canada El Zarif, et al.

Incoming
query

Five
upcoming

queries

Memory and
runtime predictions
of the five upcoming

queries

Predict the next five
queries using the RNN

Estimate the cost of each
query using the FFNN

Prefetch the cost-efficient
queries Updated

cache

Generate Word
embeddings for the
incoming queries

query
embeddings

Figure 3: An overview of our query caching framework.

of the training dataset after filtering the 70 thousand queries from
duplicates.

This data (i.e., the 23,000 queries) is split into 80% training and
20% validation split using 10 folds cross-validation. Each fold is split
into the same percentage (80%-20%) as we trained and validated
the FFNN.
The Recurrent Neural Network. The neural network consists
of two long short term memory (LSTM) layers [19] with 10 units
per layer. The LSTM layer serves the objective of predicting future
queries at each time step. The time steps are the index of the query
in the sentence of queries. The LSTM is widely used to process a
sequence of data as it solves the vanishing gradient problem when
the sequence of data lingers in its length [64].

As shown in Table 1, we train the RNN on the 30 thousand
queries that form the benchmark dataset. The vocabulary of the
dataset consists of 6 thousand unique queries after filtering the
30 thousand queries from duplicates. Hence, the output layer of
the RNN consists of a Softmax layer with 6 thousand classes that
represents the vocabulary of our corpus (i.e., the number of unique
queries in the benchmark dataset). The Softmax layer serves as
a probability prediction of the most suitable word (i.e., query) to
occur at each time step. We take the highest five probabilities to
predict the upcoming five queries from the previous queries.

4.3 Generating The Different Datasets
The datasets for training the RNN is formed by hashing the query
texts and generating the order of queries under three different
scenarios. Each scenario represents a different plausible real-life
occurrence of queries. The RNNs identify the occurrences of queries
to form patterns that lead to the prediction of upcoming queries.
The occurrences are represented by the repetition of the same hash.
Sequence Dataset. The sequence dataset represents the queries
that occur sequentially in real-life scenarios. For example, some
queries might be part of a task where they are always executed
consecutively. This could be part of a reporting job where differ-
ent queries on different tables are executed in sequence to extract
the data. To generate the sequence dataset, we choose a random
query from each of the 100 templates in our benchmark dataset
sequentially until we reach all the queries in the benchmark dataset.
Batch Dataset. The batch dataset represents a scenario where the
queries might co-occur as a batch of jobs. Similarly to the sequential
scenario, the batch represents jobs where a group of queries is
repeated in a sequence. The generation of the batch dataset is
similar to the sequence dataset where the only difference is instead
of choosing one query of each template to run sequentially, we
chose n numbers of queries of each template from the benchmark
dataset randomly to run sequentially.

Random Dataset. The random dataset is formed by shuffling the
whole benchmark dataset. We chose random scenario as a stress
test for our framework. The sequential and batch histories will
guarantee patterns that will enhance the work of the prefetching
mechanism (i.e., the RNN). In contrast, we test our prefetching
mechanism when the scenario is formed by a random occurrence
of queries. An effective prefetching mechanism should not suffer
from a major degradation in performance in this scenario.

4.4 The Benchmark Process
The benchmark process relies on three different workloads that
are generated similarly to the datasets for training the RNN. To
simulate the work of the RNN and the FFNN in practice, we gen-
erate from the benchmark dataset another sequential, batch, and
random datasets. The benchmark workloads were also generated
from the same data that was used to train the RNN to guarantee
that the same vocabulary (i.e., corpus for the RNN) is consistent.
But the generation guarantees a different order of occurrences of
queries. Hence, the training and the benchmark data for the RNN
are different.

We evaluate the results on each generated benchmark dataset
on its own comparing the cache hit ratio of the proactive caching
mechanisms (e.g., the RNN, and the combination of the RNN with
the FFNN) and the reactive caching mechanisms (e.g., LRU, LFU,
and LRFU). The execution time in the system should be reduced
with the presence of the same incoming query in the cache, while
the cache hit ratio increases when the same incoming query is
present in the cache. Thus, the cost estimation and the prefetching
mechanisms are compared against the traditional mechanisms LRU,
LFU, and LRFU. The cache hit ratio is recorded gradually while we
process the queries from each generated benchmark dataset into
the system and either execute them or reuse the queries from the
cache if they are present as shown in Figure 4.

4.5 Caching Decision for the Different
Mechanisms

As shown in Figure 4, we compared each of our mechanisms (i.e.,
the RNN plus the combination of the RNN and the FFNN) against
the traditional reactive caching mechanisms (i.e., LRU, LFU, and
LRFU) to validate the performance of each our mechanisms.

The RNN predicts for each incoming query the next five incom-
ing queries and caches them. The prefetching mechanism relies on
the patterns of occurrences of queries learned from the training
process.

We combined the recurrent neural network and the FFNN
(RNN-FFNN) to prefetch and cache expensive queries only. After
predicting the next five upcoming queries, each query would fall un-
der the prediction of the FFNN to estimate the runtime and memory

96

Pred-Cache: A Predictive Caching Method in Database Systems CASCON’20, November 10 - 13 2020, Toronto, Canada

 30K queries
sequence
dataset

 30K queries
batch dataset

 30K queries
random
dataset

30K
 Queries

Cache using
RNN and RNN-

FFNN

Calculate the
cache hit ratio

Cache
using LRU, LFU

and LRFU

Generate the
benchmark

datasets

Run the generated
benchmark

datasets

Figure 4: The benchmark process.

consumption. The mechanism prefetches and caches the queries
with medium or high runtime and low memory consumption when
the cache is 70% full. The condition is relaxed when the cache does
not reach that threshold to cache any incoming query. We have
tested this mechanism under different thresholds and found that
70% is the best suitable threshold under different cache sizes. The
low, medium and high predictions are the results of the quantiza-
tion of the real values as described in the data processing to three
classes or quantiles.

The two caching mechanisms that serve the prefetching (RNN),
and the cost estimation and prefetching combined (RNN-FFNN)
would guide the decision for caching the queries, but their work
is incomplete with the absence of caching eviction mechanisms.
Hence, we implemented the work of LRU, LFU, and LRFU to be
employed as cache eviction policies, either on their own or with
the combination of our proactive caching mechanisms (RNN, and
RNN-FFNN).

We benchmark our results and compare the usage of each tra-
ditional mechanism with its modified version respectively (e.g.,
comparing LRU with the RNN that uses LRU as an eviction mecha-
nism).

5 RESULTS
In this section, we present the motivation, the approach, and the
results of the studied research questions.

5.1 RQ1: How accurate are the cost estimation
and the prefetching functions?

Motivation: Before employing our two neural networks (FFNN
and RNN), we need to evaluate the accuracy of our work in cost
estimation and the prediction of the next queries. Hence, we can
ensure the correctness of the predictions of our two neural networks
to employ them in prefetching the cost-efficient queries.
Approach: To evaluate the FFNN we rely on the area under the
curve (AUC) metric [24, 25]. Our model outputs probability predic-
tions for runtime andmemory consumption. AUC tests the fit of our
model in probability predictions with different thresholds. A model
with an AUC value of 0.5 signifies a random prediction model. A
model with an AUC value of 1 signifies a model with perfect true
positives and true negatives predictions, while a model with an
AUC value of 0 signifies a model with perfect inverse probability
predictions [51].

We train our model on 10 folds cross-validation, thus the AUC
is calculated as the average AUC of the 10 folds on the validation

sets [45]. The 10 fold cross-validation reshuffles the data and re-
trains the network from scratch on each fold. Hence, the average
AUC demonstrates the effectiveness of our model in different data
distributions.

To ensure that the model is not showing bias in the result we
enforced weight class distribution in the training sets. The weights
added to the cross-entropy loss function (i.e., the neural network
loss function) ensure that the loss function is weighted to over-
come the biases in predicting one certain class since it is more
dominant [35, 73]. The average class weight across the 10 sets for
the runtime is 1.03 for class 0, 1.01 for class 1, and 0.95 of class
2. (The classes 0 to 2 represent the low, medium, and high classes
respectively). The average class weight for the memory is 0.80 for
class 0, 1.92 for class 1, and 0.81 for class 2.

The RNN is evaluated based on the perplexity score of the pre-
dictions. Given a sequence of input queries, the RNN predicts the
next query to occur. The RNN model uses a sequence loss function
(e.g., cross-entropy function) that predicts the most suitable query
from the vocabulary of queries at each time step. The model can
then be evaluated as a sequence to one prediction error by using
the perplexity metric. The perplexity measures the fit of the query
distributions on unseen data. The measured value represents the
inverse of the prediction probability of what is the next query to
occur. The perplexity is an unbounded function that can span to
infinity [30].
Results:We recorded the AUC for the runtime classification and
the AUC for the memory consumption classification. The runtime
AUC is 0.94 and the memory consumption AUC is 0.92. The AUC
function is resilient for varying class distributions, so the result
does not show biases [29]. The AUC was recorded as the average
of the 10 folds cross-validation on the validation sets. The training
and testing of the FFNN are produced on the training dataset, as
described in Section 3.

The RNN achieves an average perplexity score of 25 on the three
benchmark datasets. The lowest perplexity measure is 1, it means
that the fit is perfect, while a good language model should have a
perplexity lower than 200 [9].

Summary of RQ1

The FFNN exhibits high accuracy in the prediction of mem-
ory and runtime with AUC above 0.9. In addition, the RNN
exhibits high accuracy in predicting the next queries with
a perplexity score of 25.

5.2 RQ2: What mechanisms exceed in terms of
the cache hit ratio in the different
benchmark scenarios?

Motivation: In the previous RQ, we observe that our approach
can accurately predict the upcoming queries. In this RQ, we aim to
understand whether our proactive caching mechanism outperforms
the existing reactive cachingmechanisms (i.e., LRU, LFU, and LRFU).
Understanding the optimum caching mechanism can help system
owners better select suitable caching mechanisms to improve the
performance of the software systems.

97

CASCON’20, November 10 - 13 2020, Toronto, Canada El Zarif, et al.

Table 2: The cache hit ratio of the sequence scenario with
different caching mechanisms and varying cache sizes.

Mechanisms Small cache Medium cache Large cache Normal cache
LRU 0.12 0.41 0.62 0.37
LFU 0.17 0.48 0.66 0.43
LRFU 0.12 0.41 0.62 0.38
RNN + LRU 0.34 0.54 0.68 0.51
RNN + LFU 0.29 0.54 0.68 0.50
RNN + LRFU 0.34 0.54 0.68 0.51
RNN-FFNN + LRU 0.32 0.54 0.69 0.51
RNN-FFNN + LFU 0.29 0.54 0.69 0.51
RNN-FFNN + LRFU 0.32 0.53 0.68 0.51

Approach: The performance of query caching mechanisms can be
impacted by the cache size. Hence, we evaluate the performance
of the studied caching mechanisms using different cache sizes (i.e.,
small, medium, large, and the normal cache size). We design the
different cache sizes as follows. First, we set up the cache limit. The
cache limit represents a relative portion of the workload data that
can be stored in the memory. Caching the full data of all users in a
large-scale system can be very expensive and practically infeasible
[54]. Hence, we choose 30% (i.e., 2,000 queries) of the number of
unique queries in our benchmark dataset as the cache limit.

Then, given a certain cache limit, we define the used cache sizes
as follows. The small cache size is calculated by multiplying the
cache limit (i.e., 2,000 queries) with the minimum memory size of
a query. The medium cache size is calculated by multiplying the
cache limit with the median memory size of a query. The large
cache size is calculated by multiplying the cache limit with the
maximum memory size of a query. Finally, the normal cache size is
calculated by multiplying the cache limit with the average memory
size of a query. For every cache size, we recorded the cache hit ratio
using three different benchmark datasets (i.e., sequence, batch, and
random).

We benchmark two proactive mechanisms (1) fetching the up-
coming queries (i.e., using RNN) and (2) fetching the cost-efficient
queries (i.e., using RNN and FFNN named as RNN-FFNN). In addi-
tion, we benchmark three reactive approaches LRU, LFU, and LRFU.
As described in Section 4, proactive caching can use different evic-
tion mechanisms. Hence, we benchmark every proactive caching
mechanism (i.e., RNN and RNN-FFNN) with the three reactive ap-
proaches LRU, LFU, and LRFU. We represent the RNN that uses
the LFU cache eviction mechanism as “RNN + LFU”, the RNN that
uses LRU as“RNN + LRU”, and the RNN that uses LRFU as “RNN +
LRFU”. Similarly, we represent the RNN-FFNN that uses the LRU
cache eviction mechanism as “RNN-FFNN + LRU”, the RNN-FFNN
that uses LFU as “RNN-FFNN + LFU”, and the RNN-FFNN that uses
LRFU as “RNN-FFNN + LRFU”.
Results: Benchmarking the Sequence Scenario. As shown in
Table 2, the RNN-FFNN and the RNN exhibit the best results with
the normal cache size. The cache hit ratio ranges from 0.50 to
0.51 when using RNN or RNN-FFNN combined with any reactive
caching mechanism including LRU, LFU, and LRFU.

As shown in Table 2, in the small cache sizes, the RNN + LRU
and the RNN + LRFU perform the best. In the medium and large
cache sizes, adding the notion of cost estimation ameliorates the

Table 3: The cache hit ratio of the batch scenario with differ-
ent caching mechanisms and varying cache sizes.

Mechanisms Small cache Medium cache Large cache Normal cache
LRU 0.14 0.41 0.62 0.39
LFU 0.23 0.49 0.66 0.46
LRFU 0.14 0.41 0.63 0.39
RNN + LRU 0.27 0.49 0.69 0.48
RNN + LFU 0.37 0.57 0.69 0.54
RNN + LRFU 0.27 0.50 0.69 0.48
RNN-FFNN + LRU 0.17 0.39 0.67 0.41
RNN-FFNN + LFU 0.28 0.51 0.70 0.52
RNN-FFNN + LRFU 0.18 0.40 0.68 0.41

performance of prefetching. RNN-FFNN on top of the two reactive
caching mechanisms LRU and LFU exhibits the best cache hit ratios
of 0.54 and 0.69 for medium and large cache sizes respectively.

In summary, the RNN and the RNN-FFNN perform the best. In
the small cache sizes, the RNN performs better than the combination
of RNN and FFNN. The RNN-FFNN performs the best on medium
and large cache sizes.

Prefetching all the co-occurrent queries would save time more
than prefetching the expensive ones only. This is due to some
queries that might occur frequently but are not expensive. In large
cache sizes, prefetching more co-occurrent queries would cause
thrashing, thus leading to caching unnecessary queries. The cost
estimation function (i.e., using FFNN) would tune the work of the
prefetching mechanism as it combines the expensive and the co-
occurrent queries.

Summary of benchmarking the sequence scenario

The prefetching function solely (i.e., RNN) or combined
with the cost estimation function (i.e., RNN-FFNN) exhibits
the best results in terms of the cache hit ratio in the se-
quence scenario.

Results: Benchmarking the Batch Scenario. The cache hit ra-
tio results summarized in Table 3 indicates that the prefetching
mechanism using the RNN + LFU performs the best with a 0.54
cache hit ratio on normal cache size. The RNN-FFNN + LFU comes
in second place with a cache hit ratio of 0.52 on normal cache size.
The cache hit ratio for the RNN + LFU outperforms all the other
mechanisms on all the cache sizes except on the large cache size,
where RNN-FFNN + LFU performs slightly better.

In summary, for the batch scenario, the RNN + LFU performs
the best. In smaller and medium cache sizes, the RNN solely per-
forms better than the combination of RNN and FFNN. This is due
to the similar reasons in the sequence scenario that with bigger
cache capacities caching more content can cause thrashing. Hence,
the usage of FFNN to estimate the expensiveness and cache the
expensive queries would tune the performance of the system on
larger cache sizes.

98

Pred-Cache: A Predictive Caching Method in Database Systems CASCON’20, November 10 - 13 2020, Toronto, Canada

Table 4: The cache hit ratio of the random scenario with dif-
ferent caching mechanisms and varying cache sizes.

Mechanisms Small cache Medium cache Large cache Normal cache
LRU 0.13 0.41 0.62 0.38
LFU 0.18 0.46 0.66 0.43
LRFU 0.13 0.41 0.63 0.38
RNN + LRU 0.15 0.46 0.66 0.41
RNN + LFU 0.19 0.51 0.67 0.45
RNN + LRFU 0.15 0.46 0.66 0.42
RNN-FFNN + LRU 0.14 0.45 0.66 0.41
RNN-FFNN + LFU 0.19 0.51 0.68 0.45
RNN-FFNN + LRFU 0.18 0.45 0.66 0.41

Summary of benchmarking the batch scenario

The prefetching function using RNN solely exhibits the
best results in terms of the cache hit ratio. The combination
of the prefetching and the cost estimation functions (i.e.,
using the RNN-FFNN) comes in second place in the batch
scenario.

Results: Benchmarking the Random Scenario. Following the
cache hit ratio results in Table 4, the combination of the RNN-FFNN
over LFU reaches 0.45 cache hit ratio, as well as the RNN solely.

As listed in Table 4, in small cache sizes, the RNN and the com-
bination of the RNN-FFNN over LFU perform the best with a cache
hit ratio of 0.19. For the medium cache sizes, the RNN and the
RNN-FFNN over LFU show the best performance with a cache hit
ratio of 0.51. Finally, for the large cache sizes, the RNN-FFNN over
LFU performs the best with a cache hit ratio of 0.68.

On average, the two mechanisms (RNN or RNN-FFN) over LFU
perform the best. In a random scenario, the prefetching mechanism
suffers from degradation compared with the other scenarios. This
is due to the absence of recognizable patterns for the recurrent
network to learn. However, adding the notion of prefetching still
improves the performance over the reactive caching mechanisms.
In addition, adding the notion of cost estimation helps to improve
the prefetching in larger cache sizes.

Summary of benchmarking the random scenario

The prefetching function (RNN) or the combination of the
prefetching and the cost estimation functions (i.e., using
the RNN-FFNN) on top of LFU outperforms the reactive
caching mechanisms (e.g., LRU, LFU, and LRFU) in the
random scenario.

5.3 RQ3: What is the percentage of
improvement of our framework over the
traditional mechanisms?

Motivation: In this RQ, we study the percentage of improvement
of our framework over the reactive caching mechanisms in the
three benchmark scenarios. This can help demonstrate the added
benefits in using our proactive mechanism on top of the existing
reactive caching mechanisms.

Table 5: The percentage of improvement in cache hit ratio
of our framework over the traditional mechanisms.

Baseline % of improvement
mechanism Sequence Batch Random
LRU 35.4% 5.4% 8.7%
LFU 17.3% 7.3% 8.3%
LRFU 34.7% 6.1% 5.6%
Average 29.1% 6.3% 7.5%

Approach: The percentage of improvement is calculated as the
percentage of the increase in the cache hit ratio of one mechanism
over another. Table 5 shows the percentage of improvement of our
framework (i.e., the RNN-FFNN) over the LRU, the LFU, and the
LRFU mechanisms.
Results: Our proactive caching framework (i.e., the RNN-FFNN)
improves LRU from 5.4% to 35.4%. The RNN-FFNN improves LFU
from 7.3% to 17.3%. In addition, the RNN-FFNN improves LRFU
from 5.6% to 34.7%. The highest percentages of improvements are
in the sequence scenario that is 29% on average. The sequence
scenario represents the occurrences of queries in a well-defined
pattern where the work of the prefetching (i.e., RNN) would excel.

In the batch scenario, our framework improves over the tradi-
tional mechanisms by 6% on average. The improvements are lower
than the improvements of our framework in the sequence scenario
since the traditional mechanisms (LRU, LFU, and LRFU) use a greedy
approach to cache that fits the nature of the batch scenario. The
batch scenario could fit more repetitions of the same query in a
shorter time span than the sequence scenario where the greedy
caching attains better results.

For the random scenario, the improvement of our framework
over the traditional mechanisms is of 7% on average as it is hard
to predict the right upcoming queries in a scenario with no clear
patterns.

Summary of RQ3

Using our proactive caching framework, the percentage of
improvement in the cache hit ratio ranges from 6% to 29%,
on average, over the traditional reactive caching mecha-
nisms (i.e., LRU, LFU, and LRFU).

6 THREATS TO VALIDITY
This section addresses the threats to the validity of our approach as
follows. First, our approach estimates the cost of queries by feeding
the FFNN with the query represented as a word embedding. This
is a generalized approach that can be employed in any database
system. However, our approach has a drawback as the generated
embeddings may differ when the same query is written using aliases
or views (i.e., when queries written in a different syntax).

Second, the benchmark is inducted on three generated datasets.
We try to simulate the workloads in a system, whether in a se-
quential, a batch, or a random manner. This simulation grasps the
real-life occurrences of queries to a certain degree, but it is not fully

99

CASCON’20, November 10 - 13 2020, Toronto, Canada El Zarif, et al.

accurate. In a perfect scenario, we would have based our study on
a recorded history of queries, but we could not find any available
rich queries history.

Third, to train the FFNN, we labeled the queries by executing
them on the Spark framework. The process is strenuous and requires
approximately a week to complete the execution of all the queries.
Alternatively, if there exists a system that collects the history of
the executed queries with their respective runtime and memory
consumption, our work can be replicated easily.

Fourth, the prefetching mechanism that uses the RNN predicts
the five upcoming queries. The upcoming queries are either cached
using the prefetching mechanism solely or fed to the FFNN to
prefetch and cache the cost-effective queries. We chose number
five as a proof of concept in our work. However, the number of
predicted queries could be tuned based on multiple factors, such
as the repetitiveness of the executed queries. Further studies can
extend our work by optimizing the number of predicted queries
based on the nature of the query execution scenario.

Finally, our mechanisms assume that the history is fixed and no
unidentifiable incoming queries would occur in the system. That
is valid for benchmarking our prefetching and cost estimation ap-
proaches. But in real-life scenarios, the two mechanisms should be
monitored as with the increasing number of unidentifiable queries
the cost estimation and the prefetching might suffer from more er-
rors. Hence, we can monitor the queries in history periodically and
find a threshold where the number of new unidentifiable queries
would cause a clear degradation in the performance of our mecha-
nisms (tested by the cache hit ratio) that would drive us to retrain
our two neural networks.

7 RELATEDWORK
The various work in query cache is divided into two main strategies
(1) reactive caching and (2) proactive caching. In this section, we
discuss the main query caching techniques.

7.1 Reactive Caching
The work on reactive caching focuses on the eviction and replace-
ment mechanisms that are concerned with identifying the stale
queries in the cache to be evicted. The eviction relieves the memory
overhead in the cache as it frees space for more beneficial queries
to be cached. The eviction mechanisms define protocols based on
recency and frequency to detect the stale queries in the cache.

Lange et al. [36] introduce the Least Recently Used (LRU) cache
eviction mechanism in their work on the CPUs’ registers caching.
The algorithm maintains an array of timestamps for each register
and the eviction happens by removing the data in the register with
the lowest timestamp. That simple idea was then reintegrated as
a generic caching algorithm for different fields, such as mobile
network and database systems [32, 46, 68].

Matick et al. [44] introduce Least Frequently Used (LFU); an-
other caching eviction mechanism following their work on caching
in CPUs’ registers. The algorithm stores access counts for each
register and evicts the data with the least count. This simple ap-
proach proved to be efficient and is considered on par with LRU,
as frequency and recency are the two most influential factors for

identifying stale cache. This mechanism also spanned to be reused
in databases and networks [15, 28].

Lee et al. [37] combine the work of LRU and LFU to create the
Least Recently Frequently Used (LRFU) mechanism. The compari-
son against the two algorithms showed that LRFU outperforms the
other two in a spectrum of cache capacities. The combination of
the recency and frequency is more effective for larger cache sizes.

In-memory database systems such as Redis [41] or Apache Ig-
nite [3, 77] are widely used nowadays for the fast access and data
caching/manipulation. Redis and Ignite are often employed as a
middleware layer that helps fast access to hot data to eliminate
the necessity of data access from the main traditional relational
database [34, 75]. Redis and Ignite employ LRU and LFU specifically
as cache eviction mechanisms due to their fast reactive nature of
eliminating stale cached queries [1, 2, 63].

Hon et al. [27] employ a dynamic web caching protocol. Web
pages are stored as HTML data in a cache placed as an intermediate
layer between the web server and the client. The protocol uses
a synchronization daemon that invalidates and evicts the cached
pages that are out of sync with the server.

Different from the aforementioned reactive caching studies, our
approach aims to predict queries that need to be cached and proac-
tively cache the cost-efficient queries.

7.2 Proactive Caching
The work in proactive caching revolves mainly on identifying the
beneficial data to cache in the system. The main objective is to
cache the content that maximizes the reuse of the cache and avoid
thrashing in the system. The work in proactive caching branches
from studying the popularity of data [11, 39, 40, 66], the data pat-
terns [11, 50, 76, 78], to the structure of the data [62], which even-
tually leads to maximizing the cache benefits.
Caching Based on Content Popularity. Luo et al. [40] develop
a framework for caching the most popular queries in the system.
The system follows statistical measures to consider the set of the
most used queries that are prioritized for caching.

Liu et al. [39] implement a deep learning approach to cache pop-
ular data in ICN networks. The neural network is adaptive and
retrainable depending on the network. The popularity prediction is
transformed into a discretized prediction problem where multiple
classes are predicted. This approach added with the cache replace-
ment scheme LRU showed a 15% to 40% improvement over the LRU
mechanism.

Tanzil et al. [66] introduce a proactive predictive approach to
cache popular YouTube content in cellular networks. The approach
uses a neural network to predict a 10 class popularity, where the
content with a higher class inflicts a more popular content. Their
work implements a segmented LRU algorithm for cache eviction.
Caching Based on Data Patterns. Chan et al. [11] describe a
generic predictive algorithm based on a recurrence based proba-
bilistic method to cache and prefetch the content with high hit
rates at the Wireless Edge. The approach is compared with other
predictive methods and shows on average a 12.5% improvement
over LRU and LFU and a 5% improvement over other predictive
methods.

100

Pred-Cache: A Predictive Caching Method in Database Systems CASCON’20, November 10 - 13 2020, Toronto, Canada

Zeydan et al. [76] work on caching in big data mobile networks
(e.g., 5G networks). The work tackles caching the clients’ informa-
tion at the network edge using contextual information such as the
browsing history and the spatio-temporal information.

Zhong et al. [78] introduce a Deep Reinforcement Learning ap-
proach that takes into consideration the recency and frequency fac-
tors to create an adaptive cache eviction mechanism. Their model
was trained on network content and compared with the work of
LRU and LFU. The reinforcement learning approach shows an im-
provement of 15% on average over LRU and LFU work over the
varying cache capacities.
Caching Based on Data Structure. Shim et al. [62] consider in
their work the partial reuse of queries consisting of a single JOIN
operation. Their work aims to identify the expensive subqueries to
be cached based on a dynamic query cost function that combines
the execution time, the memory requirements, and the frequency
of usage of the subquery. Their system also evicts from the cache
the stale content using the same cost function when newer queries
with higher cost need to be cached.

The aforementioned studies use different machine learning tech-
niques to manage the cache based on the predicted popularity or
the expected usage patterns of the cached content. Inspired by the
existing work, we use machine learning techniques (i.e., RNN) to
predict the upcoming queries. Then, our approach prefetches the
cost-efficient queries using the FFNN.

8 CONCLUSION
Query caching is an essential technique to ameliorate the perfor-
mance of a database system. The work on query caching spans
from the decision of queries to cache by estimating the execution
time savings or by greedy caching mechanisms that focus on the
eviction and replacement policies of the cache.

In this work, we combine the two concepts of cache decision
and cache eviction to develop a proactive caching framework. Our
framework employs cost estimation and prefetching mechanisms
combined with a reactive cache eviction policy. We compare our
work to the previous cache replacement policies that are employed
in current systems. From our experiments, we observe remarkable
improvements of 6% to 29% by using our framework comparing
with the existing work in terms of the cache hit ratio.

Our work was benchmarked in three scenarios that represent
the different workloads in real life, whether queries occurring in
sequence, batch, or random. The recursive neural network (RNN)
that serves the prefetching solely or with the combination of the
feed-forward neural network (FFNN) that estimates the cost of the
queries exceeded in performance all the other caching mechanisms
(i.e., LRU, LFU, and LRFU).

Moreover, our work is not specific to a particular database system
and can be employed for any database system. Our framework can
also be used on an intermediate level between the client and the
database system to form an in-memory middleware layer that deals
with caching the queries as a whole. In the future, we plan to test our
approach on real data captured from real-world usage scenarios.

REFERENCES
[1] 2009. Redis cache eviction policies. https://docs.redislabs.com/latest/rs/

administering/database-operations/eviction-policy/. Accessed: 2019-12-01.

[2] 2015. Apache Ignite cache eviction policies. https://apacheignite.readme.io/docs/
evictions. Accessed: 2019-12-01.

[3] Sujoy Acharya. 2018. Apache Ignite Quick Start Guide: Distributed data caching
and processing made easy. Packt Publishing Ltd.

[4] Sibel Adali, K Selçuk Candan, Yannis Papakonstantinou, and VS Subrahmanian.
1996. Query caching and optimization in distributed mediator systems. In ACM
SIGMOD Record, Vol. 25. ACM, 137–146.

[5] Awny K Al-omari, Tom C Reyes, and Robert Wehrmeister. 2010. Hybrid database
query caching. US Patent 7,743,053.

[6] Ahmad Alwosheel, Sander van Cranenburgh, and Caspar G Chorus. 2018. Is
your dataset big enough? sample size requirements when using artificial neural
networks for discrete choice analysis. Journal of choice modelling 28 (2018),
167–182.

[7] Garen Arevian. 2007. Recurrent neural networks for robust real-world text
classification. In IEEE/WIC/ACM International Conference on Web Intelligence
(WI’07). IEEE, 326–329.

[8] Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, and Riccardo Torlone. 1999.
Database systems: concepts, languages & architectures. Vol. 1. McGraw-Hill
London.

[9] Leif Azzopardi, Mark Girolami, and Keith Van Rijsbergen. 2003. Investigating the
relationship between language model perplexity and IR precision-recall measures.
(2003).

[10] Matthew Broadbent, Daniel King, Sean Baildon, Nektarios Georgalas, and
Nicholas Race. 2015. OpenCache: A software-defined content caching plat-
form. In Proceedings of the 2015 1st IEEEConference onNetwork Softwarization
(NetSoft). IEEE, 1–5.

[11] Chien Aun Chan, Ming Yan, Andre F Gygax, Wenwen Li, Li Li, I Chih-Lin,
Jinyao Yan, and Christopher Leckie. 2019. Big Data Driven Predictive Caching at
the Wireless Edge. In 2019 IEEE International Conference on Communications
Workshops (ICC Workshops). IEEE, 1–6.

[12] Zheng Chang, Lei Lei, Zhenyu Zhou, Shiwen Mao, and Tapani Ristaniemi. 2018.
Learn to cache: Machine learning for network edge caching in the big data era.
IEEE Wireless Communications 25, 3 (2018), 28–35.

[13] Surajit Chaudhuri, Vivek Narasayya, and Ravishankar Ramamurthy. 2004. Esti-
mating progress of execution for SQL queries. In Proceedings of the 2004 ACM
SIGMOD international conference on Management of data. ACM, 803–814.

[14] Arthur F Cochcroft Jr. 1998. Method and apparatus for detecting thrashing in a
cache memory. US Patent 5,752,261.

[15] Mieso K Denko and Jun Tian. 2006. Cooperative caching with adaptive prefetch-
ing in mobile ad hoc networks. In 2006 IEEE International Conference on
Wireless and Mobile Computing, Networking and Communications. IEEE, 38–
44.

[16] KR Dittrich, AM Kotz, and JA Mülle. 1985. A multilevel approach to design
database systems and its basic mechanisms. In Proc. IEEE COMPINT, Montreal,
Vol. 183.

[17] Klaus R Dittrich, Willi Gotthard, and Peter C Lockemann. 1987. DAMOK-
LES—a database system for software engineering environments. In Advanced
programming environments. Springer, 353–371.

[18] GunhanDundar and Kenneth Rose. 1995. The effects of quantization onmultilayer
neural networks. IEEE Transactions on Neural Networks 6, 6 (1995), 1446–1451.

[19] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. 1999. Learning to forget:
Continual prediction with LSTM. (1999).

[20] Parke Godfrey and Jarek Gryz. 1997. Semantic Query Caching for Hetereogeneous
Databases.. In KRDB. 6–1.

[21] Yoav Goldberg and Omer Levy. 2014. word2vec Explained: deriving Mikolov et
al.’s negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722
(2014).

[22] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. 6.2. 2.3 softmax units
for multinoulli output distributions. In Deep Learning. MIT Press, 180–184.

[23] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[24] David J Hand and Robert J Till. 2001. A simple generalisation of the area under
the ROC curve for multiple class classification problems. Machine learning 45, 2
(2001), 171–186.

[25] James A Hanley and Barbara J McNeil. 1982. The meaning and use of the area
under a receiver operating characteristic (ROC) curve. Radiology 143, 1 (1982),
29–36.

[26] Olaf Hartig and Ralf Heese. 2007. The SPARQL query graph model for query
optimization. In European Semantic Web Conference. Springer, 564–578.

[27] Lenny K Hon, Leon Kuperman, Louis S Mau, and Alexander Mohelsky. 2001.
Caching dynamic web pages. US Patent 6,185,608.

[28] Jian hua Ran, Na Lv, Ding Zhang, Yuan yuan Ma, and Zhen yong Xie.
2013. On performance of cache policies in named data networking. In
2013 International Conference on Advanced Computer Science and Electronics
Information (ICACSEI 2013). Atlantis Press.

[29] Jin Huang and Charles X Ling. 2005. Using AUC and accuracy in evaluating
learning algorithms. IEEE Transactions on knowledge and Data Engineering 17,
3 (2005), 299–310.

101

https://docs.redislabs.com/latest/rs/administering/database-operations/eviction-policy/
https://docs.redislabs.com/latest/rs/administering/database-operations/eviction-policy/
https://apacheignite.readme.io/docs/evictions
https://apacheignite.readme.io/docs/evictions
http://www.deeplearningbook.org

CASCON’20, November 10 - 13 2020, Toronto, Canada El Zarif, et al.

[30] Frederick Jelinek, BernardMerialdo, Salim Roukos, andMartin Strauss. 1991. A dy-
namic language model for speech recognition. In Speech and Natural Language:
Proceedings of a Workshop Held at Pacific Grove, California, February 19-22,
1991.

[31] Navin Kabra and David J DeWitt. 1998. Efficient mid-query re-optimization
of sub-optimal query execution plans. In ACM SIGMOD Record, Vol. 27. ACM,
106–117.

[32] Harshad N Kamat and David J Clarke. 2012. Email server with enhanced least
recently used (LRU) cache. US Patent 8,307,036.

[33] Dmitry Khovratovich, Christian Rechberger, and Alexandra Savelieva. 2012. Bi-
cliques for preimages: attacks on Skein-512 and the SHA-2 family. In International
Workshop on Fast Software Encryption. Springer, 244–263.

[34] Doyoung Kim, Won Gi Choi, Hanseung Sung, and Sanghyun Park. 2019. A scal-
able and persistent key-value store using non-volatile memory. In Proceedings
of the 34th ACM/SIGAPP Symposium on Applied Computing. ACM, 464–467.

[35] Gary King and Langche Zeng. 2001. Logistic regression in rare events data.
Political analysis 9, 2 (2001), 137–163.

[36] Ronald E Lange and Richard J Fisher. 1982. Cache memory utilizing selective
clearing and least recently used updating. US Patent 4,322,795.

[37] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H Noh, Sang Lyul Min, Yookun
Cho, and Chong Sang Kim. 2001. LRFU: A spectrum of policies that subsumes
the least recently used and least frequently used policies. IEEE transactions on
Computers 12 (2001), 1352–1361.

[38] Ken CK Lee, Hong Va Leong, and Antonio Si. 1999. Semantic query
caching in a mobile environment. ACM SIGMOBILE Mobile Computing and
Communications Review 3, 2 (1999), 28–36.

[39] Wai-Xi Liu, Jie Zhang, Zhong-Wei Liang, Ling-Xi Peng, and Jun Cai. 2017. Content
popularity prediction and caching for ICN: A deep learning approach with SDN.
IEEE access 6 (2017), 5075–5089.

[40] Qiong Luo, Jeffrey F Naughton, Rajasekar Krishnamurthy, Pei Cao, and Yunrui Li.
2000. Active query caching for database web servers. In International Workshop
on the World Wide Web and Databases. Springer, 92–104.

[41] Tiago Macedo and Fred Oliveira. 2011. Redis Cookbook: Practical Techniques
for Fast Data Manipulation. " O’Reilly Media, Inc.".

[42] Bhushan Mandhani and Dan Suciu. 2005. Query caching and view selection
for XML databases. In Proceedings of the 31st international conference on Very
large data bases. VLDB Endowment, 469–480.

[43] Michael Martin, Jörg Unbehauen, and Sören Auer. 2010. Improving the perfor-
mance of semantic web applications with SPARQL query caching. In Extended
Semantic Web Conference. Springer, 304–318.

[44] Richard Edward Matick, Jaime H Moreno, and Malcolm Scott Ware. 2006. Cache
with selective least frequently used or most frequently used cache line replace-
ment. US Patent 7,133,971.

[45] Geoffrey J McLachlan, Kim-Anh Do, and Christophe Ambroise. 2005. Analyzing
microarray gene expression data. Vol. 422. John Wiley & Sons.

[46] Nimrod Megiddo and Dharmendra S Modha. 2004. Outperforming LRU with an
adaptive replacement cache algorithm. Computer 37, 4 (2004), 58–65.

[47] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khu-
danpur. 2010. Recurrent neural network based language model. In Eleventh
annual conference of the international speech communication association.

[48] Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th international conference on
machine learning (ICML-10). 807–814.

[49] Raghunath Othayoth Nambiar and Meikel Poess. 2006. The making of TPC-DS.
In Proceedings of the 32nd international conference on Very large data bases.
VLDB Endowment, 1049–1058.

[50] Arvind Narayanan, Saurabh Verma, Eman Ramadan, Pariya Babaie, and Zhi-Li
Zhang. 2018. Deepcache: A deep learning based framework for content caching.
In Proceedings of the 2018 Workshop on Network Meets AI & ML. ACM, 48–53.

[51] Sarang Narkhede. 2018. Understanding AUC-ROC Curve. Towards Data Science
26 (2018).

[52] Thomas Neumann and Guido Moerkotte. 2011. Characteristic sets: Accurate
cardinality estimation for RDF queries with multiple joins. In 2011 IEEE 27th
International Conference on Data Engineering. IEEE, 984–994.

[53] Hieu V Nguyen and Li Bai. 2010. Cosine similarity metric learning for face
verification. In Asian conference on computer vision. Springer, 709–720.

[54] Takayuki Osogami. 2010. A fluid limit for a cache algorithm with general request
processes. Advances in Applied Probability 42, 3 (2010), 816–833.

[55] M Tamer Özsu and Patrick Valduriez. 2011. Principles of distributed database
systems. Springer Science & Business Media.

[56] Meikel Poess, Raghunath Othayoth Nambiar, and David Walrath. 2007. Why you
should run TPC-DS: a workload analysis. In Proceedings of the 33rd international
conference on Very large data bases. VLDB Endowment, 1138–1149.

[57] Meikel Poess, Tilmann Rabl, and Hans-Arno Jacobsen. 2017. Analysis of TPC-DS:
the first standard benchmark for SQL-based big data systems. In Proceedings of
the 2017 Symposium on Cloud Computing. ACM, 573–585.

[58] D Rachmawati, JT Tarigan, and ABC Ginting. 2018. A comparative study of Mes-
sage Digest 5 (MD5) and SHA256 algorithm. In Journal of Physics: Conference
Series, Vol. 978. IOP Publishing, 012116.

[59] Qun Ren, Margaret H Dunham, and Vijay Kumar. 2003. Semantic caching and
query processing. IEEE transactions on knowledge and data engineering 15, 1
(2003), 192–210.

[60] Xin Rong. 2014. word2vec parameter learning explained. arXiv preprint
arXiv:1411.2738 (2014).

[61] Muhammad Zubair Shafiq, Alex X Liu, and Amir R Khakpour. 2014. Revisit-
ing caching in content delivery networks. In ACM SIGMETRICS Performance
Evaluation Review, Vol. 42. ACM, 567–568.

[62] Junho Shim, Peter Scheuermann, and Radek Vingralek. 1999. Dynamic
caching of query results for decision support systems. In Proceedings. Eleventh
International Conference on Scientific and Statistical Database Management.
IEEE, 254–263.

[63] Cristiana-Stefania Stan, Adrian-Eduard Pandelica, Vlad-Andrei Zamfir, Roxana-
Gabriela Stan, and Catalin Negru. 2019. Apache Spark and Apache Ignite Per-
formance Analysis. In 2019 22nd International Conference on Control Systems
and Computer Science (CSCS). IEEE, 726–733.

[64] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. 2012. LSTM neu-
ral networks for language modeling. In Thirteenth annual conference of the
international speech communication association.

[65] Daniel Svozil, Vladimir Kvasnicka, and Jiri Pospichal. 1997. Introduction to multi-
layer feed-forward neural networks. Chemometrics and intelligent laboratory
systems 39, 1 (1997), 43–62.

[66] SM Shahrear Tanzil, William Hoiles, and Vikram Krishnamurthy. 2017. Adaptive
scheme for caching YouTube content in a cellular network: Machine learning
approach. Ieee Access 5 (2017), 5870–5881.

[67] Michael J Turmon and Terrence L Fine. 1995. Sample size requirements for
feedforward neural networks. In Advances in Neural Information Processing
Systems. 327–334.

[68] AI Vakali. 2000. LRU-based algorithms for Web cache replacement.
In International conference on electronic commerce and web technologies.
Springer, 409–418.

[69] Stijn Van Dongen and Anton J Enright. 2012. Metric distances derived from
cosine similarity and Pearson and Spearman correlations. arXiv preprint
arXiv:1208.3145 (2012).

[70] Xingxing Wang, LiMin Wang, and Yu Qiao. 2012. A comparative study of en-
coding, pooling and normalization methods for action recognition. In Asian
Conference on Computer Vision. Springer, 572–585.

[71] William E Woods and Arthur Peters. 1982. Hit/miss logic for a cache memory.
US Patent 4,363,095.

[72] Tian Xia, Dacheng Tao, Tao Mei, and Yongdong Zhang. 2010. Multiview spec-
tral embedding. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics) 40, 6 (2010), 1438–1446.

[73] Hongliang Yan, Yukang Ding, Peihua Li, Qilong Wang, Yong Xu, and Wangmeng
Zuo. 2017. Mind the class weight bias: Weighted maximum mean discrepancy
for unsupervised domain adaptation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2272–2281.

[74] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, Ion
Stoica, et al. 2010. Spark: Cluster computing with working sets. HotCloud 10,
10-10 (2010), 95.

[75] Victor Zakhary, Divyakant Agrawal, and Amr El Abbadi. 2017. Caching at the
web scale. Proceedings of the VLDB Endowment 10, 12 (2017), 2002–2005.

[76] Engin Zeydan, Ejder Bastug, Mehdi Bennis, Manhal Abdel Kader, Ilyas Alper
Karatepe, Ahmet Salih Er, and Mérouane Debbah. 2016. Big data caching for
networking: Moving from cloud to edge. IEEE Communications Magazine 54, 9
(2016), 36–42.

[77] Michael Zheludkov, Timur Isachenko, et al. 2017. High Performance in-memory
computing with Apache Ignite. Lulu. com.

[78] Chen Zhong, M Cenk Gursoy, and Senem Velipasalar. 2018. A deep reinforcement
learning-based framework for content caching. In 2018 52nd Annual Conference
on Information Sciences and Systems (CISS). IEEE, 1–6.

102

Software Evaluation Methodology of Node.js Parallelism under
Variabilities in Scalable Systems

Maria Patrou
maria.patrou@unb.ca

University of New Brunswick
Fredericton, Canada

Jacob M. Baird
jbaird2@unb.ca

University of New Brunswick
Fredericton, Canada

Kenneth B. Kent
ken@unb.ca

University of New Brunswick
Fredericton, Canada

Michael Dawson
michael_dawson@ca.ibm.com

IBM Node.js
Ottawa, Canada

ABSTRACT
The backbone of Node.js is a single-threaded event loop, so com-
putationally intensive tasks are bound to the performance of a
single core. Modules with different architectures have been built
to provide parallelism and scaling. However, their properties dif-
fer, making them appropriate for different cases. In order to assist
software engineers in choosing the most appropriate module in the
most efficient way, we perform an empirical study to investigate
the modules’ characteristics and functionality, taking into account
system variances. Crucially, we present and apply an evaluation
methodology focusing on four aspects: compute-intensive task ex-
ecution, sharing data, communication and overhead. The results
suggest that instance type (Node.js thread vs. Node.js process) is
not enough to decide the most appropriate one. We find that mod-
ules with the highest performance in most cases can sacrifice other
aspects, such as support and/or functionality and/or performance
in fewer cases, while platform variances play a significant part.

KEYWORDS
Node.js,methodology,parallel,modules,share memory,communicate
ACM Reference Format:
Maria Patrou, Jacob M. Baird, Kenneth B. Kent, and Michael Dawson. 2020.
Software Evaluation Methodology of Node.js Parallelism under Variabili-
ties in Scalable Systems. In Proceedings of 30th International Conference on
Computer Science and Software Engineering (CASCON’20). ACM, New York,
NY, USA, 10 pages.

1 INTRODUCTION
An increasing number of applications are built with Node.js [23],
a framework for asynchronous I/O, event-driven and server-side
JavaScript. Examples include web applications and web servers that
take advantage of its asynchronous and highly scalable nature. How-
ever, long-running tasks might arise and become a performance
bottleneck. As in other programming frameworks/languages, we
have to find efficient ways to execute compute-intensive tasks.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CASCON’20, November 10–13, 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

Node.js, being mostly single-threaded, is not preferred for this type
of computation. Fortunately, the framework supports modules that
create new instances in which it can offload a task instead of run-
ning it in the main thread and blocking the event loop. The major
categories include spawning either threads or processes.

There is much discussion on which technique should be pre-
ferred over another to achieve optimal performance. In Node.js,
there are modules that have implemented Node.js processes and
Node.js threads to achieve parallelism. In every case, their internal
infrastructure and functionality have several (dis)similarities.

Expanding on our previous work [30], we perform an empirical
study on thread and process implementations in Node.js by col-
lecting and analyzing the results from our performance tool. We
survey their architectures and explore their support and functional-
ity though performance analysis that leads to better understanding
of the modules and their capabilities. We formulate a methodol-
ogy to evaluate them with benchmarks that describe: compute-
intensive task execution by each worker instance, sharing infor-
mation between parent and child instances and communication
through two different message exchange patterns. In our method-
ology we present metrics for every aspect and include platform
variances, as we scale the Node.js instances and their workload on
a server with dynamic voltage and frequency scaling (DVFS). This
study aims to provide further details of the Node.js modules, includ-
ing a newer module, and a deeper analysis of their performance
than the previous work. Our contributions are listed as follows:

(1) We survey Node.js modules that introduce parallelism. We
choose modules that implement Node.js threads and Node.js pro-
cesses and present their architectures and functionalities. (2) We
provide a complete evaluation methodology. For choosing and uti-
lizing a module, four main points are assessed (with metrics): over-
head, task execution, sharing memory and communication. (3) We
identify software and hardware variabilities. DVFS, evolution of
Node.js/V8 between two different versions and execution environ-
ment are explored to reveal their impact on module performance.
(4) We discuss observations and recommendations on module per-
formance and utilization under scalable conditions.

2 BACKGROUND
The functionality of the hardware and software platform variabili-
ties that we identified is described below. These components should
affect the performance and scalability.

103

CASCON’20, November 10–13, 2020, Toronto, Canada M. Patrou, J. M. Baird, K. B. Kent and M. Dawson

2.1 Hardware variability
The speed at which the instructions are executed is measured in
clock cycles per second (CPU frequency). Modern CPUs can support
DVFS in which the clock frequency and/or voltage of the processor
changes for efficiency and energy consumption. Various governors,
that decide the frequency and voltage values, exist. Intel’s P-state
driver has governors with P-states (which represent several fre-
quency and voltage points): “performance” and “powersave”. In the
first case, the driver selects the maximum available P-states (high
frequencies) and in the latter, the choice is made based on CPU
utilization either relative to the usage or with a rapid increase as the
workload increases. In cases that the processors support hardware-
managed P-states (HWP), the processors select the P-states and
the above algorithms provide indications based on the governor
policy [4, 40].

2.2 Software variability
Node.js is a server-side JavaScript framework with asynchronous
I/O, event-driven logic [31]. The event-based model depends on the
concept of the event loop, achieved through the libuv [2, 20] library.
The library is responsible for the event loop and thread pool func-
tionality. The main (event loop) thread initializes the application
and manages all requests and their responses. It maintains a queue
of events and executes their callbacks. I/O network operations are
executed through non-blocking sockets, while others, such as the
file system, DNS functions, etc. are executed in a thread pool [2, 22].

Node.js runs on top of Google’s V8 JavaScript engine [3], which is
responsible for transforming JavaScript to machine code and allocat-
ing and deallocatingmemory. Internally, V8 uses an isolate structure,
a private instance of V8 into which threads can enter one at the time
(single-threaded). Multiple isolates can exist in multiple threads,
each maintaining its own private heap for object allocations [36].
The context structure represents an environment in which unre-
lated JavaScript code is executed on a single V8 instance [37]. In
V8, heap objects are collected though frequent garbage collection
(GC) operations that free unused memory. The heap is split into
two segments: nursery and old generation. There are two types of
collectors: Scavenge that collects dead objects from the nursery and
Mark-Sweep-Compact from the full heap. Scavenge creates small
pauses in application execution and it happens frequently [19, 34].
However, GC improvements in v6.2 [34] replace Scavenge with
a parallel Scavenge and add a parallel Mark-Evacuate algorithm.
Node.js v10 [35] adds and enables concurrent marking.

3 RELATEDWORK
Research has been conducted on performance evaluation of paral-
lelism, Node.js and V8.

Node.js and V8 Zhu et al. presented an analysis of server-side
JavaScript focused on the event-driven nature of Node.js [42]. They
used Node.js and SPEC CPU 2006 applications and calculated in-
struction, cache and event metrics to present implications of the pro-
gramming model and instruction cache optimizations. Nkenyereye
et al. used throughput, response time and error rate to evaluate the
performance of a healthcare hub server [29]. The focus was on the

concurrent tasks as identified in the architecture of a remote health-
care monitoring system. They compared the single-threaded event-
looped Node.js against a multi-threaded approach using Apache
Sling and calculated their metrics using performance data from
JMeter. Tiwari et al. studied architectural execution characteristics
of Sunspider and Google’s V8 JavaScript benchmarks [32]. They
measured hardware performance counters to analyze and character-
ize the benchmarks. They also applied statistical techniques using
PCA and clustering algorithms on performance metrics to identify
similarities between them. Recent studies include the creation of a
cloud-based benchmarking framework in Node.js to measure and
present scaling performance and regression analysis [41].

Exploring ParallelismNamiot et al. described some JavaScript
parallel programming models, Webworkers, WebCL and concurrent
frameworks such as River Tail, JAWS and WorkerJS [28]. Vetter et
al. evaluated the performance of eight scientific applications [39].
They presented computational, communication and scaling analysis
using different tools. Vetter et al. performed a scalability analysis
using a correlation coefficient and a rank transformation on the
data [38]. More specifically, they evaluated the communication
operations of applications from the NAS Parallel Suite and ASCI
Compact Benchmarks to identify scaling issues.

Our previous study focused on the performance of modules
in Node.js v9.7.1 under a compute-intensive task (Monte Carlo π
estimation) looking into similarities and differences in performance
terms [30]. We expand our methodology (benchmarks, metrics, test
cases), move to a later Node.js version, and perform experiments
for two Node.js versions and the modules that achieve parallelism
(referred to as parallel modules) they support. This paper provides
a survey on parallel modules and a complete methodology that
focuses on the modules’ infrastructure, performance under micro-
benchmarks and factors that affect their performance. To the best of
our knowledge, this analysis has not been found before in literature.

4 HYPOTHESES & RESEARCH OBJECTIVES
We identify and evaluate parallel Node.js modules under software
and hardware variabilities. First, we survey representative modules.
Second, we assess them and the properties which can impact their
behavior. Our goal is to stress-test the modules on core operations
that we identify as important factors for choosing a module and
its functions using the micro-tasks. Considering the impact of the
underlying environment and Node.js variances, we investigate the
following hypotheses: (H1) Multi-thread modules will have lower
overhead and higher performance than multi-process ones. The
instance typewill be themost important factor for determining their
performance. (H2) The Node.js version upgradewill affect positively
and evenly all themodules. All modules will either experience better
or similar performance on later versions. (H3) The environment
will affect the modules. DVFS will affect the scalability of modules.
We expect to see cases with higher computation to be faster than
others with lower workloads. Also, an impact on task execution
when moving from a bare metal host to a virtualized environment
is anticipated. (H4) Passing an argument during worker spawning
will be the fastest way to share information. Sending a message
and using a shared memory module will follow for small data,
while for large data the opposite sequence will be more efficient.

104

Software Evaluation Methodology of Node.js Parallelism under Variabilities CASCON’20, November 10–13, 2020, Toronto, Canada

The shared memory modules will have the highest overhead. (H5)
Communications patterns will affect the system responsiveness
with significant differences. The format of message exchange will
show that sending one large message is more efficient that sending
smaller ones with the data split.

5 SURVEYING PARALLELISM IN NODE.JS
Node.js enables the import of any file or organized folder as a
module [1] in order to access its functions. Modules that spawn
instances face the challenge of exposing parallelism in an envi-
ronment that is mainly single-threaded. Node.js implements an
event-based infrastructure in which the events are orchestrated on
the single-threaded event loop and the embedded V8. The runtime
exposes a V8 instance (isolate) which is meant to be used by one
thread at a time and a context that is the execution environment
of a single instance. Thus, thread implementations do not share
the same V8 environment, including the heap (aka objects) and
they also need to add and define a structure that supports several
threads and the way they fit in the Node.js architecture. However,
Node.js provides the concept of NodePlatform, created per process,
that can point to multiple isolates and provide libuv’s background
threads [16]. In our opinion, the creation of Node.js processes ben-
efits more from the Node.js/V8 architecture, since by default they
share nothing.

The investigation of modules with different implementations
for achieving parallelism leads us to five modules. By reading
their documentation and code, we survey and collect two process-
based modules: Child Process, Cluster and three thread-based mod-
ules: WebWorker-Threads, Napa.js and Worker Threads. The multi-
process modules are found throughout the Node.js versions, while
WebWorker-Threads and Napa.js were not supported in Node.js
v12.1.0 in the duration of the study. However, the latest addition is
the Worker Threads that appears in later versions. Argument pass-
ing, message sending and shared memory modules are supported
by Child Process, Cluster and Worker Threads, that are part of the
Node.js core. While Napa.js does not support message passing and
WebWorker-Threads supports only message passing. Every module
has its own architecture and API:

Napa.js is a multi-threaded JavaScript implementation, used as
a Node.js module or standalone. It creates symmetrical worker-
threads, which share the same configuration settings, defined as
a zone. The module allows for the creation of multiple zones in
the same application. A napa zone allows the creation of multiple
threads, using a JS thread pool in which they have their own V8
isolates and thus, private heaps [9]. The napa zone does not use the
libuv APIs within the worker threads; the library is exposed only
through the node zone for one worker [6, 7]. During the initializa-
tion of the zone, each worker is initialized using the zone settings
with a worker id. In this step, each worker loads the appropriate
modules/libraries, too. The workers are initialized sequentially and
they wrap std::threads. The threads share memory through Trans-
portable types, including JavaScript primitive and built-in types
such as SharedArrayBuffer (SAB) and ArrayBuffer [5]. The design
for making structured data transportable such as SAB is based on
solutions that use externalized memory to store/share memory (for
SAB objects) and V8’s object (de)/serialization system [8].

WebWorker-Threads create JavaScript threads (following the
W3C Web Worker API) that run in the background with the main
thread [13]. The module supports the creation of thread pools and
individual workers. In contrast to Napa.js, the architecture relies on
the usage of the libuv library. It spawns native threads (uv_thread_t)
that execute jobs using their shared queues and send the jobs’
callbacks back to the event loop. Each thread has its own isolate
and thus its own heap [14]. The worker threads share information
from the main thread by sending messages. A message is serialized
and added as a job into the thread’s queue for execution [15]. Finally,
the module includes parts of the code written in LiveScript that
are transformed to JavaScript minified versions with hexadecimal
representations of the ASCII characters [21].

Worker Threads is the most recent built-in Node.js module
that allows for parallel task execution. It creates JavaScript threads
that support most Node.js APIs [18]. A worker thread is an Even-
tEmitter object, thus it triggers events with listeners to be called
upon emission [17]. During the creation of a worker thread, the
parent process’s environment is cloned, a new MessageChannel
is created (for asynchronous communications between parent and
child worker), internal modules are loaded, its script (task) is passed
as a message and the standard input/output streams are initialized.
Every worker thread wraps a pthread, maintains its own V8 in-
stance, Node.js environment and event loop, but shares resources
with the other threads, such as the thread pool [26]. The informa-
tion between main and worker threads is passed during the creation
of a thread as an argument (workerData) or by sending a message
with the default or a custom MessageChannel (the default global
one is used in the experiments). In both cases, the HTML cloning
algorithm is used to copy the data using a message event. Also,
Worker Threads support SharedArrayBuffers for sharing data that
are based on V8’s APIs. Finally, the workers can share environ-
ment variables with the main thread by setting the special flag:
worker.SHARE_ENV [18].

Child Process spawns a new Node.js process. The function
child_process.fork spawns a process asynchronously and invokes a
module for IPC communication [11]. More specifically, it creates
a new ChildProcess object, an EventEmitter object, with listeners
attached. During creation of the object, the parent process creates
the IPC channel, initializes the file descriptors for the standard
I/O and passes them as an argument, along with the rest of the
environment variables, such as the executable script and args, to
the child process. Inter-process communication between the parent
and the child process is achieved either through Domain sockets in
Unix-based environments or with Named Pipes in Windows [20].
The new Node.js instance/executable is spawned through libuv’s
uv_spawn (that calls execvp) and thus it has its own environment,
event loop [20], V8 instance and private heap. By default, the pro-
cesses do not share memory, but this can be achieved through
shared memory segments. The shm-typed-array module (used in
the experiments) enables sharing memory between Node.js pro-
cesses through the IPC mechanism (Unix’s shm library) for Unix
systems [33].

Cluster creates processes that share server ports. A new process
is spawned using the child_process.fork API internally [12]. First,
the settings of the cluster module are initialized, including the exe-
cutable script, arguments, flags and the scheduling policy is set to

105

CASCON’20, November 10–13, 2020, Toronto, Canada M. Patrou, J. M. Baird, K. B. Kent and M. Dawson

default round-robin. Internally, the module calls the child_process’s
API for each child process and passes the appropriate settings for
the cluster. By default, a cluster process will execute the parent’s
script from the beginning and it is the developer’s responsibility
to differentiate the execution between master and slave threads.
Nevertheless, the module enables the assignment/execution of a
separate script through the cluster.setupMaster() API, which was
used in the experiments for calculating the metrics related to task
execution to reduce the overhead of the child processes.

Our survey reveals that the above modules have some charac-
teristics in common. Each thread/process has its own isolate and
thus its own heap. However, the modules can share information
regardless of the instance type (thread or process) using different
libraries. The only restriction is whether modules support certain
ways of sharing and exchanging information.

6 EVALUATING NODE.JS PARALLELISM
In our methodology, we identify four main aspects for testing the
modules’ performance, we design our benchmark suite based on
them and evaluate the modules in a wide range of loads.

6.1 Module Characteristics & Variabilities
We believe that, the way the modules affect the system and their
performance on task execution, sharing information and message
exchange are the most important characteristics to make a decision
on a module and its functions.

First, the overhead from loading the module and spawning the
workers and the sharing memory techniques, is explored. Appli-
cations that heavily depend on fast execution, such as animations,
would consider when and how to spawn a new worker, to avoid
significant slowdowns. Also, the overhead caused by the workers,
can be a factor for determing the most suitable number.

Regarding task execution, workers are expected to execute a
compute-intensive task. Thus, the selection depends a lot on their
performance on this task. At the same time, they might require
sharing information with the main thread. The performance of the
various mechanisms gives an insight on when and how to use each
one. Finally, message exchange, reveals the communication impact
on the system. Applications that need frequent communication
among the main program and the helper instances, should consider
the size and number of messages and the communication type.

However, the deployment environment affects the modules, as
well. It is not guaranteed that the production environment will
always be the same as the development one. Hardware discrep-
ancies, like DVFS affect the frequency of the CPUs and, thus the
module performance. Moving from a bare-metal host execution
environment to a virtualized one, can cause a further impact on
task execution. Even the Node.js version upgrade can have side
effects. To this end, our trials and metrics take into consideration
the module patterns and the influence from their environment.

6.2 Benchmark suite
The following benchmarks are used to evaluate the modules:

Task execution. The benchmark simulates cases in which work-
ers are called to execute a compute-intensive task and return a result
to the main program. The Monte Carlo π estimation algorithm is

used. We took the implementation from the Napa.js benchmarks
suite [10] and adjusted it to our trials. Each worker executes the
algorithm independently by performing n iterations and sends back
its calculated value through a message or a promise (for Napa.js).
When they have finished, the main program returns a callback with
the calculated π value to continue the execution of the application
and the aggregated value is printed.

Sharing information. The modules provide different APIs to
share data from the parent to the child. Argument passing dur-
ing spawning the worker, message sending and shared memory
techniques are tested, based on the support of each module. Regard-
ing the shared memory techniques (SharedArrayBuffer–SAB for
multi-thread modules and shm-typed-array–SHM for multi-process
modules), the objects are passed as an argument during the forking
process. In all cases, the parent instance is notified by the worker
with an event emission: message or promise that the worker has
successfully received the data. We examine each technique for each
module with two benchmarks that differentiate the range of random
integers: any random integer and integers from zero to nine.

Communication cost. Two different patterns for message ex-
changing between parent and child instances are tested. In the
Batch pattern, the parent sends a message to all workers at the
same time. In the beginning, the parent creates a random array.
The workers receive the array, swap the first element with the last
and send it back. The main thread/process resends it to all of them,
after it receives the array from all the workers and swaps the two
elements. In the Pair pattern, the main thread resends the array
immediately to the worker that it received it from.

The benchmarks are written with each module’s API and con-
figured through scripts to change the number of workers and the
loads. Each benchmark category/module is configured in a separate
Docker container [27], with the exception of the sequential case
that is in the same container as the Child Process. Each container
has its own Dockerfile with the appropriate libraries and modules.

6.3 Experimental Design & Metrics
We choose the number of workers based on the number of CPUs
(eight) on the machine. We scale them based on the number of CPUs
used by the workers (one, four, eight and 16) and the number of
CPUs used by the workers and the main thread (three, seven and 15)
to reach the number of cores (four), CPUs (eight) and double CPUs
(16). The trials from task execution and communication use the
above configurations, while the experiments that focus on memory
scale the workers as follows: one, four, eight and 16. The workloads
for every experiment scale in a wide range of loads to simulate small,
medium and large ones executed by each worker. We perform 30
runs for every case (with the exception of shared memory case with
random numbers with Child Process in version 12) and present the
average and standard deviation bars.

On task execution, we measure and reveal variances that impact
task execution, including Node.js version and compiler and DVFS.
Execution time, speedup, CPU usage/frequency and GC patterns
are presented to decide on speed, resource consumption and heap
utilization. To compare the shared memory techniques, we measure
the time spent spawning each worker until all workers have notified
the parent. On communication, we measure execution time and

106

Software Evaluation Methodology of Node.js Parallelism under Variabilities CASCON’20, November 10–13, 2020, Toronto, Canada

CPU usage/frequency to decide speed and resource utilization. The
execution time does not include the overhead of spawning the
workers to show the time spent on message exchange. Regarding
overhead, we use the benchmarks from task execution and sharing
memory with minimum workloads and we present the speedups
against the sequential case.

7 EXPERIMENTAL EVALUATION
The multi-process modules: Child Process (CP), Cluster (C) and
multi-thread modules: WebWorker-Threads (WT), Napa.js (N) and
Worker Threads (W) on the Node.js versions: 9.7.1 (V8 6.2.414.46)
and 12.1.0 (V8 7.4.288.21) and their supporting techniques are tested.
We ran our experiments under Ubuntu 16.04.4 LTS, with 8GB RAM,
four Intel i7-2600 cores and two hardware threads per core. It sup-
ports frequency scaling with minimum and maximum: 1.6GHz and
3.8GHz in “powersave” governor with intel_pstate active mode. We
also created a virtual machine using VBoxManage and ran Ubuntu
16.04 with 8CPUs and 8GB of RAM and KVM virtualization.

7.1 Overhead
First, we investigate the speedup of the modules in Node.js 12.1.0
and Node.js 9.7.1 with the different techniques for sharing informa-
tion. In most cases, the argument passing technique has the least
overhead followed by the message passing and the shared memory
solutions. The results are not surprising as passing an argument
while creating a worker instance does not require any additional
steps. However, the difference in execution time is minor. In fact,
Napa.js shows similar results between argument passing and shared
memory with one and eight workers. Also, Worker Threads in v12
show cases where the three techniques overlap including their stan-
dard deviation. Since the difference is minor, no one technique has
a big overhead difference.

Figures 1a and 1b reveal the cost of spawning a new worker
instance for the the Monte Carlo π estimation with one point. The
results reveal that speedup increases as workers increase and it
starts dropping at 15 workers. Considering that each worker has
only one iteration to estimate the π value, the graph shows that it
is faster to spawn more instances than one, especially in Node.js v9.
In fact, WebWorker-Threads have speedup values higher than one
(better performance than the sequential program) in most cases.
While in Node.js v12, the overhead of spawning three, four, seven
and eight workers is similar. Spawning four workers produces the
highest speedup among the above and the most similar speedups
are observed in cases with seven and eight workers.

Comparing these results with Figures 1c and 1d in which the
server is set to: minimum frequency same as maximum (3.8 GHz)
and to “performance” governor, to reduce the changes in CPU
frequency, the speedups have the highest value with one worker
and decrease as the workers increase. They are always less than
one, while the standard deviations are smaller with more consistent
results. Thus, DVFS affects the scalability of the modules in this
machine. The CPU frequency changes to benefit the spawning of
more than one worker (process or thread) with minimum work
to execute, as long as they are less than or equal to the machine’s
hardware threads. In most cases, the highest speedups appear with

three and four workers, in which the turbo boost can be activated
with speed at least 3.5GHz.

7.2 Task execution
In this trial, we measure the task execution by each worker and
report the variances that affected it.

7.2.1 Run times. Figures 2a and 2b present the speedups as the
workload (iterations) per worker increases in the x-axis and the
workers increase in the y-axis. Napa.js and WebWorker-Threads
show higher speedups than Child Process and Cluster. WebWorker-
Threads have the highest speedup, while Napa.js follows as the
workload increases. For small workloads, Napa.js has the lowest
speedup. However, by excluding the step of spawning JavaScript
threads during the “zone” creation, threads from Napa.js produce
speedups closer to WebWorker-Threads for every workload. Fo-
cusing on the modules’ speedups of task execution, we measured
the execution times starting from the assignment of the tasks to
the workers until all workers have returned their values to the
main thread/process. Napa.js separates the zone creation with the
task assignment to each worker and performs it in two steps. The
zone creation appears to have such an overhead, that it can change
the trend. Napa.js with the zone overhead has the lowest speedup
in small workloads, while without it, it has the second best. In
Node.js v12, Cluster and Child Process have higher speedups than
the Worker Threads. Worker Threads have closer speedups to Clus-
ter, while Child Process outperforms both.

Focusing on the modules’ execution time, the data shows that
they decrease their real execution time as the workers increase from
one to three and four workers for workloads up to 4M iterations.
The runtimes remain lower in the case of seven and eight workers
for the same or fewer points and increase and surpass the single-
worker runtime for 15 and 16 workers. These results along with the
data on overhead show that in this machine, it is faster to spawn
more than one (and less than 15 workers) to perform a small task.

The comparison of the sequential case, the Child Process and
Cluster modules between Node.js v9 and Node.js v12, reveals that
their execution time differs and improves in the latter version. The
comparison of their ratios show that they perform better in Node.js
v12. In fact, the sequential case and the Child Process module benefit
more as the workload increases. On the other hand, the Cluster
module benefits in small workloads and then runs with the same
speed for workloads more than 2 ·107 and every number of workers.
Overall, their execution time in Node.js v12 can be more than 1.5
times faster than in Node.js v9, with the sequential case reaching
the v9/v12 ratio 2.48 and Child Process 2.46.

Comparing the performance of multi-process modules in both
versions, the results show that in Node.js v9, Cluster and Child
Process have almost identical speedups, while in Node.js v12, Child
Process outperforms Cluster. The latter is surprising, given the
fact that Cluster encapsulates some of Child Process’s function-
ality. The investigation on Node.js flags coming from V8, reveals
performance difference with default settings against the –no-opt
flag which disables any optimizations happening from V8’s Just-
In-Time compiler, called TurboFan [25]. There is a performance
difference with default settings that causes Child Process to be more
than twice as fast as Cluster and it disappears when the compiler

107

CASCON’20, November 10–13, 2020, Toronto, Canada M. Patrou, J. M. Baird, K. B. Kent and M. Dawson

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N

W
T C

C
P

Sp
ee

d
u

p

Real Execution Time Speedups of Node.js
v9 for 1 point on Bare-Metal Host

1 worker 3 workers 4 workers 7 workers

8 workers 15 workers 16 workers

N - Napa.js
WT - WebWorker-Threads
C - Cluster
CP - Child Process

(a) Node.js v9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C

C
P W

Sp
ee

d
u

p

Real Execution Time Speedups of Node.js
v12 for 1 point on Bare-Metal Host

1 worker 3 workers 4 workers 7 workers

8 workers 15 workers 16 workers

C - Cluster
CP - Child Process
W - Worker Threads

(b) Node.js v12

0

0.2

0.4

0.6

0.8

1

N

W
T C

C
P

Sp
ee

d
u

p

Real Execution Time Speedups of Node.js
v9 for 1 point on Bare-Metal Host

1 worker 3 workers 4 workers 7 workers

8 workers 15 workers 16 workers

N - Napa.js
WT - WebWorker-Threads
C - Cluster
CP - Child Process

(c) Node.js v9

0

0.1

0.2

0.3

0.4

0.5

0.6

C

C
P W

Sp
ee

d
u

p

Real Execution Time Speedups of Node.js
v12 for 1 point on Bare-Metal Host

1 worker 3 workers 4 workers

7 workers 8 workers 15 workers

C - Cluster
CP - Child Process
W - Worker Threads

(d) Node.js v12

Figure 1: Speedup for one point - Monte Carlo π estimation - CPU Frequency set to min=max in: (c) and (d)

is disabled. The performance difference increases as the workload
per worker increases indicating a connection with the iterations
for the π value estimation, in which two numbers are created with
the Math library. Thus, this can be connected with the way the
compiler optimizes this code in each module for this server.

The investigation on the virtualized environment shows that
the speedups from the experiments on the virtual machine fol-
low very similar trends as in the bare-metal host case. Running a
compute-intensive task in a host versus in a virtualized environment
on the same host does not affect the execution times of the paral-
lelization modules unevenly for large workloads and many workers.
Overall, the performance is either the same or worse in a virtual ma-
chine for every module. However, Napa.js and WebWorker-Threads
are affected more than Cluster and Child Process by the virtualized
environment. WebWorker-Threads and Napa.js reduce their overall
speedup in small workloads significantly. In fact, multi-process
modules show better speedups than Napa.js in these cases, while
Napa.js shows slightly better speedup on the bare-metal host. Also,
the ratio of the modules’ real execution time in the VM over the host
reveals cases that the multi-thread modules experience slowdowns
of 2.16x for Napa.js and 2.46x for WebWorker-Threads in the VM,
while multi-process show up to 1.34. WebWorker-Threads show the
fastest speedup and Napa.js follows in large workloads. Similarly,
in Node.js v12, Worker Threads experience higher slowdowns (up
to 2.31) than the Cluster (up to 1.5) and Child Process (1.54) mod-
ules. The trends do not change—Child Process shows the fastest
speedup. Overall, the performance difference occurs in small and
mediumworkloads and it decreases as the workloads increase. Such
a difference is significant to highlight, in case an application with
a multi-thread module is deployed on a virtualized environment.
The transition from a bare metal host to a virtualized environment
should have a bigger impact on a multi-thread solution than on a
multi-process one for a compute-intensive task.

7.2.2 CPU Metrics. Napa.js and WebWorker-Threads use the least
CPU. Multi-process modules have very similar CPU usage and fre-
quency in Node.js v9. In small workloads, the CPU frequency does
not always increase as workers increase. The frequency increases
rapidly from one worker to three and four workers and then de-
creases with values either the same with a single worker or even
higher. Also, WebWorker-Threads uses lower frequency in 2 · 106
than in 4 · 106 workloads.

In Node.js v12, the trends are not that clear. Worker Threads use
less CPU than Child Process and Cluster. As the workloads increase,
the CPU usage of the three modules converges in large workloads.
Worker Threads have the lowest CPU frequency. In small workloads,
Child Process decreases the frequency as workers increase, while
as workloads increase the values are closer together regardless of
the number of workers. Similarly in Cluster and Worker Threads,
there is no trend that frequency increases or decreases based on
the number of workers. However, when the workload per worker
is large, it reaches a high value and does not change.

Overall, the multi-thread modules use less CPU and lower fre-
quency for low and medium workloads. At 2 · 107 points, CPU
frequency stabilizes at 3.5GHz for all parallelization modules and
it does not increase with all modules running on similar CPU fre-
quency. The frequency decreases slightly as workers increase with
ranges from 3.69GHZ to 3.47GHz. However, the CPU usage in-
creases steadily as workers increase.

7.2.3 Memory Management - Garbage Collection. In Node.js v9,
Sequential, Napa.js, Cluster and Child Process perform almost the
same number of GCs especially as the workloads increase. They
also produce almost the same number of heap garbage collected
objects, WebWorker-Threads included. More specifically, the se-
quential case has the fewest heap allocations and number of GCs
in lower loads and Napa.js the highest among these four cases.
This result suggests a higher memory footprint in Napa.js. On the
other hand, WebWorker-Threads has the most GCs, almost twice

108

Software Evaluation Methodology of Node.js Parallelism under Variabilities CASCON’20, November 10–13, 2020, Toronto, Canada

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

N
W

T C
C

P N
W

T C
C

P N
W

T C
C

P N
W

T C
C

P N
W

T C
C

P N
W

T C
C

P N
W

T C
C

P N
W

T C
C

P

C
u

m
u

la
ti

ve
 S

p
ee

d
u

p

Speedups of Node.js v9

1 worker 3 workers 4 workers 7 workers
8 workers 15 workers 16 workers

2 ∗ 105 4 ∗ 105 2 ∗ 106 4 ∗ 106 2 ∗ 107 4 ∗ 107 2 ∗ 108 4 ∗ 108

N - Napa.js
WT - WebWorker-Threads
C - Cluster
CP - Child Process

(a) Node.js v9

0

2

4

6

8

10

12

14

16

18

20

22

24

26

C
C

P W C
C

P W C
C

P W C
C

P W C
C

P W C
C

P W C
C

P W C
C

P W

C
u

m
u

la
ti

ve
 S

p
ee

d
u

p

Speedups of Node.js v12

1 worker 3 workers 4 workers 7 workers

8 workers 15 workers 16 workers

2 ∗ 105 4 ∗ 105 2 ∗ 106 4 ∗ 106 2 ∗ 107 4 ∗ 107 2 ∗ 108 4 ∗ 108

C - Cluster
CP - Child Process
W - Worker Threads

(b) Node.js v12

Figure 2: Monte Carlo Speedups on Bare-Metal Host

more in some cases. The results could be explained by the different
starting heap sizes for each technique. Napa.js threads have 9.1
MB, Sequential, Cluster and Child Process processes have 3.4 and
WebWorker-Threads have 2.6 MB.

In Node.js v12, the trend is similar. In low workloads, the sequen-
tial case does the fewest GCs, while the parallelization modules
perform almost the same number of GCs for every workload and
approach the sequential case as the workloads increase. TheWorker
Threads start with heap size 2.19MB, the Cluster and Child Process
processes start with 2.18MB and the sequential 2.19MB. Investiga-
tion on the number of GCs and the heap allocations until the last GC
show that among the sequential, Cluster and Child Process isolates,

the number of GCs are similar in both Node.js/V8 versions, with
v12 producing fewer GCs as the workloads increase. Regarding
heap usage, the results are similar, but v12 modules have fewer
heap allocations for small workloads. In every case, the number of
GCs and heap allocations are consistent revealing that they can be
predicted using the information for one isolate and applying when
scaling out.

Finally, we measure the duration of all GCs using the logs that
show the GC pause [24] with the user and system execution time
of each technique. The ratio shows the percentage of time spent in
GC and reveals the time spent on freeing unused memory during
application execution. For up to three workers, Napa.js spends the
most time in GCs and WebWorker-Threads spends the least. As the
workers and load increase, Napa.js approaches the performance
of Cluster and Child Process, which spend the least time in GC.
More specifically, as workers increase, the multi-process techniques
spend the least time for small and medium loads. When they reach
15 and 16 workers, they spend the least GC% time for tiny loads and
then increase at a high rate as the load increases. They reach up to
100% GC duration, meaning that there is always a GC happening
throughout the whole application duration. On the other hand,
Sequential has the lowest GC% duration. This shows thatmost of the
application time is spent in executing the task rather than freeing
up the heap. In Node.js v12, the modules show similar percentages
in GC% duration. In cases with large workloads, Worker Threads
have the lowest percentage, while in small workloads Cluster and
Child Process have lower. For all modules in both versions the
GC% duration is less than 6% up to eight workers. The percentages
increase at 15 and 16 workers.

7.3 Sharing Information
The execution time of the modules sharing an array among workers
that contains random integers with a random number of digits is
measured. For four workers and small arrays, argument passing is
the fastest technique among the modules. As the arrays increase,
Napa.js performs better with shared memory, while Cluster and
Child Process, with argument or message passing. For more work-
ers, argument passing is still faster, except for Napa.js where the
shared memory technique is faster for large arrays. However, the
difference in execution time among each technique for every mod-
ule (except for Napa.js with large arrays) is minor, regardless of
the number of workers and the size of the array. In Node.js v12,
argument passing shows the least execution time for small arrays.
As the size of the arrays increases the shared memory technique
proves to be more efficient. A similar outcome happens for 16 work-
ers. WebWorker-Threads shows the least execution time followed
by Napa.js in Node.js v9 and Child Process and Cluster show the
least in Node.js v12.

The results show that each technique (with the exception of
Napa.js) does not increase substantially as the array increases. The
execution time increases more as more workers are spawned and
share the array. Also, there are a few cases that sending a message
is faster than the other two methods. If all of them are supported
the usual order is: argument passing, message sending and shared
memory. Shared memory is faster in cases that large arrays are

109

CASCON’20, November 10–13, 2020, Toronto, Canada M. Patrou, J. M. Baird, K. B. Kent and M. Dawson

0

100

200

300

400

500

600

700

800

C
C

P
W

T C
C

P
W

T C
C

P
W

T C
C

P
W

T C
C

P
W

T C
C

P
W

T C
C

P
W

T C
C

P
W

T C
C

P
W

T C
C

P
W

T C
C

P
W

T C
C

P
W

T C
C

P
W

T

ex
ec

u
ti

o
n

 t
im

es
 (

m
se

c)

Batch message communication Execution times Node.js v9

1 worker 3 workers 4 workers 7 workers 8 workers 15 workers 16 workers

p1m1 p1m10 p1m20 p10m1 p10m10 p10m20 p100m1 p100m10 p100m20 p1,000m1 p1,000m10 p1,000m20 p10,000m1

(a) Batch

0

100

200

300

400

500

600

700

800

C
C

P
W

T C
C

P
W

T C
C

P
W

T C
C

P
W

T C
C

P
W

T C
C

P
W

T C
C

P
W

T C
C

P
W

T C
C

P
W

T C
C

P
W

T C
C

P
W

T C
C

P
W

T C
C

P
W

T

ex
ec

u
ti

o
n

 t
im

es

Pair message communication Execution times Node.js v9

p1m1 p1m10 p1m20 p10m1 p10m10 p10m20 p100m1 p100m10 p100m20 p1,000m1 p1,000m10 p1,000m20 p10,000m1

(b) Pair

Figure 3: Batch-Pair Patterns Execution times Node.js v9

shared. However, the difference is minor in most cases, with the
exception of Napa.js for large arrays.

The modules are, also, tested with arrays that hold integers with
one digit (0-9). Larger arrays are used to evaluate the performance
of each technique, too. Here, the trends are very similar to the
previous benchmark. However, Cluster and Child Process receive
the data in argument passing technique as strings. In this case, there
appears to be a limit on the number of integers shared among the
worker processes. Arrays with size 105 and 106 cannot be passed
as arguments.

Overall, argument passing appears to be a fast way to share data.
In cases with large arrays, the shared memory technique creates a
big performance gap, especially in multi-process implementations,
and shows to be the fastest solution. Message passing has the least
execution time in very few cases.

7.4 Communication Cost
Figures 3 and 4 present the execution time for Batch and Pair pat-
terns for cases up to p10, 000m1. The x-axis shows the array size

0

100

200

300

400

500

600

700

800

C
C

P W C
C

P W C
C

P W C
C

P W C
C

P W C
C

P W C
C

P W C
C

P W C
C

P W C
C

P W C
C

P W C
C

P W C
C

P W

ex
ec

u
ti

o
n

 t
im

es

Batch message communication Execution times Node.js v12

1 worker 3 workers 4 workers 7 workers

8 workers 15 workers 16 workers

p1m1 p1m10 p1m20 p10m1 p10m10 p10m20 p100m1 p100m10 p100m20 p1,000m1 p1,000m10 p1,000m20 p10,000m1

C - Cluster
CP - Child Process
W - Worker Threads

(a) Batch

0

100

200

300

400

500

600

700

800

C
C

P W C
C

P W C
C

P W C
C

P W C
C

P W C
C

P W C
C

P W C
C

P W C
C

P W C
C

P W C
C

P W C
C

P W C
C

P W

ex
ec

u
ti

o
n

 t
im

es
 (

m
se

c)

Pair message communication Execution times Node.js v12

p1m1 p1m10 p1m20 p10m1 p10m10 p10m20 p100m1 p100m10 p100m20 p1,000m1 p1,000m10 p1,000m20 p10,000m1

(b) Pair

Figure 4: Batch-Pair Patterns Execution times Node.js v12

with random-sized integers-points (pn) followed by the number of
messages sent from the parent to each worker (mk).

The modules in Node.js v9 have very similar execution time
for all cases betweenp1m1 andp100m20. In both patterns, the trends
are similar. The execution time increases slightly as the number of
messages increases, while there is no significant difference in the
performance as themessage size is increased. Even though, the num-
ber of messages exchanged affects the performance more than the
number of points sent, within each message, the gap remains small.
As the workers increase, WebWorker-Threads increase their execu-
tion time. Child Process and Cluster have the shortest duration with
three and four workers and the execution time increases gradually
as workers increase. Overall, WebWorker-Threads have the least
runtime and that creates a big performance gap with Cluster and
Child Process. However, as the array size increases, WebWorker-
Threads increase the execution time as such that exceeds the multi-
process modules. In both patterns, WebWorker-Threads show very
small execution time with small message size and as the size and
number of messages increase show the slowest execution time. Also,
for p100, 000 with 10 and 20 messages the module is not supported.

110

Software Evaluation Methodology of Node.js Parallelism under Variabilities CASCON’20, November 10–13, 2020, Toronto, Canada

In Node.js v12, Cluster and Child Process have the best execution
time for any message size and number. However, Worker Threads
perform best for one worker with small and medium array sizes
and decrease their performance as the points increase (p10, 000).
For small and medium size arrays, Cluster and Child Process have
their least execution time for three and four workers and Worker
Threads have their least execution time in three workers with small
points (more than one point).

In both versions, the modules show a slight performance im-
provement when parent and child exchange one big message, rather
than ten smaller ones. The graphs show that in cases with pnm10
and p10nm1 the overall execution time is less with one message
exchanged for any pattern. Additionally, in cases: p100, 000m10
and p100, 000m20, Child Process and Cluster modules have their
execution time around twice more in the Batch pattern than in the
Pair one, while for smaller cases the runtimes are similar. Worker
Threads are not affected by the pattern change in the same cases.

Regarding CPU utilization, Cluster and Child Process use the
most CPU in the majority of cases. For cases with less than 10,000
points (excluding p1, 000m20), the CPU usage of all modules main-
tains very similar values for the same number ofmessages. However,
the CPU usage for themulti-processmodules drops afterwards. Con-
sidering that the execution time increases as points and messages
increase, sending a message becomes a bottleneck. In cases with the
largest array with 10 and 20 messages, Child Process and Cluster
spend twice as much time in Batch pattern compared to the Pair
pattern and use less than two CPUs in Batch pattern. Thus, waiting
to receive everyone’s array and then sending it back becomes ineffi-
cient. For the other cases with smaller messages, the patterns do not
have a significant difference. In Node.js v9, WebWorker-Threads use
less CPU than Cluster and Child Process. In Node.js v12, Worker
Threads use the least CPU in the Pair pattern for every case and in
the Batch pattern, all cases except the two with the largest array
and 10 and 20 messages.

The CPU frequency is also higher for multi-process modules.
However, as the message size and the number increase the multi-
thread modules reach and sometimes overcome their values. The
frequency values of Child Process, Cluster, in both Node.js versions,
andWorker Threads show that the frequency increases significantly
from one worker to three workers and four workers. On the other
hand, WebWorker-Threads decrease their frequency as workers
increase for small messages.

8 DISCUSSION
The performance analysis within our test environment reveals as-
pects that need to be taken into consideration during software
design and bottleneck analysis. The outcomes related to our hy-
potheses in parentheses are as follows:

The first observation is the overhead of spawning new workers.
The results show that this overhead can be high in both Node.js
thread and process implementations. In contrast to our first hy-
pothesis, the creation of a Node.js thread does not guarantee lower
overhead. In fact, the overhead can be similar or higher than the
multi-process implementations. WebWorker-Threads, followed by
Napa.js, shows the best performance in Node.js v9.7.1, while Child
Process, followed by Cluster, shows the best in Node.js v12.1.0. In

both versions, the multi-process modules are faster when communi-
cating with very large arrays, than the multi-thread ones. However,
the above modules have some limitations on their support and
functionality. They either support fewer APIs for information ex-
change (argument passing and shared memory techniques were
not supported in WebWorker-Threads and message passing was
not supported in Napa.js) and/or less data exchanged in some cases
(arrays larger than 105 could not be sent as arguments in Clus-
ter and Child Process and arrays of 100,000 points with 10 and 20
messages could not be sent in WebWorker-Threads). On the other
hand, Worker Threads do not have any limitation on the same
experiments. (H1)

The performance and themodule support depends on the Node.js
version. Thus, there is not a clear winner for both versions. The
modules are presented and compared within their versions. Among
versions, changes are introduced to Node.js, that affect the whole
system’s performance and make it unfair to draw any conclusions
on modules for both versions. Also, the Node.js version appears to
be an important factor for choosing a module, because of version
incompatibilities. The transition from Node.js v9.7.1 to Node.js
v12.1.0, shows benefits in the performance with lower execution
time and fewer GCs. Thus, applications that use the above modules,
can experience better execution time in a newer Node.js version.
However, findings show that in the latter version, the Cluster and
Child module are not optimized evenly in certain cases. Thus, the
code compilation might benefit the performance differently. (H2)

Argument passing has the least execution time in many cases,
but the difference with other techniques is minor. Also, there is
a minor overhead difference among them. The performance in
Napa.js between argument passing and shared memory is obvious
in several cases, while for the other modules the gap appears in large
arrays, in which shared memory techniques outperform. However,
argument and message passing allow for more flexibility on the
type and size of the data sent than in the shared memory solutions.
In the latter cases, the developers need to define the data size and
type that is shared across instances. (H4)

In most cases, the communication pattern does not affect perfor-
mance. Only multi-process modules are affected for large message
exchanges. The gap with different message numbers and sizes is
minor within each module, but the modules show slightly better
performance with one larger message exchanged than ten smaller.
A big performance gap appears for messages with large arrays. (H5)

The environment affects the performance of all modules. DVFS
affects the scalability of the parallelization modules, by changing
the “speed” of CPUs as more work is executed by them. Spawning
more than one worker can be faster with the current CPU scaling
driver/governor and CPU boost limits. Usually, Node.js threads
use less CPU and lower frequency. However, the execution envi-
ronment affects the multi thread implementations more than the
multi process ones. The execution of a compute-intensive task in
the virtualized environment creates higher slowdowns in the multi
thread implementations compared with multi process ones. The
difference, though, does not change the trend on which module has
the highest speedup, since all modules experience slowdowns. (H3)

111

CASCON’20, November 10–13, 2020, Toronto, Canada M. Patrou, J. M. Baird, K. B. Kent and M. Dawson

9 CONCLUSION AND FUTURE WORK
Node.js allows the creation of parallelization modules with different
architectures. Understanding and investigating key functionalities
can give insight on which one is more appropriate in every case.
Thus, we provide an evaluation methodology and survey Node.js
parallelization modules, while we consider variabilities in a soft-
ware and hardware level. We formulate hypotheses and perform an
experimental study to conclude on these statements and provide
better module utilization.

However, our focus is on task parallelism on one machine. In
the future, we can use our methodology for evaluating modules
on distributed systems with the latest Node.js/module version and
considering performance interference. Also, our study is based on
micro-tasks that while we focus on specific individual aspects, the
outcomes might deviate in complex real-world cases. Following
a similar methodology with more elaborated scenarios can reveal
further observations and the connection between controlled micro-
tasks with real-world scenarios, including more variabilities.

ACKNOWLEDGMENTS
This researchwas conductedwithin the Centre for Advanced Studies—
Atlantic, Faculty of Computer Science, University of NewBrunswick.
The authors are grateful for the colleagues and facilities of CAS
Atlantic in supporting our research. The authors would like to
acknowledge the funding support of the Natural Sciences and Engi-
neering Research Council of Canada (NSERC), 501197-16. Further-
more, we would also like to thank the New Brunswick Innovation
Foundation for contributing to this project. We also thank Stephen
MacKay for his careful proofreading and editing the paper to im-
prove its quality.

REFERENCES
[1] [n.d.]. Node.js v14.4.0 Documentation - Modules. https://nodejs.org/api/modules.

html. [Online; accessed 15-June-2020].
[2] 2014. Libuv 1.20.4-dev Documentation. http://docs.libuv.org/en/v1.x/design.html.

[Online; accessed 13-July-2018].
[3] 2015. Chrome V8. https://developers.google.com/v8/. [Online; accessed 13-July-

2018].
[4] 2017. Intel P-State Driver. https://www.kernel.org/doc/Documentation/cpu-freq/

intel-pstate.txt. [Online; accessed 19-December-2019].
[5] 2018. Napa.js - Namespace Transport. https://github.com/microsoft/napajs/blob/

7e934ecc125a02088c25e1a58a8eb1b6fad80f6d/docs/api/transport.md. [Online;
accessed 13-November-2019].

[6] 2018. Napa.js - Namespace Zone. https://github.com/microsoft/napajs/blob/
73460d244438e91d302194ee02de2a911a9bb731/docs/api/zone.md. [Online; ac-
cessed 13-November-2019].

[7] 2018. Napa.js - Napa.js Module. https://github.com/microsoft/napajs/blob/master/
docs/api/module.md#js-vs-cpp. [Online; accessed 13-November-2019].

[8] 2018. Napa.js - Transport JavaScript Standard Built-in Objects. https://github.
com/microsoft/napajs/blob/7e934ecc125a02088c25e1a58a8eb1b6fad80f6d/docs/
design/transport-js-builtins.md. [Online; accessed 13-November-2019].

[9] 2018. Napa.js: A Multi-threaded JavaScript Runtime. https://github.com/
microsoft/napajs. [Online; accessed 20-July-2018].

[10] 2018. Napa.js: estimate-pi-in-parallel.js. https://github.com/microsoft/napajs/
blob/master/examples/tutorial/estimate-pi-in-parallel/estimate-pi-in-parallel.
js. [Online; accessed 22-July-2018].

[11] 2018. Node.js v10.4.1 Documentation - Child Processes. https://nodejs.org/api/
child_process.html. [Online; accessed 20-July-2018].

[12] 2018. Node.js v10.4.1 Documentation - Cluster. https://nodejs.org/api/cluster.html.
[Online; accessed 20-July-2018].

[13] 2018. WebWorker Threads. https://www.npmjs.com/package/
webworker-threads. [Online; accessed 7-July-2018].

[14] 2018. WebWorker Threads - Lightweight Web Worker API Implemen-
tation with Native Threads - Repository. https://github.com/audreyt/
node-webworker-threads. [Online; accessed 13-November-2019].

[15] 2018. WebWorker Threads - WebWorkerThreads.cc. https://github.com/audreyt/
node-webworker-threads/blob/dfbbe267b83224e0d7eb82957fe07dcdc2122464/
src/WebWorkerThreads.cc. [Online; accessed 13-November-2019].

[16] 2019. Node.js C++ Codebase. https://github.com/nodejs/node/blob/master/src/
README.md. [Online; accessed 19-December-2019].

[17] 2019. Node.js v12.1.0 Documentation - Events. https://nodejs.org/dist/v12.
1.0/docs/api/events.html#events_class_eventemitter. [Online; accessed 11-
November-2019].

[18] 2019. Node.js v12.1.0 Documentation - Worker Threads. https://nodejs.org/dist/
v12.1.0/docs/api/worker_threads.html. [Online; accessed 11-November-2019].

[19] Jay Conrod. 2014. A tour of V8: Garbage Collection. http://jayconrod.com/posts/
55/a-tour-of-v8-garbage-collection. [Online; accessed 6-July-2018].

[20] Libuv contributors. 2019. Libuv Documentation Release 1.33.1. https://
buildmedia.readthedocs.org/media/pdf/libuv/stable/libuv.pdf. [Online; accessed
18-November-2019].

[21] Jamie Davis. 2017. WebWorker Threads - Developer guide. https://github.com/
audreyt/node-webworker-threads/wiki/Developer-guide. [Online; accessed
14-November-2019].

[22] OpenJS Foundation. [n.d.]. Don’t Block the Event Loop (or theWorker Pool). https:
//nodejs.org/uk/docs/guides/dont-block-the-event-loop/. [Online; accessed 13-
December-2019].

[23] OpenJS Foundation. 2020. Node.js. https://nodejs.org/en/. [Online; accessed
17-August-2020].

[24] Joyee Cheung Alibaba Cloud(Alibaba Group). 2017. Are your V8 garbage collec-
tion logs speaking to you? https://www.slideshare.net/NodejsFoundation/are-
your-v8-garbage-collection-logs-speaking-to-youjoyee-cheung-alibaba-
cloudalibaba-group. [Online; accessed 8-January-2020].

[25] Jakob Gruber. 2019. JIT-less V8. https://v8.dev/blog/jitless. [Online; accessed
12-December-2019].

[26] Anna Henningsen. 2018. Worker: Initial Implementation #20876. https://github.
com/nodejs/node/pull/20876. [Online; accessed 15-November-2019].

[27] Docker Inc. 2018. Docker. https://www.docker.com/. [Online; accessed 07-July-
2018].

[28] Dmitry Namiot and Vladimir Sukhomlin. 2015. JavaScript Concurrency Models.
International Journal of Open Information Technologies 3, 6 (2015), 21–24.

[29] Lionel Nkenyereye and Jong-Wook Jang. 2016. Performance Evaluation of Server-
side JavaScript for Healthcare Hub Server in Remote Healthcare Monitoring
System. Procedia Computer Science 98 (2016), 382–387.

[30] Maria Patrou, Kenneth B Kent, and Michael Dawson. 2019. Scaling Parallelism
Under CPU-Intensive Loads in Node.js. In 2019 27th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing (PDP). IEEE,
205–210.

[31] Stefan Tilkov and Steve Vinoski. 2010. Node. js: Using JavaScript to build high-
performance network programs. IEEE Internet Computing 14, 6 (2010), 80–83.

[32] Devesh Tiwari and Yan Solihin. 2012. Architectural characterization and similar-
ity analysis of sunspider and Google’s V8 Javascript benchmarks. In Performance
Analysis of Systems and Software (ISPASS), 2012 IEEE International Symposium on.
IEEE, 221–232.

[33] ukrbublik. 2019. shm-typed-array. https://www.npmjs.com/package/
shm-typed-array. [Online; accessed 19-November-2019].

[34] Michael Lippautz Ulan Degenbaev and Hannes Payer. 2017. Orinoco: Young
Generation Garbage Collection. https://v8.dev/blog/orinoco-parallel-scavenger.
[Online; accessed 18-December-2019].

[35] V8. 2018. Concurrent Marking in V8. https://v8.dev/blog/concurrent-marking.
[Online; accessed 18-December-2019].

[36] V8. 2019. 3.11.10(node0.8.28) - v8::Isolate Class Reference. https://v8docs.
nodesource.com/node-0.8/d5/dda/classv8_1_1_isolate.html. [Online; accessed
25-November-2019].

[37] V8. 2019. Getting startedwith embedding V8. https://v8.dev/docs/embed. [Online;
accessed 18-December-2019].

[38] Jeffrey S Vetter and Michael O McCracken. 2001. Statistical scalability analysis of
communication operations in distributed applications. In ACM SIGPLAN Notices,
Vol. 36. ACM, 123–132.

[39] Jeffrey S Vetter and Andy Yoo. 2002. An empirical performance evaluation of
scalable scientific applications. In Supercomputing, ACM/IEEE 2002 Conference.
IEEE, 16–16.

[40] Rafael J. Wysocki. 2017. intel_pstate CPU Performance Scaling Driver. https:
//www.kernel.org/doc/html/v4.12/admin-guide/pm/intel_pstate.html. [Online;
accessed 19-December-2019].

[41] Jiapeng Zhu, Panagiotis Patros, Kenneth B Kent, and Michael Dawson. 2018.
Node. js scalability investigation in the cloud. In Proceedings of the 28th Annual
International Conference on Computer Science and Software Engineering. IBM
Corp., 201–212.

[42] Yuhao Zhu, Daniel Richins, Matthew Halpern, and Vijay Janapa Reddi. 2015.
Microarchitectural implications of event-driven server-side web applications. In
Microarchitecture (MICRO), 2015 48th Annual IEEE/ACM International Symposium
on. IEEE, 762–774.

112

https://nodejs.org/api/modules.html
https://nodejs.org/api/modules.html
http://docs.libuv.org/en/v1.x/design.html
https://developers.google.com/v8/
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
https://github.com/microsoft/napajs/blob/7e934ecc125a02088c25e1a58a8eb1b6fad80f6d/docs/api/transport.md
https://github.com/microsoft/napajs/blob/7e934ecc125a02088c25e1a58a8eb1b6fad80f6d/docs/api/transport.md
https://github.com/microsoft/napajs/blob/73460d244438e91d302194ee02de2a911a9bb731/docs/api/zone.md
https://github.com/microsoft/napajs/blob/73460d244438e91d302194ee02de2a911a9bb731/docs/api/zone.md
https://github.com/microsoft/napajs/blob/master/docs/api/module.md#js-vs-cpp
https://github.com/microsoft/napajs/blob/master/docs/api/module.md#js-vs-cpp
https://github.com/microsoft/napajs/blob/7e934ecc125a02088c25e1a58a8eb1b6fad80f6d/docs/design/transport-js-builtins.md
https://github.com/microsoft/napajs/blob/7e934ecc125a02088c25e1a58a8eb1b6fad80f6d/docs/design/transport-js-builtins.md
https://github.com/microsoft/napajs/blob/7e934ecc125a02088c25e1a58a8eb1b6fad80f6d/docs/design/transport-js-builtins.md
https://github.com/microsoft/napajs
https://github.com/microsoft/napajs
https://github.com/microsoft/napajs/blob/master/examples/tutorial/estimate-pi-in-parallel/ estimate-pi-in-parallel.js
https://github.com/microsoft/napajs/blob/master/examples/tutorial/estimate-pi-in-parallel/ estimate-pi-in-parallel.js
https://github.com/microsoft/napajs/blob/master/examples/tutorial/estimate-pi-in-parallel/ estimate-pi-in-parallel.js
https://nodejs.org/api/child_process.html
https://nodejs.org/api/child_process.html
https://nodejs.org/api/cluster.html
https://www.npmjs.com/package/webworker-threads
https://www.npmjs.com/package/webworker-threads
https://github.com/audreyt/node-webworker-threads
https://github.com/audreyt/node-webworker-threads
https://github.com/audreyt/node-webworker-threads/blob/dfbbe267b83224e0d7eb82957fe07dcdc2122464/src/WebWorkerThreads.cc
https://github.com/audreyt/node-webworker-threads/blob/dfbbe267b83224e0d7eb82957fe07dcdc2122464/src/WebWorkerThreads.cc
https://github.com/audreyt/node-webworker-threads/blob/dfbbe267b83224e0d7eb82957fe07dcdc2122464/src/WebWorkerThreads.cc
https://github.com/nodejs/node/blob/master/src/README.md
https://github.com/nodejs/node/blob/master/src/README.md
https://nodejs.org/dist/v12.1.0/docs/api/events.html#events_class_eventemitter
https://nodejs.org/dist/v12.1.0/docs/api/events.html#events_class_eventemitter
https://nodejs.org/dist/v12.1.0/docs/api/worker_threads.html
https://nodejs.org/dist/v12.1.0/docs/api/worker_threads.html
http://jayconrod.com/posts/55/a-tour-of-v8-garbage-collection
http://jayconrod.com/posts/55/a-tour-of-v8-garbage-collection
https://buildmedia.readthedocs.org/media/pdf/libuv/stable/libuv.pdf
https://buildmedia.readthedocs.org/media/pdf/libuv/stable/libuv.pdf
https://github.com/audreyt/node-webworker-threads/wiki/Developer-guide
https://github.com/audreyt/node-webworker-threads/wiki/Developer-guide
https://nodejs.org/uk/docs/guides/dont-block-the-event-loop/
https://nodejs.org/uk/docs/guides/dont-block-the-event-loop/
https://nodejs.org/en/
https://v8.dev/blog/jitless
https://github.com/nodejs/node/pull/20876
https://github.com/nodejs/node/pull/20876
https://www.docker.com/
https://www.npmjs.com/package/shm-typed-array
https://www.npmjs.com/package/shm-typed-array
https://v8.dev/blog/orinoco-parallel-scavenger
https://v8.dev/blog/concurrent-marking
https://v8docs.nodesource.com/node-0.8/d5/dda/classv8_1_1_isolate.html
https://v8docs.nodesource.com/node-0.8/d5/dda/classv8_1_1_isolate.html
https://v8.dev/docs/embed
https://www.kernel.org/doc/html/v4.12/admin-guide/pm/intel_pstate.html
https://www.kernel.org/doc/html/v4.12/admin-guide/pm/intel_pstate.html

The Weakest Link: Revealing and Modeling the Architectural
Patterns of Microservice Applications

Vladimir Podolskiy
v.podolskiy@tum.de

Chair of Computer Architecture &
Parallel Systems

Technical University of Munich
Germany

Maria Patrou
maria.patrou@unb.ca

Faculty of Computer Science
University of New Brunswick

Canada

Panos Patros
panos.patros@waikato.ac.nz

Department of Software Engineering
University of Waikato

New Zealand

Michael Gerndt
gerndt@in.tum.de

Chair of Computer Architecture &
Parallel Systems

Technical University of Munich
Germany

Kenneth B. Kent
ken@unb.ca

Faculty of Computer Science
University of New Brunswick

Canada

ABSTRACT
Cloud microservice applications comprise interconnected services
packed into containers. Such applications generate complex com-
munication patterns among their microservices. Studying such
patterns can support assuring various quality attributes, such as au-
toscaling for satisfying performance, availability and scalability, or
targeted penetration testing for satisfying security and correctness.
We study the structure of containerized microservice applications
via providing the methodology and the results of a structural graph-
based analysis of 103 Docker Compose deployment files from open-
sourced Github repositories. Our findings indicate the dominance of
a power-law distribution of microservice interconnections. Further
analysis highlights the suitability of the Barabási-Albert model for
generating large random graphs that model the architecture of real
microservice applications. The exhibited structures and their usage
for engineering microservice applications are discussed.

CCS CONCEPTS
•Computer systems organization→Cloud computing; • Soft-
ware and its engineering → Extra-functional properties.

KEYWORDS
cloud-native application, microservice, software vulnerability, ap-
plication topology

ACM Reference Format:
Vladimir Podolskiy, Maria Patrou, Panos Patros, Michael Gerndt, and Ken-
neth B. Kent. 2020. The Weakest Link: Revealing and Modeling the Ar-
chitectural Patterns of Microservice Applications. In Proceedings of 30th
International Conference on Computer Science and Software Engineering (CAS-
CON’20). IBM, USA, 10 pages.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CASCON’20, November 10–13, 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

1 INTRODUCTION
Cloud-native applications comprise containerized microservices,
each implementing a narrow part of the application’s functionality
to enable fine-grain elasticity. However, finding the right number
of containerized microservice instances to guarantee quality of
service, reduce resource consumption and identify bottlenecks is
not trivial: communication between microservices can happen in a
number of ways depending primarily on the application’s topology.

Analyzing the structure of real microservice applications unveils
chains of microservices (in a producer-consumer relationship) that
utilize various communication protocols with as many as 100-300
services [7]. When scaling a particular logical service in such a
chain, one may face the necessity of cascading capacity changes for
the downstream services to avoid such services becoming a new
bottleneck [19]. Knowing the topology of amicroservice application
could help identify such a bottleneck service, the weakest link, in
advance. This allows predictive scaling that can dynamically meet
demand [26] and protect against malicious entities exploiting a
weakest link vulnerability, which can happen via a targeted denial
of service attack affecting the availability of the cloud application.

Besides scaling and security, knowing a microservice topology
can assist in assuring other software quality attributes. For example,
realistic benchmarks can be created using the service topology as
a generic template. Also, deployment based on the weakest link-
services to assist the weakest one and determining the application
capacity can lead to better performance.

The lack of publicly available industry-scale microservice ap-
plications precluded the research of this type of applications [7].
The study of public code repositories allows us to overcome this
challenge to an extent as individuals and companies tend to open
source their production code or community projects. The strong
positive correlation between the number of employees and number
of services supported in an application [7] allows us to assume
that it is more likely to find an application encompassing a high
number of services and with a more complex topology in the public
repository of a large company, such as Google or Uber, than in the
repository of a recent startup or an individual.

113

CASCON’20, November 10–13, 2020, Toronto, Canada Vladimir Podolskiy, Maria Patrou, Panos Patros, Michael Gerndt, and Kenneth B. Kent

Studying the structure of open source microservice applications
can disclose common topological patterns. Generating versatile
real-like application structures from these patterns can further be
used to assemble microservice applications of similar structure but
with a larger size to enable practice-relevant research or realistic
stress-testing for such applications. We focus on the architectural
patterns of microservice applications contributing in:

• Performing an empirical study of the structure of 103 mi-
croservice applications available on Github.

• Modeling the structure of the over-represented microservice
application type with a power-law distribution of vertices’
degree using random graph models, which we evaluate.

• Outlining an overall methodology for performing such em-
pirical studies, including the identification of an appropriate
random graph generation model and tuning its parameters.

The paper is organized as follows: background and related work
in Sections 2 and 3; architectural pattern inspection of the applica-
tions in Section 4; modeling of the structure of applications with
power-law service degree distribution in Section 5, observations in
Section 6 and conclusion and future work in Section 7.

2 BACKGROUND
Amicroservice implements a limited functionality, is independently
deployable and often communicates with other microservices via
the network. OS-level virtualization with containers allows one to
implement microservices easily—the software developer needs to
add the necessary libraries and the software to the container image,
which can be used to deploy multiple containers implementing
the same function. In a microservice application that follows a
Service-Oriented Architecture (SOA) software design style, the
communication between the microservices is usually done via API
calls over the network—this supports loosely coupled applications
and allows fine-grained application elasticity.

Microservice applications tend to serve users’ requests, a pat-
tern commonly used in web-shops and online-portals, because this
architecture addresses multiple requirements: the response time
of a microservice application deployed on the cloud can be rela-
tively short and predictable by scaling individual microservices;
high availability is ensured by negligible microservice deployment
times; and there are multiple orchestration tools available for mi-
croservice applications, which make management and autoscaling
easy tasks (e.g., Docker Swarm and Kubernetes) [16].

The application deployment in Docker Swarm requires the use
of a Compose file [18] in YAML [2] standard, which describes the
components of the application and their interconnections at a soft-
ware architecture and deployment level. Docker Swarm initializes
the cluster with the container-services described in the YAML file.
The file includes configuration settings for each service that re-
sides in a container, including the container image, which has the
executable code, and its dependencies with other containers that
affect the order of starting and stopping the services. Furthermore,
information on the cluster’s networking for intercommunication
and reachability among containers and their data storage is defined.

While in Docker Swarm, applications are organized into con-
tainers, Kubernetes leverages Pods. Each Pod has one or multiple

containers, while groups of pods are deployed to create an applica-
tion on a (cloud) cluster [27].

2.1 Graph Theory Essentials
A graph is a discrete mathematical abstraction that encompasses
a set of objects (vertices of a graph) and a set of relations between
these objects (edges of a graph). If the set of vertices is denoted
by 𝑉 and the set of edges is denoted by 𝐸 with an edge between
𝑖𝑡ℎ and 𝑗𝑡ℎ vertices being 𝑒𝑖 𝑗 , then a graph can be denoted as an
ordered pair 𝐺 = (𝑉 , 𝐸). Graphs are usually depicted with circles
being the vertices and lines being the edges; if a graph is directed
(the order of vertices in edge matters), arrows are used instead of
simple lines. A graph can be quantified by parameters. The most
basic quantification is through the number of vertices, |𝑉 |, and the
number of edges, |𝐸 |. In addition, each vertex could be quantified
by the number of edges that connect to it; this parameter is called
the degree of a vertex, 𝑑𝑒𝑔(𝑣). In a directed graph one can further
divide the notion of degree into outdegree, i.e.,the number of edges
that start at this vertex, and indegree, i.e., the number of edges that
end at this vertex. The degree sum for the undirected graph could
be computed as

∑
𝑣∈𝑉 𝑑𝑒𝑔(𝑣) = 2|𝐸 |. The degree of a vertex is a

primary characteristic of structural patterns in the graph as it can
be used to describe the connectivity of a particular part of a graph
by relating vertices to edges in a quantifiable way. Thus, graph
theory is used in the paper as a formalism to analyze the structure
of microservice applications.

2.2 Network Theory Essentials
Network theory emerged to address the complexity and vulnera-
bility of real-world structures like power grids or the Internet [5].
In essence, modelling real a structures, a network is a graph with
labelled vertices and/or edges.

It is often necessary to understand which nodes in the network
are more important than the others. The importance could be de-
noted differently, but the most common way is to associate the
number of connections with a node’s importance. The identification
of such nodes is addressed by centrality indices that are computed
differently [9]. Degree centrality is one of the simplest centrality
measures and is defined as the number of links incident upon a
node, thus the degree centrality of a vertex 𝑣 is 𝐶𝐷 (𝑣) = 𝑑𝑒𝑔(𝑣); it
characterizes the immediate importance of the node.

Degree distribution is a probability distribution of degrees in the
network used to describe the whole network. Degree distribution
shows how often nodes with a particular degree are encountered—
different degree distributions correspond to different structures. For
example, if the degree distribution has a long tail for higher degrees,
then the network contains only a few nodes of high importance, i.e.,
numerous connections with other nodes. This fact can have signifi-
cant implications in such cases as developing a network structure
that is resilient to cyber attacks. Hence, certain structural properties
of the network can be conveyed with the degree distribution.

The degree distribution of a network can be approximated by a
formula; this allows the in-depth study of the network’s properties.
For example, one of the most common types of networks is a scale-
free network with the probability distribution described roughly
by 𝑃 (𝑑) ∝ 𝑑−𝛼 , where the fraction of nodes with 𝑑 connections is

114

The Weakest Link: Revealing and Modeling the Architectural Patterns of Microservice Applications CASCON’20, November 10–13, 2020, Toronto, Canada

defined as 𝑃 (𝑑) and drops exponentially with the growth of the
degree (𝛼 is usually between 2 and 3). Various models exist to
describe the properties of the networks and to generate new ones.
In particular, scale-free networks are best described by the Barabási-
Albert (BA) model that uses a preferential attachment method to
generate networks with a power-like degree distribution [4].

We employ degree distribution on the microservice connectivity
as described by the configuration files. The metric exposes the con-
nectivity across the microservices, thus revealing the application’s
structure model. We conduct an analysis of the microservice ap-
plications that allows us to use random graph models to generate
networks with realistic microservice structural properties.

3 RELATEDWORK
Despite the absence of work devoted to the study of the struc-
tural aspects of microservice applications, the importance of such
research is recognized in the literature [14].

Contributions to the study of application’s structure were made
for conventional multi-tier application architectures, such as ones
with a front-end, an application service and a database. The neces-
sity to incorporate such knowledge to identify application bottle-
necks was recognized by Malkowski et al. as the result of exper-
imental studies of N-tier applications using the RUBiS and RUB-
BoS benchmarks [24]. Wang et al. approached the challenge of
detecting the transient bottlenecks in multi-tier applications that
contribute to the latency long-tail problem in clouds via elaborate
load-throughput analysis on multiple tiers of application [32, 33].
Liu et al. applied queuing network theory-based application mod-
eling to wide-spread 3-tier web-applications to derive accurate
predictions for response time and throughput [23]. Workload scal-
ing as a method to scale multi-tier cloud applications via replicating
the processing of the same request and sending the results of the
fastest VM to the user was proposed by Pérez at al. [28]; the same
work marks application topology and tier-specific workload scaling
models as a research challenge. sPARE is the first known partial
replication system that takes into account the structure of a multi-
tier application to coordinate the replication levels on all tiers [6].

Similar to us, Márquez et al. performed an empirical study on scal-
ability aspects of microservice-based applications by investigating
30 open-sourced projects. They analyzed three types of configura-
tion files found in the projects: YAML files for Docker Compose,
POM files for Apache Maven and Gradle files (build.gradle). Their
main focus was to answer research questions towards scalability
using their pattern language that focuses on scalability dimen-
sions they have previously identified. Their goal is to identify the
frameworks that meet the scalability dimensions and provide rec-
ommendations on microservice architecture [25].

In contrast, our study focuses on applying graph theory to
microservice-based applications’ structures. Every service, which
is defined in the Compose file, is treated as a node and keywords
that reveal their dependencies are used to extract the connections
among services. We identify and generate models that best fit the
structures and discuss their potential usage in software engineer-
ing. Any observations on software qualities, such as scalability,
security etc., are made based on the architecture of the service

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 …

C
u

m
u

la
ti

ve
 %

Fi
le

s

#Services

Figure 1: Cumulative distribution of configuration files per
number of services they declare. The shaded area designates
the files having four or more services for further analysis.

interconnection and can be used to improve software quality. Fi-
nally, unlike other empirical studies who analyze source code, such
as [11], our focus is entirely on the interconnections at the software
architecture/component level.

4 ARCHITECTURAL PATTERN INSPECTION
Various public Github repositories of IT companies, organizations
and individuals were explored manually to obtain their config-
uration YAML files. The files were processed to reveal the type
of services and how they tend to be interconnected. A statistical
analysis with graph and network metrics was applied to find how
common distributions model real-world application structures.

4.1 Dataset
Although following a manual data collection is a limitation of the
study, it was adopted since the automatic exploration of Github
repositories’ excerpts available on Kaggle1 would result in mean-
ingless sample pet-projects polluting the results and thus, biasing
the resulting structural models. The exploration resulted in a col-
lection of 137 Docker Compose configuration files taken from 107
Github repositories, which we made available [1]. The collected
configuration files represent a variety of applications, including
web-shops and web-portals, cloud platforms for IoT, technology
stacks, etc. Their version distribution was as follows: 18 files were
version 1.0; 66 were version 2.x; and 53 were version 3.x.

These YAML files define the start up sequence of microservices
via special keywords, such as depends_on, links, or external_links2.
We used this formal specification to create service-dependency
graphs. However, to ensure our dataset contained complex-enough
points, it was decided to exclude those that had three or fewer
connected microservices (Figure 1).

After the above filtering was processed, 103 Compose configura-
tion files were selected and analyzed for their microservice topology.
Based on these configuration files, the results show that at least
26% of the applications contain more than eight microservices. For
each of the 826 services defined, we extracted the number of ports
exposed to other services and to outside clients, the number of
persistent volumes, the number of services a service depends on
and the number of services that are depended upon a service.

1https://www.kaggle.com/github/github-repos
2https://docs.docker.com/compose/compose-file/#links

115

CASCON’20, November 10–13, 2020, Toronto, Canada Vladimir Podolskiy, Maria Patrou, Panos Patros, Michael Gerndt, and Kenneth B. Kent

(a) Popular service distribution

0

5

10

15

20

25

30
1

2
3

4
5

6
7

8
9

1
1

1

1
3

3

1
5

5

1
7

7

1
9

9

2
2

1

2
4

3

2
6

5

2
8

7

3
0

9

#U
n

iq
u

e
Fi

le
s

Ordinals of Services Sorted by Popularity

(b) Popular services – 11 most popular services

26

18 18 17 17 16 16 14 14 12 11

0
5

10
15
20
25
30

re
d

is

m
ys

q
l

ra
b

b
i

el
as

t

n
gi

n
x

p
o

st
g

w
eb d

b

zo
o

ke

m
o

n
go

ka
fk

a

#F
ile

s

Service name (First-Five Characters)
Figure 2: Service popularity in the filtered dataset

General observations were made on the filtered service data
using the Pearson Coefficient to show the relationship among the
metrics (as values move away from zero, the statistical relationship
among the metrics is stronger):

• No large correlations were measured among the extracted
metrics. A coefficient of -0.19 was recorded between the
numbers of depending and depended services, which indi-
cates the presence of leaves and roots in the tree-structure
of an application; and a coefficient of 0.17 for the number
of volumes and dependent services, which indicates that
persistence-related functionality was less frequent on leafs.

• No trend was observed for an increased number of microser-
vices being used as versions progressed. The correlation
between number of services and file version was 0.06.

• Certain services were more popular than others in a way
that resembles a power law distribution (Figure 2). In par-
ticular, popular services used in at least ten different files
revealing various databases, cloud elasticity services and load
balancers—not surprising, given the types of applications
commonly deployed on the cloud.

4.2 Microservice Degree Distribution
Next, an adjacency matrix representation of the underlying directed
graph was produced for each of the deployment files of the dataset.
The matrices were analyzed to identify patterns in the structure
of the microservice applications using the observed degree metric,
i.e., the number of services that are connected to a service.

4.2.1 Degree Distributions. Visual inspection identified three preva-
lent degree distribution types in the dataset:

• Uniform distribution. The number of vertices 𝑁 for a de-
gree 𝑑 in a range [𝑎, 𝑏] is 𝑐𝑜𝑛𝑠𝑡 and 0 otherwise.

• Power law (Pareto) distribution. The number of vertices
𝑁 for a degree 𝑑 is 𝑁 ∝ 𝑑−𝛼 .

• Normal distribution. The number of vertices 𝑁 for a de-

gree 𝑑 is 𝑁 ∝ 𝑒
− (𝑑−𝜇)2

2𝜎2 .

Furthermore, an automated machine learning-based approach,
agglomerative clustering, that leveraged hierarchical clustering,
also identified three distinct clusters in our dataset, confirming our
visual inspection findings. Each application was assigned a vector
𝑣 = (𝑝0, 𝑝1, ..., 𝑝24) that represents the probability 𝑝𝑖 of a service
being connected by 𝑖 services in a specific application, where 24 is
the maximum observed number of services that a service is con-
nected by. Each connection is represented as a directed line from
one service to the others that depends, as indicated by the Compose
file’s keywords: links, external_links and depends_on. As an example,
consider Figure 4C, which shows the graph of a batch scheduling
system by Yelp with four services and three connections. The cal-
culated service dependence probability vector is: 0.25,0.75,0,0,..,0,
where as 25% of the services (one) have no incoming line to them
and 75% (three) have one.

The service dependence probability vectors were averaged, clus-
tered pairwise and recursively based on the smallest Euclidean
distance among their probabilities. The dendrogram of the results is
displayed in Figure 3 and shows the three clusters that the samples
were automatically grouped into. When averaging out all members
of each of the clusters, the aggregate distributions (which are omit-
ted for brevity) appear to be primarily following the power law
with some other distribution added on top.

However, every cluster shows different properties. Cluster 1 has
more than half (57%) of its services with one service to be depended
upon and 28% zero. Thus, the majority of the services were acting
as leaf-services and less than a third as roots. Cluster 2 has 71% of
the application’s services with no dependencies, indicating mini-
mum dependency among the majority of the services, while the
dependencies should be concentrated to a few services. Cluster 3 is
the most representative in the dataset, comprising 44% of the appli-
cations. It indicates that 40% of the services had zero dependencies,
13% and 27% had one and two, respectively. The cluster shows more
services with zero dependencies that Cluster 2, revealing fewer
independent services and more services with less than two depen-
dencies. All three clusters show that dependencies among services
do not exceed two connections for most services: finding a service
that depends on more than two services is rare.

4.2.2 Degree Distribution Methodology for Small Graphs. With a
maximum of 24 vertices in the largest microservice application,
determining the form of the degree distributions with statistical
tests can be inaccurate [20]. A graph may be attributed to several
distribution types. To improve the quality of such tests, we devised
an appropriate testing technique.

The proposed approach combines conventional statistical distri-
bution tests with fallback heuristics. Preliminary tests on randomly
generated distributions showed high inaccuracy of statistical tests

116

The Weakest Link: Revealing and Modeling the Architectural Patterns of Microservice Applications CASCON’20, November 10–13, 2020, Toronto, Canada

(a) Dendrogram of sampled microservice applications

(b) Average degree distribution of clusters

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 5 10 15 20 25

Degree

Average Degree Distributions of Clusters

Clust. 1 (26.61%) Clust. 2 (29.36%) Clust. 3 (44.04%)

Figure 3: Unsupervised learning of clusters of distributions
in the dataset.

for a number of samples less than six; hence we applied fallback
heuristics when graphs had fewer than six vertices or when the
corresponding statistical test could not be applied to the degree
distribution. Although the merger of the statistics and heuristics-
based analysis approaches is limited compared to the pure statistics,
statistics offers relatively few methods available for the small pop-
ulation sizes. Omitting the small applications (between 3 and 6
services) from the consideration would have added a significant
flaw to the research since there exist industry applications of such
"small" sizes, e.g. at companies where IT plays only the support
role for the operations [7]. The designed heuristics are as follows:

Uniform distribution heuristic. A small number of distinct
degrees in graphs makes the direct application of uniform distribu-
tion tests impractical. However, it is possible to transform the data
such that statistical testing would provide meaningful results. First,
the initial degree distribution is transformed into a histogram. Fol-
lowing, the Pearson’s chi-squared test is applied to test the degree
distribution based on a Monte Carlo test with 500 replicates [17].
The value of 500 replicates was determined by conducting multiple
tests on randomly generated distributions. The fallback heuristic

for uniform distribution checks the single outcome not covered by
the statistical test: when all vertices have the same degree.

Power law distribution heuristic. The Kolmogorov-Smirnov
test was used to determine if the degree distribution of a graph is
close to a power law (Pareto) distribution. Computed parameters
of power law distribution allow us to determine if the fallback test
should be invoked. Usually, it is necessary for borderline graphs
with 6–7 vertices. The fallback heuristic computes the mean degree
and checks if the number of vertices with a degree lower than the
computed mean is higher than the number of vertices with a degree
higher than the mean:

|{𝑣𝑖 |𝑑 ≤ 𝜇}| − |{𝑣 𝑗 |𝑑 > 𝜇}| > 𝑇

Based on the threshold 𝑇 for such a comparison, more or fewer
cases can be classified as following the power law; the threshold
values 1 or 2 were good for the collected dataset.

Normal distribution heuristic. To determine if the degree
distribution of a graph follows a normal distribution, the Shapiro-
Wilk test of normality [29] was used. This test was shown to bemore
powerful when testing for normality in comparison to Kolmogorov-
Smirnov [31]. Its associated fallback heuristic checks 1) if the most
frequent degree in a graph 𝑑𝑓 is between the minimal (𝑑𝑚) and
maximal (𝑑𝑀) degrees, and 2) if the number of vertices with degrees
higher than the most frequent degree and the number of vertices
with degrees lower than the most frequent degree are almost equal
(discrepancy by a threshold 𝑇 = 1 was allowed):(

𝑑𝑚 < 𝑑𝑓 < 𝑑𝑀

)
∧

(
|{𝑣𝑖 |𝑑 ≤ 𝑑𝑓 }| − |{𝑣 𝑗 |𝑑 > 𝑑𝑓 }| ≤ 𝑇

)
4.3 Service Degree Distribution Analysis
We compared the known distributions: power-law, uniform and
normal with the application topologies using the statistical tests and
the heuristics described above. Table 1 shows the applications that
fit in the corresponding distribution type under the graph-based
threshold parameters. To account for the limitations of the statisti-
cal analysis with fallback heuristics, we adapted the distribution
types names accordingly. Both absolute numbers and percentages
in dataset are reported. The Total column presents the applications
that have the distribution type, while the Pure column shows the
applications that fit only in the underlying distribution type.

Microservice applications with the power law degree distribu-
tion of the underlying structure graph prevail. The applications
with such a degree distribution cover around 87% of the whole
data set with a loose threshold of 1 for the fallback heuristic and
around 78% with a tighter threshold of 2. The uniform and normal
distribution cases amount to only around 42% and 19% of cases
correspondingly. Considering only the cases that were associated
with a single distribution type, a similar picture of power law dis-
tribution emerges, being the most frequent with around 47% of all
the cases, and followed by the uniform distribution with around a
30%-wide gap. For the small number of unique degrees, the uniform
degree distribution might be overrepresented. Hence, for the ex-
amined dataset, the dominance of the power law-like distribution
becomes even more apparent. Samples of the discussed graphs can
be found in Figure 4.

117

CASCON’20, November 10–13, 2020, Toronto, Canada Vladimir Podolskiy, Maria Patrou, Panos Patros, Michael Gerndt, and Kenneth B. Kent

Distr. Threshold = 1a Threshold = 2a

Type Totalb Purec Totalb Purec

Skewed 90 (87.4%) 48 (46.6%) 80 (77.7%) 42 (40.8%)
Near-uniform 43 (41.8%) 11 (10.7%) 43 (41.7%) 14 (13.6%)
Central 20 (19.4%) 0 (0.0%) 20 (19.4%) 0 (0.0%)
Other - (-%) 2 (1.9%) - (-%) 8 (7.8%)
aThreshold is set for the fallback test.
bPositive outcomes for other types are possible.
cOnly negative outcomes for other distribution types.

Table 1: Degree Distribution types

Table 1 shows several distributions that are different from those
tested. The thresholds increase from one to two for the power-law
heuristic test yields an increase in the number of unclassified cases
by six, which might be hybrids between the skewed and some other
types . The two other cases should be quite different from the power
law distribution. Indeed, these two examples show the prevalence
of vertices of a higher degree in comparison to vertices of a lower
degree; this type of distribution could be described as 𝑁 ∝ 𝑒𝑑 .

Themain outcome of the analysis is that most applications have a
structure of a scale-free network [3]. The skewed degree distribution
with a long tail implies a presence of services that have significantly
more connections than others; there are at least several types of
such microservices, e.g., PostgreSQL, Zookeeper, RabbitMQ and
Elasticsearch. This is not surprising as these microservices imple-
ment common functions, such as logging, configuration manage-
ment, message brokering and data storage. This also means that
most microservice applications tend to form bottlenecks and are
susceptible to targeted attacks.

5 ARCHITECTURAL PATTERNS MODELING
Our dataset provides hints on how cloud-native applications tend to
be structured. Understanding these tendencies can result in models
that capture structural properties of real-world applications for
further structure-driven capacity balancing research. To evaluate
what types of models better fit our data, we use several models
that can generate random graphs. Then, we compare the similari-
ties between the real and randomly generated graphs to determine
how well each model (and its parameters) fits for the empirically
collected data. The study was conducted for 42 microservice appli-
cations, which were attributed to the power law degree distribution
with the strictest conditions according to Table 1.

5.1 Structural Models Identification
A large percentage of the applications exhibited skewed degree
distribution. Thus, five random graph models, which we believe
describe applications that model scale-free networks, are chosen.
Distance metrics are computed for every application and the results
for each each metric reveal the model types that best describe the
majority of the applications.

5.1.1 Considered Models. The following models were considered
to identify the architectural patterns:

(1) Erdős-Rényi randomgraph (ER) in its𝐺 (𝑛,𝑚) and𝐺 (𝑛, 𝑝)
forms was used as a baseline [13]. The number of vertices 𝑛
and the number of edges𝑚 are equal to that of the applica-
tion graph, whereas the probability of an edge to be included
in the generated graph 𝑝 varies throughout the tests.

Figure 4: Samples following the proposed distributions.

(2) Barabási-Albert (BA) with the varying parameters: power
of the preferential attachment, number of edges to add per
timestep, attractiveness of vertices without edges [4];

(3) Forest Fire (FF)with the varying parameters: forward burn-
ing probability, backward burning ratio, number of ambas-
sador vertices [21];

(4) Fitness Score (FS) that generates a graph with edge proba-
bilities proportional to node fitness scores with the power
used to generate the vector containing the fitness of each
vertex as the only varying parameter [15];

(5) Simple Power Law (SPL) that generates a graph with a
desired power law degree distribution varying only the in-
degree and outdegree power law exponents [10, 15].

We used the the R package igraph [12] to implement these models.

5.1.2 Approach. The identification of a structural model for a sin-
gle application graph starts with the generation of multiple random
graphs (300) for each discussed model type (five types) with all

118

The Weakest Link: Revealing and Modeling the Architectural Patterns of Microservice Applications CASCON’20, November 10–13, 2020, Toronto, Canada

Figure 5: Distribution of the cases with the optimal param-
eters’ values over the values of Power of preferential attach-
ment (BA)

possible combinations of model parameter values from the mean-
ingful subspace determined by the preliminary experiments. Such
parameters as the number of vertices/edges are taken directly from
the application graph.

All distance metrics are computed, for each pair of an application
graph with one of the generated random graphs. Each distance
metric (e.g., Hamming) for the given model type (e.g., ER) and
the current set of model parameters (e.g., 𝑛 = 17 and 𝑝 = 0.5) is
computed as the average of all pairwise distance values between
the application graph and the random graphs generated from that
model. Averaging ensures the stability of the results.

We tuned the model parameters via running our approach with
different parameter limits multiple times. We adjusted the limits of
each parameter by studying the form of the distribution of the cases
with the minimal value of a distance metric over each parameter’s
values. If the histogram is skewed, it might be necessary to increase
the upper boundary on the parameter and continue the tuning.

An experiment with 30 application graphs showed that the upper
bound on the BAmodel’s parameter Power of preferential attachment
originally set to values from the interval [0.05, 0.7] was too small as
the number of cases with the optimal parameters’ values increased
to the end of the interval (see plot A in Figure 5). With the upper
bound of the same parameter increased to 0.9 for the experiment
involving the full set of 42 application graphs, we did not observe
any increase in the number of cases towards the end of the interval
(see plot B in Figure 5). Hence, with an exhaustive search being
unfeasible, the parameters’ bounds tuned with this method, cover
random graphs models close to real application graphs.

5.1.3 Test Settings. The pilot test covered 30 applications. Then,
we conducted three tests on 42 applications: The first returned
results for all 42 applications, the second returned results for 41
applications, and the last one only for 36 applications. The last
test was conducted for the case of undirected graphs; the partial
results returned are due to particular distance metrics relying in
their computation on matrix invertibility, which is not always the
case for the given data set. Further, we discuss test settings and
results of the second experiment as it covers all 42 applications.
The bounds on the parameters’ values are given in Table 2. The
number of random graphs generated for each model type and each
parameters values combination is 300. The number of vertices for
each experiment was taken directly from the application graph.

Model type Parameter Starta Enda Stepa

ER𝐺 (𝑛,𝑚) Edges number - - -
ER𝐺 (𝑛, 𝑝) Edge inclusion prob. 0.05 0.65 0.05
BA Power of the preferential attachment 0.05 0.90 0.05

Number of edges to add per timestep 1 2 1
Attractiveness of vertices with no edges 0.01 3.5 0.01

FF Forward burning probability 0.05 0.65 0.05
Backward burning ratio 1 3 1
Number of ambassador vertices 1 2 1

FS Power to generate fitness vector 2 3.5 0.1
SPL Power law expon. of the out-degree distr. 2 3 0.1

Power law expon. of the in-degree distr. 2 3 0.1
a"-" value is taken from the application graph.

Table 2: Studied parameter values

Distance Random Graphs Model Types
type ER ER BA FF FS SPL

𝐺 (𝑛,𝑚) 𝐺 (𝑛, 𝑝)
Degree 0 1 29 3 0 9
Centrality 0.00% 2.38% 69.05% 7.14% 0.00% 21.43%
Closeness 0 3 32 3 1 3
Centrality 0.00% 7.14% 76.19% 7.14% 2.38% 7.14%
Between. 0 26 11 0 4 1
Centrality 0.00% 61.90% 26.19% 0.00% 9.52% 2.38%
Edge 0 32 9 0 1 0
Difference 0.00% 76.19% 21.43% 0.00% 2.38% 0.00%
Graph 0 1 38 0 2 1
Diffusion 0.00% 2.38% 90.48% 0.00% 4.76% 2.38%
Hamming 0 32 10 0 0 0

0.00% 76.19% 23.81% 0.00% 0.00% 0.00%

Table 3: Cases with minimal network distance

5.1.4 Results. Network distance metrics were used to determine
which one of the studied model types allows us to generate random
graphs that are close to the real applications. Each metric captures
different structural properties, e.g., Degree Centrality-based distance
metric tends to mark graphs having close degree distributions as
similar, whereas Edge Difference distance metric is small for pairs of
graphs that have similar connections. These differences between
metrics become apparent when looking at Table 3. Here, each row
corresponds to one of the network distance types, and each column
contains the number and percentage of cases with the minimal
distance to the random graphs generated with the model type
specified in the column header.

Since the distances were averaged over 300 generated graphs
for each selected application graph from the dataset, the analysis
of the cases with larger network distances is not provided as the
observed gap between the model exhibiting the minimal distance
and the model with the second smallest distance was higher than
what would be meaningful to consider.

BA excels at capturing structural characteristics used for com-
parison by Degree Centrality, Closeness Centrality, and by Graph
Diffusion distance. ER in its 𝐺 (𝑛, 𝑝) form shows good results for
Betweenness Centrality, Edge Difference distance, and Hamming dis-
tance. However, BA is still in second place with 11, 9, and 10 cases
out of 42 for these distance types correspondingly. In contrast, ER
in its 𝐺 (𝑛, 𝑝) form has less than 6 cases in total marked as simi-
lar to real graphs by Degree Centrality, Closeness Centrality, and
Graph Diffusion distance. Hence, BA captures the properties of the
microservice applications structure nicely.

119

CASCON’20, November 10–13, 2020, Toronto, Canada Vladimir Podolskiy, Maria Patrou, Panos Patros, Michael Gerndt, and Kenneth B. Kent

Recalling that the 42 application graphs selected for this study
exhibited power law-like degree distribution, we might find it sig-
nificant that for some metrics, numerous cases result in the ER in its
𝐺 (𝑛, 𝑝) form. Essentially that means that a combination of BA with
ER in its 𝐺 (𝑛, 𝑝) form could capture the structural properties of
microservice applications better than each of these model types in-
dividually. Such combinations can be enabled by generative models
of graphs acquired with machine learning techniques [8, 22].

Nevertheless, further application-wise study of minimal network
distances demonstrates that Edge Difference distance values for
different models vary weakly; in 32 cases this type of distance
demonstrated the smallest variability when computed for different
models. Thus, we select the BA type as the best representative type
for microservice application graphs.

5.2 Structural Model Generation
We then proceeded to create models that best fit the structures of
our dataset. Studying the parameters of the BA model leading to
minimizing the network distances shows that the change only in
two parameters influences how close the generated graph is to the
real one. These parameters are power of preferential attachment, 𝛼 ,
and attractiveness of vertices with no edges, 𝑎. According to BA, a
single vertex is added to the graph at each time step; a new vertex
is attached to old vertices with one or more edges. The probability
of 𝑖𝑡ℎ vertex to be chosen is given by 𝑃𝑖 = 𝑑𝛼

𝑖
+ 𝑎, where 𝑑𝑖 is the

in-degree of this vertex. As we see, higher values of 𝛼 favor vertices
with more connections, whereas higher 𝑎 values give vertices with
no connections a chance to establish new ones.

Study of parameters 𝛼 and 𝑎 distributions for graphs with min-
imal network distances from the Subsection 5.1.4 allowed us to
find two perspective intervals for each of these: 𝛼 ∈ [0.01; 0.10] ∪
[0.80; 1.00], 𝑎 ∈ [0.00; 0.05] ∪ [3.00; 3.50]. For each interval marked
either as LOW or HIGH, a value close to its middle was selected,
then four possible combinations of these values were acquired to
generate example random graphs according to BA. Parameter edges
to add per time step was set to 1. Generated samples with 18 vertices
are shown in Figure 6.

Visual study shows that sample B in Figure 6 corresponds to
the applications that rely on the common logging service, whereas
sample C represents an application with several auxiliary services
used, e.g., to maintain configurations. Sample D in that sense is
close to applications organized in the conventional multi-tier fash-
ion. Sample A in Figure 6 also finds peers among microservice
applications—these exhibit highly-centralized hierarchical architec-
tures with most of the services using the configuration service.

6 DISCUSSION
The above results lead to several observations on the structure
of microservice applications and how it could be used to assure
software quality attributes.

6.1 Implications of the Microservice
Applications Structure

Studying 103 open-sourced Docker Compose configuration files
discovered the prevalence of microservice applications with a power
law distribution of degrees in the application graph. This structural

feature implies the presence of one or several highly-connected
microservices. Such amicroservice application design patternmight
lead to highly vulnerable applications in case microservices with a
high number of connections implement a critical functionality.

In some cases, the microservice with the highest number of con-
nections is just a logging service, hence its failure won’t influence
SLOs. Thus, structural analysis and modeling of microservice appli-
cations should be enhanced with the analysis of the functional context
such that critical microservices are clearly recognized and are not
mixed with ones that are not critical but are still highly relied
upon. Such information can be used to ensure that the availabil-
ity, throughput and resource requirements are satisfied by helping
decide the appropriate number of critical microservices’ replicas.

Among several graph generation models studied, the BA-model
demonstrated an ability to capture the degree distribution of the
microservice application using relatively small intervals of values
for its parameters power of preferential attachment and attractive-
ness of vertices with no edges. Changing these parameters means
modifying the number of connections that few nodes have (first
parameter) and changing the number of nodes central to some local
clusters of nodes (second parameter). A high value of the parameter
attractiveness of vertices with no edges allows us to model fairly
complex graphs with several “centers of attraction".

The study of network distances between generated random
graphs and 42 microservice applications graphs underlines that
one model cannot convey all the properties of the microservice
application structure. This can be solved via analytical models that
generate random graphs exhibiting characteristics of several mod-
els: consider similar work by Solé et al. [30] or by learning a deep
generative graph model on a representative set of examples [22].

Both simple and hybrid random graph models can be employed
to synthesize structures that correspond to real microservice ap-
plications. Varying the parameters of such models would enable
capturing the peculiarities of a microservice application’s struc-
ture. As one can select the number of vertices and edges for such
models arbitrarily, the absence of large open-sourced microservice
applications does not hinder the design and evaluation of algo-
rithms utilizing in some way the information on the applications’
structures. However, with the simplifications that could be made
when identifying the appropriate random graph model (e.g., omit-
ting information on types of services), it may become necessary
to validate the model manually by developing a sample large-scale
microservice application with limited functionality.

The analysis of the microservice application’s structures in the
paper is based on the degree of graph vertices. This could be viewed
as a limiting factor as the graph abstraction offers a rich set of
parameters to study the microservice structure in-depth, e.g., vertex
connectivity or isoperimetric number. For example, one could think
of studying the vertex connectivity of the microservice applications’
graphs to identify the cornerstone services whose removal, say
due to failure, damages the functionality of the application. An
isoperimetric number can be used in studies of potential bottleneck
services. Consideration of these parameters was deemed beyond
the scope of this paper.

The conducted structural analysis makes a strong assumption
that the application is static, which in practice does not always
hold true. Addition and removal of microservices over time is a

120

The Weakest Link: Revealing and Modeling the Architectural Patterns of Microservice Applications CASCON’20, November 10–13, 2020, Toronto, Canada

Figure 6: Random Graphs generated using BA with four parameter. Number of nodes: 18.

normal practice for such applications. Dynamic graph analysis of
the microservice application will lead to models that capture the
evolution of the application. In turn, suchmodels could contribute to
increasing the accuracy of predictive autoscaling by incorporating
the knowledge of potential structural changes in the model.

6.2 Application Structure towards assuring
Software Quality Attributes

Knowing an application’s structure can contribute to quality assur-
ance of the application across the software life cycle:

Scalability and Availability. Revealing the relationship be-
tween scaling events and applications’ capacity will lead to the fine
tuning of the scaling actions; instead of individual scaling actions
one might speak of scaling action cascades directed by the struc-
ture of an application and capacities of microservices. We believe
that the adaptation of the microservice applications to changing
workloads can be improved by including the application structure
into the set of autoscaling parameters. Such improvements for real
elastic microservice applications hosted in the cloud can result in
better quality of service and budget savings, therefore it seems
necessary to consider the application structure when scaling.

Testability and Correctness. We identified and replicated the
applications’ architectures. To this end, realistic benchmarks can
be created using these models as a generic template. The templates
can be used in the testing process for the product or for cases that

the product acts as an input for other applications. Additionally,
computationally expensive quality assurance methodologies, such
as formal verification, could be better targeted towards the various
soft points in a topology of an application.

Security and Reliability. The identification of the weakest link
service with the most services that depend on it can help to make
precautions for protecting the applications in advance or making
changes in the infrastructure to make it safer from attacks. More
specifically, certain rollback policies can be applied based on the
service dependencies in case they go offline.

Performance efficiency. The weakest link services can be de-
ployed based on their connectivity. Certain resources can favour
certain types of services to achieve better response times and thus
better performance. The configuration of a service-container can
be set to allow for more hardware resources on critical services
than on less critical ones.

Adaptivity. From a self-adaptive systems perspective, being
able to create and analyze models of one’s composition is a crucial
self-* property that can be used to analyze and plan adaptation such
that various quality attributes (or setpoints/goals) are satisfied.

Finally, the application topology reveals the strongest link. By
making certain design choices that will shift the load from the
strongest to the weakest service can help towards the application
quality, as well.

121

CASCON’20, November 10–13, 2020, Toronto, Canada Vladimir Podolskiy, Maria Patrou, Panos Patros, Michael Gerndt, and Kenneth B. Kent

7 CONCLUSION AND FUTUREWORK
The study discovered degree distributions that are widely-present
in graphs of 103 open-sourced microservice applications: power
law, uniform, and normal. Looking closer at 42 applications that
exhibited power law-like degree distribution allowed us to discover
that BA-based random graphs capture the structure of real microser-
vice applications well. By employing this model, one can synthesize
random graphs with a large number of vertices that capture the
structural properties of microservice applications.

The study paves the way towards larger and systematic empirical
studies of how microservice applications tend to be structured,
resulting in new heuristic algorithms for improved scaling, self-
protection from targeted attacks, testing and system administration.
Revealing and generating models based on their connectivity, while
viewing an application as a directed graph of services, can be very
helpful for application evolution.

The following future research directions appear to have signif-
icant utility in microservice applications deployment and man-
agement: customized analytic and machine learning-based graph
models to generate random graphs; extension of the structural
modeling and analysis with microservice types; extending graph
models capturing properties of microservice applications with other
graph characteristics and building dynamic graph models to predict
structural changes. The main limiting factor for the research of
microservice application structures is the novelty of the concept
and limited public availability of real microservice applications.
With the continuing adoption of the microservice architecture for
cloud-native applications, more data would become available in
public repositories and more mining-based research can be done.
With more publicly available knowledge, we aim to explore fur-
ther types of applications that use certain programming languages
and frameworks to reveal even more aspects of the status quo of
software products.

ACKNOWLEDGMENTS
This work was supported by AWS research program Cloud Credits,
STRATUS, a project funded by New Zealand’s Ministry of Business,
Innovation and Employment (MBIE), the Natural Sciences and En-
gineering Research Council of Canada (NSERC) and Canada’s New
Brunswick Innovation Fund (NBIF). We also thank Stephen MacKay
for his careful proofreading and editing the paper to improve its
quality. We also thank anonymous reviewers for their comments
which we tried to address in the final version of the paper.

REFERENCES
[1] 2020. Docker compose files to analyze structural patterns of containerized

microservice applications. https://doi.org/10.5281/zenodo.3573846. [Online;
accessed 8-June-2020].

[2] 2020. The Official YAML Web Site. https://yaml.org/. [Online; accessed 26-
March-2020].

[3] Réka Albert and Albert-László Barabási. 2002. Statistical mechanics of complex
networks. Rev. Mod. Phys. 74 (Jan 2002), 47–97. Issue 1.

[4] Albert-László Barabási and Réka Albert. 1999. Emergence of Scaling in Random
Networks. Science 286, 5439 (1999), 509–512.

[5] Albert-László Barabási and Márton Pósfai. 2016. Network science. Cambridge
University Press, Cambridge. http://barabasi.com/networksciencebook/

[6] R. Birke, J. F. Perez, Z. Qiu, M. Borkqvist, and L. Y. Chen. [n.d.]. sPARE: Partial
Replication for Multi-tier Applications in the Cloud. IEEE Transactions on Services
Computing ([n. d.]), 1.

[7] J. Bogner, J. Fritzsch, S. Wagner, and A. Zimmermann. 2019. Microservices in
Industry: Insights into Technologies, Characteristics, and Software Quality. In
2019 IEEE International Conference on Software Architecture Companion (ICSA-C).
187–195.

[8] Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan Günne-
mann. 2018. NetGAN: Generating Graphs via Random Walks. In ICML.

[9] Phillip Bonacich. 1987. Power and Centrality: A Family of Measures. Amer. J.
Sociology 92, 5 (1987), 1170–1182.

[10] Fan Chung and Linyuan Lu. 2002. Connected Components in Random Graphs
with Given Expected Degree Sequences. Annals of Combinatorics 6, 2 (01 Nov
2002), 125–145.

[11] Rhys Compton, Eibe Frank, Panos Patros, and Abigail Koay. 2020. Embedding Java
classes with code2vec: improvements from variable obfuscation. In IEEE/ACM
17th International Conference on Mining Software Repositories (MSR 2020). ACM.

[12] Gabor Csardi and Tamas Nepusz. 2006. The igraph software package for complex
network research. InterJournal Complex Systems (2006), 1695. http://igraph.org

[13] Paul Erdős and Alfréd Rényi. 1959. On Random Graphs I. Publicationes Mathe-
maticae (Debrecen) 6 (1959 1959), 290–297.

[14] M. Fazio, A. Celesti, R. Ranjan, C. Liu, L. Chen, and M. Villari. 2016. Open Issues
in Scheduling Microservices in the Cloud. IEEE Cloud Computing 3, 5 (Sep. 2016),
81–88.

[15] K.-I. Goh, B. Kahng, and D. Kim. 2001. Universal Behavior of Load Distribution
in Scale-Free Networks. Phys. Rev. Lett. 87 (Dec 2001), 278701. Issue 27.

[16] W. Hasselbring and G. Steinacker. 2017. Microservice Architectures for Scalability,
Agility and Reliability in E-Commerce. In 2017 IEEE International Conference on
Software Architecture Workshops (ICSAW). 243–246.

[17] Adery C. A. Hope. 1968. A Simplified Monte Carlo Significance Test Procedure.
Journal of the Royal Statistical Society. Series B (Methodological) 30, 3 (1968),
582–598. http://www.jstor.org/stable/2984263

[18] Docker Inc. 2020. Compose file version 3 reference. https://docs.docker.com/
compose/compose-file/. [Online; accessed 26-June-2020].

[19] Steffen Kächele and Franz J. Hauck. 2013. Component-based Scalability for Cloud
Applications. In Proceedings of the 3rd International Workshop on Cloud Data and
Platforms (CloudDP ’13). ACM, New York, NY, USA, 19–24.

[20] Robert V. Krejcie and Daryle W. Morgan. 1970. Determining Sample Size for
Research Activities. Educational and Psychological Measurement 30, 3 (1970),
607–610.

[21] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2005. Graphs over Time:
Densification Laws, Shrinking Diameters and Possible Explanations. In Proceed-
ings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery
in Data Mining (KDD ’05). ACM, New York, NY, USA, 177–187.

[22] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. 2018.
Learning Deep Generative Models of Graphs. arXiv:cs.LG/1803.03324

[23] X. Liu, J. Heo, and L. Sha. 2005. Modeling 3-tiered Web applications. In 13th IEEE
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems. 307–310.

[24] S. Malkowski, M. Hedwig, and C. Pu. 2009. Experimental evaluation of N-tier
systems: Observation and analysis of multi-bottlenecks. In 2009 IEEE International
Symposium on Workload Characterization (IISWC). 118–127.

[25] G. Márquez, M. M. Villegas, and H. Astudillo. 2018. An Empirical Study of
Scalability Frameworks in Open Source Microservices-based Systems. In 2018
37th International Conference of the Chilean Computer Science Society (SCCC).
1–8.

[26] V. Podolskiy, M. Mayo, A. Koay, M. Gerndt, and P. Patros. 2019. Maintaining
SLOs of Cloud-Native Applications Via Self-Adaptive Resource Sharing. In 2019
IEEE 13th International Conference on Self-Adaptive and Self-Organizing Systems
(SASO). 72–81.

[27] Nigel Poulton and Pushkar Joglekar. 2019. The Kubernetes Book (fourth ed.).
[28] J. F. Pérez, L. Y. Chen, M. Villari, and R. Ranjan. 2018. Holistic Workload Scaling:

A New Approach to Compute Acceleration in the Cloud. IEEE Cloud Computing
5, 1 (Jan 2018), 20–30.

[29] S. S. Shapiro and M. B. Wilk. 1965. An analysis of variance test for normality
(complete samples)†. Biometrika 52, 3-4 (1965), 591–611.

[30] Ricard V Solé, Romualdo Pastor-Satorras, Eric Smith, and Thomas B Kepler. 2002.
A model of large-scale proteome evolution. Advances in Complex Systems 05, 01
(2002), 43–54.

[31] M. A. Stephens. 1974. EDF Statistics for Goodness of Fit and Some Comparisons.
J. Amer. Statist. Assoc. 69, 347 (1974), 730–737.

[32] Q. Wang, Y. Kanemasa, J. Li, D. Jayasinghe, T. Shimizu, M. Matsubara, M. Kawaba,
and C. Pu. 2013. Detecting Transient Bottlenecks in n-Tier Applications through
Fine-Grained Analysis. In 2013 IEEE 33rd International Conference on Distributed
Computing Systems. 31–40.

[33] Qingyang Wang, Y. Kanemasa, J. Li, D. Jayasinghe, T. Shimizu, M. Matsubara,
M. Kawaba, and C. Pu. 2013. An Experimental Study of Rapidly Alternating
Bottlenecks in n-Tier Applications. In 2013 IEEE 6th International Conference on
Cloud Computing (CLOUD), Vol. 00. 171–178.

122

https://doi.org/10.5281/zenodo.3573846
https://yaml.org/
http://barabasi.com/networksciencebook/
http://igraph.org
http://www.jstor.org/stable/2984263
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
http://arxiv.org/abs/cs.LG/1803.03324

Report on Evaluation Experiments Using Different Machine
Learning Techniques for Defect Prediction

Marios-Stavros Grigoriou
Dept. of Computer Science

Western University
London, ON, Canada
mgrigori@uwo.ca

Kostas Kontogiannis
Dept. of Computer Science

Western University
London, ON, Canada
kostas@csd.uwo.ca

Alberto Giammaria
Austin Laboratory

IBM
Austin, TX, USA

agiammaria@us.ibm.com

Chris Brealey
Toronto Laboratory

IBM
Toronto, ON, Canada
cbrealey@ca.ibm.com

ABSTRACT
With the emergence of AI, it is of no surprise that the applica-
tion of Machine Learning techniques has attracted the attention
of numerous software maintenance groups around the world. For
defect proneness classification in particular, the use of Machine
Learning classifiers has been touted as a promising approach. As a
consequence, a large volume of research works has been published
in the related research literature, utilizing either proprietary data
sets or the PROMISE data repository which, for the purposes of
this study, focuses only on the use of source code metrics as defect
prediction training features. It has been argued though by several
researchers, that process metrics may provide a better option as
training features than source code metrics. For this paper, we have
conducted a detailed extraction of GitHub process metrics from 148
open source systems, and we report on the findings of experiments
conducted by using different Machine Learning classification algo-
rithms for defect proneness classification. The main purpose of the
paper is not to propose yet another Machine Learning technique
for defect proneness classification, but to present to the community
a very large data set using process metrics as opposed to source
code metrics, and draw some initial interesting conclusions from
this statistically significant data set.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Maintaining software; Software version control.

ACM Reference Format:
Marios-Stavros Grigoriou, Kostas Kontogiannis, Alberto Giammaria, and Chris
Brealey. 2020. Report on Evaluation Experiments Using Different Machine
Learning Techniques for Defect Prediction. In Proceedings of CASCON’20:.
ACM, New York, NY, USA, 10 pages.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CASCON’20:, Nov 10-13, 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

1 INTRODUCTION
The problem of classifying a file as failure prone or not has at-
tracted the attention of the software engineering community early
on. Early approaches focused on the use of software metrics to com-
pute maintainability and software health indexes [2] [18]. These
approaches were based on the compilation of linear or non-linear
formulas to yield maintainability indexes which were assumed to
be associated with the overall health of a component or a system.
In this respect, the assumption was that a higher maintainability
index would indicate a software component (function, method, file,
or module) that has a low probability of exhibiting a failure. As
research progressed in this field, the software engineering com-
munity experimented with approaches focusing on the static and
dynamic analysis as well as the analysis of project data, such as the
number, type and time interval between bug fixes [7] [16]. These
approaches utilized statistical analyses and heuristics to experimen-
tally yield predictions related to the fault-proneness of a software
component. However, over the past few years, research in this area
has decisively shifted towards the use of Machine Learning (ML)
techniques. These techniques aim to first identify a collection of
source code related and process related features which can serve as
classifiers for fault-proneness, and second apply these features for
training ML models using a variety of ML algorithms (see Section
2). Once such models are trained the premise is that they can be
used to classify whether a newly seen software component is defect
prone or not.

The challenge that arises using such ML techniques is that they
yield models which perform as black boxes and do not provide any
explanation on how their results have been reached, as they are
purely dependent on the training data set provided, and the ML
algorithm used. Another challenge that arises is when ML models
are trained on source code metrics alone. Large software systems
are rarely implemented using a single programming language and
are often composed of a collection of different frameworks, config-
uration scripts and dynamically linked components. That makes
the extraction of accurate source code metrics an almost impossible
task. On the contrary, process related metrics can be extracted quite
accurately and easily from various DevOps tools such as GitHub,
Jira, Jenkins, and Slack.

123

CASCON’20, November 10 - 13 2020, Toronto, Canada Grigoriou and Kontogiannis et al.

In this context, this paper aims to shed light on two major is-
sues.The first issue is to identify, through the use of process metrics
and extensive experimentation, the technique, or the combination
of techniques and features, that best classify whether a software
component (i.e. file) can be considered defect prone or not. The
second issue is whether process metrics can be used instead of
source code metrics and whether these can be used to train models
that yield similar of better classification results in a single project or
across projects. These two issues can be formalized by four related
research questions as follows:

RQ1: By using a very large set of open source projects to experiment
with, which is the best combination of classifiers which are
fast, easily trainable and able to yield the best results as these
are measured in terms of accuracy, precision, recall, F1, and
AUC?

RQ2: What is an optimal subset of available process metrics which
can be easily calculated and at the same time yield the best
results when provided as input to different classifiers?

RQ3: Is it possible to perform defect-proneness classification using
process metrics while maintaining classification performance
measures comparable to similar techniques reported in the
literature which use source code metrics?

RQ4: Is it possible to perform cross project defect proneness classi-
fication in the sense that data from different projects can be
used to train a model which will then be used to perform defect
proneness prediction on other unknown projects for which not
enough training data may be available?

For this paper we take an experimental approach, aiming to draw
conclusions by applying the techniques under examination to a
very large collection of open source projects. More specifically, we
have considered a collection of 148 open source systems fromwhich
we have extracted various process metrics utilising a custom-made
extraction tool. The open source projects were selected based on
their complexity, size, prevalence, and the quality and availability
of process repository data. The importance of the work reported in
this paper lies on two parts. First, in the best of our knowledge, it is
the first work which utilises such a large data set of 148 open source
systems, providing thus a much more statistically significant result
than previously reported works, and second providing answers
to research questions which can assist researchers advance the
state-of-the-art in the area.

The paper is organised as follows. Section 2 presents related
work. Section 3 discusses the features and the feature extraction
process. Section 4 presents the different Machine Learning tech-
niques which we have evaluated. Section 5 presents the results
obtained, while Section 6 discusses and interprets the obtained re-
sults. Finally, Section 7 concludes the paper and offers pointers for
future work.

2 BACKGROUND
In the related literature there is a wealth of approaches for defect
prediction using Machine Learning techniques. Two widely-used

defect prediction techniques are regression and classification. The
main purpose of regression techniques is to estimate the number of
software defects on a software component. In contrast, classification
techniques aim to tag whether a software module is faulty or not.
It has been shown that classification models can be trained from
defect data on earlier versions of the system being analyzed. Some
of the most commonly used supervised learning techniques for
defect prediction are outlined below.

Decision Trees (DT): Decision tree algorithms use tree structures
to model decisions and their possible consequences. In decision
trees, each leaf node corresponds to a class label while attributes
are represented as internal .

Logistic Regression (LR): Logistic regression is a supervised clas-
sification algorithm whereby the target variable O (i.e output), can
take on values in the interval [0, 1] representing the probability for
a given set of input features I to belong to class 1 or 0.

Random Forest (RF): RF is an ensemble type of learning method
used for both classification and regression problems. The key idea
behind RF is the construction of several decision trees at training
time and outputting the mode/mean prediction of the individual
trees.

Support Vector Machine (SVM): SVM is a discriminative classifier
formally defined by a separating hyperplane. In SVMs, given a
labeled training data set whereby each data item is marked as
belonging to one or the other of two categories, the algorithm
outputs an optimal hyperplane, which classifies new unseen data
in one of these two categories.

k-Nearest Neighbors (k-NN): k-NN is a non-parametric method
that can be used for both classification and regression problems.
In both cases, the input consists of the k closest training examples
in a feature space. The output depends on whether k-NN is used
for classification or regression. In classification, the output is to
categorize an input to one of equivalence classes. In regression, the
output is to assign a value to the input, usually the average of the
values of its closest k-neighbors.

Naive Bayes Classifiers (NB): These classifiers refer to a family of
simple "probabilistic classifiers" based on applying Bayes’ theorem
and by considering a strong independence assumption between
features, that is the presence or absence of a particular feature of a
class is not related to the presence or absence of any other feature.

Neural Networks (NN): Neural Networks are nonlinear predictive
structures that consist of interconnected processing elements called
neurons that work together in parallel within a network to produce
output, often simulating an unknown function or phenomenon.

Multi-layer Perceptron (MLP): MLPs refer to a class of feedforward
artificial neural network (ANN). An MLP comprised of a directed
graph of multiple layers of nodes which are fully connected to
the nodes of the next layer. For training purposes, MLP utilizes a
supervised learning technique defined as backpropagation.

Radial Basis Function (RBF) Networks: RBF Networks are a type
of ANNs used to approximate through training the value of an
unknown function. They are different from MLPs in the sense that
they are feedforward networks comprising of only three layers, the
input layer, the hidden layer and the output layer.

124

CASCON’20, November 10 - 13 2020, Toronto, Canada Grigoriou and Kontogiannis et al.

2.1 Defect Prediction using Machine Learning
A variety of machine learning methods have been proposed and
assessed for addressing the software bug prediction problem. These
methods include decision trees [24], neural networks [32, 39], Naive
Bayes [12, 15, 34], support vector machines [5], Bayesian networks
[27] and Random Forests [1].

2.1.1 Source CodeMetrics Approaches. Deciding whether a compo-
nent has a high likelihood to be defective or not has been proved
to have a strong correlation with a number of software metrics.
Identifying and measuring software metrics is vital for various
reasons, including estimating program execution, measuring the
effectiveness of software processes, estimating required efforts for
processes, estimating the number of defects during software de-
velopment as well as monitoring and controlling software project
processes [29] [6]. Various software metrics have been commonly
used for defect prediction, including lines of code (LOC) metrics,
McCabe metrics, Halstead metrics, and object-oriented software
metrics. Hence, the automated prediction of defective components
from extracted software metrics evolved as a very active research
area. [14]. In [26], Nagappan aims to find the best code metric to
predict bugs. The conclusion of this work is that complexity metrics
can successfully predict post-release defects, but there is no single
set of metrics that is applicable to all systems. Hassan et. al have
investigated the impact of different aspects of the modelling process
to the end results and the interpretation of the models [4] [3] [11]
[8].

2.1.2 Process Metrics Approaches. In [19], Venkata et. al compared
different machine learning models for identifying faulty software
modules and they found that there is no particular learning tech-
nique that performs the best for all the data sets. In [36], Wang and
Yao aim to find bugs without decreasing the overall performance of
the model. In this process, they find that imbalanced distribution
between classes in bug prediction is the root cause of its learn-
ing difficulty. Likewise, in our paper, we noted the issue and used
re-sampling as described in detail in the section 4.3 in an effort
to minimise the impact of class imbalance to the quality of our
results. Similarly, in [17], Zimmermann et. al propose an approach
to predict bugs on cross-language systems. The work examined a
large number of such systems and concluded that only 3.4% of the
systems had precision and recall prediction levels above 75% . The
authors also tested the influence of several factors on the success of
cross-language prediction and concluded that there was no single
factor which led to such successful predictions. The authors used
decision trees to train the model and to estimate precision, recall,
and accuracy before attempting a prediction across systems. Lastly,
in [23], Hassan discusses how frequent source code “commits” in
the repository negatively affect the quality of the software system,
meaning that the more changes incurred to a file, the higher the
chance that the file will contain critical errors. Furthermore, the
author in [23] presents a model which can be used to quantify
the overall system complexity using historical code-change data,
instead of plain source code features.

3 DATA MODELING
For the purposes of this study we have designed two separate data
models. The first data model denotes the raw information which
can be mined from software repositories, while the second data
model denotes the post-processed raw data which are in a form
that can be consumed by the machine learning algorithms we have
experimented with.

The design goal of the first data model was to have a structure
which would be easy to populate while maintaining a low memory
profile, would facilitate data reconciliation of data entries originat-
ing from different devOps tools (e.g. GitHub, Jenkins, Jira), would
be scalable, and would be able to support preprocessing workflows
of varying complexity at high speeds. The schema for this data
model is depicted in Fig. 1.

The design of the second data model was to have a simple rela-
tional structure which can be easily imported as a tab or comma
delimited file in various machine learning tools and which can be
easily manipulated so that aggregate features can be easily com-
puted. The features in this second data model are depicted in Table
1.

3.1 Raw Data Model
For this study we have exhaustively collected process related met-
rics from 148 open source systems of various sizes and complexities.
The list of the systems along with all the data obtained or com-
puted are listed in the anonymous repository [35].1 The profile of
the data set we have considered is depicted in Table 2. The data
acquisition process is based on two steps. The first step is to utilize
a custom made client-side extractor tool which is able to connect to
and reconcile data obtained using various tools and namely GitHub,
Bugzilla, Jira, and Jenkins. However, for this study we report results
on data acquired only from the GitHub repositories of these 148
open source systems. The second step of the raw data acquisition
process is to fuse the information extracted by each repository
record into one repository which conforms to the raw data schema
depicted in Fig. 1. The extractor application and its data fusion
module is implemented using Python 3.

As depicted in Fig. 1, the raw data model is founded on the
concept of a Commit, the concept of a File, and the concept of a
CommitProperties. The extracted information is represented as a
Json file stored in a Mongo DB server. As such, a run-time model
of a GitHub repository was created which held the information
of the unique commit records. Every commit contained a list of
fileChanges and the details for each of these files’ change. This data
model represents a GitHub record structure utilizing simple Python
3 objects which have a very low memory profile and initialization
time.

In this data model a commit is uniquely identified by it’s com-
mitID, it contains attributes specific to it, including the author, the
commit-time, the files committed as these are denoted by their FileIds,
a commit message, the overall lines added, deleted as well as a tag
field maintaining information about whether the Commit’s status is
indicated as a bug fixing or as a clean Commit. For each File within

1Please note that the repository is anonymous for the time being, in order to protect
the double blind review process and to facilitate the assessment of this work by the
reviewers. Please do not distribute or use without prior arrangements with the authors.

125

CASCON’20, November 10 - 13 2020, Toronto, Canada Grigoriou and Kontogiannis et al.

Figure 1: Data Model for Raw Repository Data

a commit, the added, and deleted lines as well as the current size
of the file are maintained. Storing the fileID is necessary since in
case of a file changing locations the fileID remains the same even
if the file changes name (the names are fully qualified names with
respect to the root folder of a project). In addition to the version
control model, another important component of this extractor sys-
tem is the issue tracker component. This component is far simpler.
It is a simple object maintaining a specific issueID together with
the issue tag, its message, and its referenced commitIDs. The data
model is populated by initially downloading a complete repository
from the corresponding GitHub site and then moving through each
commit on the master branch adding the relative data iteratively
in it, thus maintaining the initial structure. Once the model is pop-
ulated it undergoes several steps of preprocessing. The first task
is to remove all files that cannot contribute to a defect, such as
any non-compilable and non-configuration related files. The next
task is to use a simple heuristic to clean up the extracted commits
so that only actual code changing commits remain. This entails
removing entries that are clearly annotated as refactoring commits,
because of words stemming from refactoring, reorganize, restructure
in the commit message, and also removing all files which have been
eventually removed from the system from all past commits. Finally
all merge commits are also removed since they contain change
information pertaining to different branches and will therefore in-
troduce large amount of noisy data points to the dataset. Given that
this study is not focusing on defect introducing software changes,
the removal of refactoring and merge commits from the dataset will
not impact its ability to discern between faulty and healthy files.
After the cleanup stage is completed, the most important remain-
ing task is that of assigning the class label for each commit. This
task is accomplished by parsing the commit message for terms that

Table 1: Features Used for System Training

F1: NoOfCommits (CF) F2: LateNightCommits (LNC)
F3: TotalAddedLines (TAL) F4: MaxAddedLines (MAL)
F5: AvgAddedLines (AAL) F6: TotalDeletedLines (TDL)
F7: MaxDeletedLines (MDL) F8: AvgDeletedLines (ADL)
F9: TotalChurn (TCF) F10: MaxChurn (MC)
F11: AvgChurn (AC) F12: TotalCoCommitSize (TCS)
F13: MaxCoCommitSize (MCS) F14: AvgCoCommitSize (ACS)
F15: TotalDistinctAuthors (TDA) F16: AgeInMonths (AIM)
F17: FractalValue (FRV) F18: FailureIntensity (FI)

may indicate that it is a bug-fixing commit as opposed to a clean
one, linking commits to issue tracker entries labeled as faults and
optionally, applying the same parsing as above to the issue tracker
messages. The heuristic terms used to tag a commit as a bug-fixing
one are presented in Section 4.2 below. This is an approach for
automatically generating datasets for such applications which has
been known to work in the related literature [21]. This approach
however has the potential to produce a high number of false posi-
tives in the dataset because of the commit granularity level at which
it is applied. This is due to the fact that some commits may be only
partially defective leading to wrong labels for the non-defective
part [9]. In this case the entirety of the commit and its modifications
are annotated as bug-fixes, which is not acceptable for commits
that contain a significant percentage of a systems’ files.

3.2 Post-Processed Data Model
Once the raw data are extracted they are post-processed in order to
yield a data model suitable for input to various Machine Learning
classification tools. Table 1 provides a list of the features considered
for our study which represent a subset of all features available in
the literature, pertaining only to file properties and ommiting any
features stemming from organisational or social structures.

3.3 Explanation of the Features
The FractalValue [33] provides a measure for the contribution of
different authors to a file. It can take any value in the range (0, 1]
where a value of 1 means that a file has had a single author whereas
a value close to 0 means that the file has had similar contributions
from multiple different authors. TotalCoCommitSize for a file 𝐹𝑖 in a
system 𝑆 is the count of all files 𝐹 𝑗 ∈ 𝑆 which have been committed
alongside 𝐹𝑖 , counting multiple occurrences of the same files.

4 MACHINE LEARNING FRAMEWORK
In this section we discuss the machine learning algorithms used
and technical details on how training and testing were conducted
for this study.

4.1 Machine Learning Models Considered
For our experiments we have considered six different classification
algorithms, and namely (1) Logistic Regression; (2) Support Vector
Machines; (3) Multi-Layer Perceptron; (4) Decision Trees; (5) Ran-
dom Forests and; (6) Naïve Bayes. The selection of these algorithms

126

CASCON’20, November 10 - 13 2020, Toronto, Canada Grigoriou and Kontogiannis et al.

is based on the fact that these are the algorithms most commonly
used in the related literature [31], [13], [14] [10].

Each of the aforementioned algorithms comes with its own ben-
efits and drawbacks. The most important benefit was the speed at
which these can be trained and evaluated while the most important
drawback of all approaches except for Logistic Regression was the
lack of explainability. Nevertheless, the combination of these algo-
rithms is currently the de-facto standard in the related literature as
base classifiers [14] [31].

4.2 Commit Tagging
As discussed in Section 3.2 the raw data repository is considered as
a container of commits. Each commit is tagged in the repository as a
bug fixing commit or a clean commit. This tagging is based a) on the
label of the GitHub commit record itself, or in the absence of such
a label by analyzing the comments section of the commit record.
More specifically, if the comments section of the commit record
contains any of the keywords ’bug’, ’bugs’, ’defect’, ’defects’, ’error’,
’errors’ ’fail’, ’fails’, ’failed’, ’failing’, ’failure’, ’failures’, ’fault’, ’faults’,
’fix’, ’fixes’, ’fixed’, ’fixing’, ’problem’, ’problems’, ’wrong’ which may
indicate a bug fixing intention, then the commit is tagged as a buggy
commit (label 1), otherwise as a clean commit (label 0).

4.3 File Tagging
In its turn, a commit is considered itself as a container of files. If
a commit is tagged as a bug fixing one (see above), then all the
files in the commit are also tagged as buggy. This is a heuristic
that can introduce many false positives, but unfortunately in the
absence of a gold standard this is the best approximation and it
is also a heuristic which is used in most papers appearing in the
related literature [21]. In our data model each file also contains
details about the contribution of that file to the commit in terms
of the lines of code added or deleted as a percentage of the overall
number of lines of code added or deleted in the commit.

In the related research literature there is no authoritative set of
tagged files which can serve as a gold standard. The only such data
set is PROMISE which relates only to source code metrics and does
not include process metrics. We have identified an intersection of
11 projects available in PROMISE [30] which have a tagging (buggy
or clean) and for which we can extract process metrics. We have
used these 11 projects to answer research question 𝑄3.

As most of the 148 systems which we have considered for this
study are open source systems the operational life of which spans
several years, we have split the commits into two eras. The rationale
behind this split is that very old commits (e.g. commits which may
be several years old) should not bear significant weight to the
overall computation. The first era consists of the past 70% of the
commits and the second era of most recent 30% of the commits.
The experimentation set-up proceeds then as follows.

Feature Entries
Let 𝐹𝑖, 𝑗 =< 𝑚1,𝑚2,,𝑚18 >𝑖, 𝑗 denote a feature value vector

entry for file 𝐹𝑖 participating in commit𝐶 𝑗 , where𝑚𝑘 is the value of
a feature 𝑓𝑘 𝑘 ∈ {1, 2, ..18} (see Table 1) related to file 𝐹𝑖 in commit
𝐶 𝑗 .

Let also 𝐹𝑖,𝑆 = < 𝑣1, 𝑣2, ..., 𝑣18 >𝑖,𝑆 be the feature vector entry
for file 𝐹𝑖 across all commits 𝐶 𝑗 , 𝐶 𝑗 ∈ 𝑆 , in which 𝐹𝑖 appears, and
where each value 𝑣𝑝 , 𝑝 ∈ {1, 2, ..18}, is obtained by combining all
correcponding𝑚𝑝 ’s appearing in feature value vector entries 𝐹𝑖, 𝑗 .

Let us also assume that the commits𝐶1 𝐶2, ...𝐶 𝑗−1 = 𝑆1 belong to
the first era of 70% of commits and𝐶 𝑗 𝐶 𝑗+1, ...𝐶𝑛 = 𝑆2 belong to the
era of the most recent 30% of system commits. Then the resulting
feature value vector, for all commits 𝑆 = 𝑆1∪𝑆2 containing changes
for this file 𝐹𝑖 , will be 𝐹𝑖,𝑆 = 𝐹𝑖,𝑆1∪𝑆2 will be << 𝑣1, 𝑣2, ..., 𝑣18 >𝑖,𝑆1

, < 𝑣1, 𝑣2, ..., 𝑣18 >𝑖,𝑆2>.

Tagging Process
Let 𝑆𝑅 be the set of commits in the most recent 30%, and 𝑆𝑃

be the set of commits in the past 70%, of the total commits of the
system. Let also 𝐹𝑖 be a file modified in commit 𝐶𝑘 . If 𝐶𝑘 ∈ 𝑆𝑅 has
been identified as a bug fixing commit then the commit’s metrics
vector becomes 𝐹𝑖,𝑘 =< 𝑚1,𝑚2,,𝑚18, 1 >𝑖,𝑘 and the vector
across all commits of the file becomes << 𝑣1, 𝑣2, ..., 𝑣18 >𝑖,𝑆𝑃 , <

𝑣 ′1, 𝑣
′
2, ..., 𝑣

′
18 >𝑖,𝑆𝑅 , 1 >>.

Accordingly for file 𝐹𝑖 , 𝐶𝑘 and 𝑆𝑅 , 𝑆𝑃 as above, if all 𝐶𝑘 ∈ 𝑆𝑅
have been tagged as a clean commit then the overall feature vector
of 𝐹𝑖 becomes << 𝑣1, 𝑣2, ..., 𝑣18 >𝑖,𝑆𝑃 , < 𝑣 ′1, 𝑣

′
2, ..., 𝑣

′
18 >𝑖,𝑆𝑅 , 0 >>.

Finally for a file 𝐹𝑖 , 𝐶𝑘 and 𝑆𝑅 , 𝑆𝑃 as above, if there is no 𝐶𝑘 ∈ 𝑆𝑅
then the overall feature vector of 𝐹𝑖 becomes < 𝑣1, 𝑣2, ..., 𝑣18 >𝑖,𝑆𝑃

, < 𝑁𝑈𝐿𝐿, 𝑁𝑈𝐿𝐿, ...𝑁𝑈𝐿𝐿 >𝑖,𝑆𝑅 , 0 >>.

Example
As an example, consider the file 𝐹10 which appears in commits

𝐶5, 𝐶50, and 𝐶1000 where 𝐶5, 𝐶50 belong to the first era (past 70%)
while 𝐶1000 belongs to the recent 30% and is tagged as a bug fixing
commit. Then the file 𝐹10 will have the following feature vector:

<< 𝑣1, 𝑣2,, 𝑣18 >10,{5,50},
< 𝑣1, 𝑣2, ..., 𝑣18, 1 >10,{1000}>>

and which is produced by aggregating the feature value vectors:

<< 𝑚1,𝑚2, ...,𝑚18, 0 >10,5

< 𝑚′
1,𝑚

′
2,,𝑚

′
18, 0 >10,50

< 𝑚′′
1 ,𝑚

′′
2 ,,𝑚

′′
18, 1 >10,1000

The post processed data model is essentially a relational table
where each line in the table is the feature vector entry of the file
< 𝑣1, 𝑣2,, 𝑣18,𝑇𝑎𝑔 >𝑖,𝑆 .

The obtained results are then the data considered on this study
in order to answer questions 𝑄1 – 𝑄4.

Rebalancing
In the related research literature rebalancing is applied in order

to avoid overfitting classifiers or other ML models to the majority
class. Likewise we used the random oversampling technique [25] to
tackle this threat, accepting that it may contribute to drift bias in the
generated models [3]. The technique involves randomly selecting
instances from the minority class with replacement before the
training stage, to create a new set of the minority class’ instances
which will resemble in cardinality that of the majority class.

127

CASCON’20, November 10 - 13 2020, Toronto, Canada Grigoriou and Kontogiannis et al.

Table 2: Project Statistics

Project Size Avg. LOC No. of Avg. Age Avg. No.
(in files) Projects (in years) of Commits

148,740 – 20,000 15 MLOC 4 13 77,230
19,999 – 10,000 2.3 MLOC 4 11 18,870
9,999 – 5,000 1.3 MLOC 5 14 13,400
4,999 – 2,000 500 KLOC 18 10 7,288
1,999 – 1,000 457 KLOC 12 15 13,906
999 – 500 231 KLOC 26 10 3,900
499 – 200 86 KLOC 32 9 2,213
199 – 12 50 KLOC 47 9 1,325

4.4 Training and Test Set Data and Bias
Once we have calculated the feature vector entries for each file, we
follow the 80-20 split rule for testing and training, and we consider
all the entities in the post processed data (i.e. entries from the fisrt
and second era of the commits). This was done so that the produced
results will be comparable to the studies published in the relevant
research literature [38]. Aiming at reducing the effect of outliers
across all 148 systems considered, we trained and applied a scaler
on the training data to decrease the effective range of all feature
values, and also applied rebalancing on the minority and majority
classes as explained in Section 4.3.

4.5 Evaluation and Performance metrics
The norm for extracting meaningful results from ML models is
the use of the stratified k-fold cross validation technique [38]. The
bootstrap and leave-one-out validation techniques were also used
to provide a better understanding of how the models would per-
form during the application of the trained model. The performance
metrics used in this study are the ones most frequently mentioned
in the literature [3] [20]. In total, 7 different performance measures
were calculated for each one of the variations of the technique
and namely precision, recall, accuracy, F1-score, Brier-score, Receiver-
operator-characteristic/area-under-curve, and where possible, sup-
port. In the context of academic research it has been argued that an
overall high F1-score as well as a high area-under-curve are good
indicators to identify whether a classifier is a successful one or not.
Given, however, that F1 is a combination of Precision and Recall, it
means that a satisfactory value for it is not necessarily the result
of an optimal combination of it’s constituent values. However, in
industry, it is often preferred to maintain high precision even at
the expense of recall. The rationale is that investigating false posi-
tives may require significant effort, or may result to the prediction
system not being easily adopted by developers.

5 EVALUATION STUDIES
In this section we present the details of the studies we have con-
ducted for answering the research questions 𝑄1 - 𝑄4. As stated,
some basic statistics of the 148 open source projects, are depicted in
Table 2. Due to space limitations only the highlights of the results
will be presented in the Obtained Results subsection for each RQ.
The full list of results for all RQs can be found on the accompanying
repository [35].

5.1 Study 1: Identification of Best Classifiers

The first study aims to identify through experimentation the com-
bination of the best classifiers to be used for defect prediction (clas-
sification). Our study here is by far not the first study of its kind. In
[14] the authors have reviewed various research approaches and
concluded that the best results are consistently given by the applica-
tion of simple modelling techniques such as Logistic Regression and
Naive Bayes. Similarly, the authors in [28] reported that the best
features to use are owner experience, overall developer experience,
owner contributed lines, minor contributor count, and distinct dev
count of which only the last one is used in this approach. However,
to our knowledge the study in this paper is the first of its kind in
that it uses a) a very large, comprehensive, and statistically signifi-
cant sample of 148 systems, in a quest to obtain conclusive results
in the topic, and b) repository process metrics as opposed to source
code metrics which as mentioned above do not require the use of
specialised parsers and source code metrics calculators.

5.1.1 Study Set-up. For this study we have obtained feature vector
entries collected from post-processing raw data extracted from 148
GitHub [22] repositories, as discussed in Section 3.1 and Section
3.2. The data were split into k-folds to apply k-fold cross validation
where k=5. For each of the folds the training data were rebalanced to
overcome class imbalance issues, usingminority class oversampling.
A scaler was trained using the training data, normalizing values to
the [0, 1] interval, and applied on both train and test datasets.

5.1.2 Obtained Results. For this study we used all combinations of
the following classifiers: Decision Trees (DT), Random Forests (RF),
Linear Regression (LR), Multi-Layer Perceptron (MLP), Support
Vector Machines (SVM), and Gaussian Naive Bayes (GNB) to train
a hard-voting classifier. These yielded a total of 9,324 individual
results for 148 projects. Those are summarized in Table 3 where
the range depicts obtained min - max scores.

The results indicate that if the Accuracy criterion is to be con-
sidered first amongst the top ranked combinations with respect to
AUC, and F1 score, then the best combination of classifiers across all
projects are the DT_LR_RF, followed by the DT_GNB_LR_MLP_RF.
Furthermore, this observation becomesmore pronounced for projects
for which the Buggy/Clean file ratio is more that 0.5 (see Section
6). The best combination of classifiers as grouped by the ratio
Buggy/Clean files is depicted in Table 4.

5.2 Study 2: Identification of Best Features

This part of the study aims to identify the optimal combination of
the selected features that can be used for creating defect proneness
classification models, similarly to the work in [28], but here we are
investigating a different set of process metrics.

5.2.1 Study Set-up. For this study the classifier usedwas theDT_LR
_RF which was identified as optimal as shown in Table 3, and was
applied on all possible combinations of the features. For the eval-
uation of the trained models the k-fold cross validation with k=5

128

CASCON’20, November 10 - 13 2020, Toronto, Canada Grigoriou and Kontogiannis et al.

Table 3: Results of Classifier Combinations

Accuracy Range AUC Range F1 Range
Classifier (Min - Max) (Min - Max) (Min - Max)
Combination Median Accuracy Median AUC Median F1

Avg. Accuracy Avg. AUC Avg. F1
0.7 - 1.0 0.61 - 1.0 0.0 - 1.0

DT_LR_RF 0.89 0.85 0.81
0.89 0.85 0.75
0.69 - 1.0 0.64 - 1.0 0.0 - 1.0

DT_GNB_LR_MLP_RF 0.88 0.85 0.79
0.88 0.86 0.75
0.61 - 1.0 0.64 - 1.0 0.0 - 1.0

DT_GNB_MLP_RF_SVM 0.87 0.85 0.79
0.88 0.85 0.75
0.61 - 1.0 0.61 - 1.0 0.0 - 1.0

DT_GNB_LR_MLP_RF_SVM 0.87 0.84 0.77
0.87 0.85 0.74
0.65 - 1.0 0.62 - 1.0 0.0 - 1.0

DT_GNB_LR_RF_SVM 0.87 0.84 0.77
0.87 0.85 0.74
0.61 - 1.0 0.63 - 1.0 0.0 - 1.0

LR_MLP_RF 0.87 0.85 0.79
0.87 0.86 0.75
0.65 - 1.0 0.65 - 1.0 0.0 - 1.0

DT_LR_MLP_RF_SVM 0.87 0.86 0.79
0.87 0.86 0.75
0.57 - 1.0 0.62 - 1.0 0.0 - 1.0

DT_LR_MLP 0.87 0.86 0.79
0.87 0.86 0.75
0.53 - 1.0 0.6 - 1.0 0.0 - 1.0

LR_MLP_RF_SVM 0.86 0.85 0.78
0.87 0.86 0.73
0.65 - 1.0 0.65 - 1.0 0.1 - 1.0

MLP_RF_SVM 0.86 0.85 0.79
0.87 0.86 0.74
0.57 - 1.0 0.62 - 1.0 0.0 - 1.0

DT_LR_MLP_SVM 0.86 0.85 0.77
0.87 0.85 0.73
0.65 - 1.0 0.64 - 1.0 0.0 - 1.0

GNB_LR_MLP_RF_SVM 0.86 0.85 0.78
0.87 0.86 0.74
0.65 - 1.0 0.6 - 1.0 0.0 - 1.0

DT_GNB_LR_MLP_SVM 0.86 0.85 0.78
0.87 0.86 0.74
0.61 - 1.0 0.65 - 1.0 0.0 - 1.0

DT_MLP_SVM 0.86 0.86 0.79
0.87 0.86 0.74
0.65 - 1.0 0.65 - 1.0 0.0 - 1.0

LR_RF_SVM 0.86 0.84 0.77
0.86 0.86 0.74
0.61 - 1.0 0.64 - 1.0 0.1 - 1.0

MLP 0.85 0.85 0.78
0.86 0.86 0.74
0.53 - 1.0 0.6 - 1.0 0.0 - 1.0

DT_LR_SVM 0.86 0.85 0.77
0.86 0.86 0.73
0.61 - 1.0 0.59 - 1.0 0.04 - 1.0

GNB_LR_MLP 0.86 0.84 0.77
0.86 0.85 0.73
0.57 - 1.0 0.63 - 1.0 0.0 - 1.0

GNB_MLP_SVM 0.85 0.85 0.77
0.86 0.86 0.73
0.61 - 1.0 0.63 - 1.0 0.1 - 1.0

LR_MLP_SVM 0.85 0.85 0.77
0.86 0.86 0.74

was used. The extracted results represent the average over the 5
folds. Rebalancing was used to equalise the instances pertaining to
the minority and majority classes, and scaling applied to normalise
the data points as to facilitate a better fitting of the models to the
data prior to training. The testing data were not rebalanced but the
same scaling was applied to them as well.

5.2.2 Obtained Results. The summary of the obtained results for
all projects, per feature combination can be found in Table 5, where
the range depicts obtained Min - Max scores. For this study we
have used all combinations of the following Features: Number of

Table 4: AUC for the 10 Best Classifier Combinations Com-
pared to Buggy/Clean Ratio Range

Classifier Avg. F1 and Avg. F1 and Avg. F1 and
avg. AUC for avg. AUC for avg. AUC for
B/C < 0.25 B/C = [0.25 - 0.5) B/C ≥ 0.51

DT_LR_RF
0.55
0.87

0.74
0.85

0.84
0.85

DT_GNB_LR_MLP_RF
0.55
0.87

0.74
0.85

0.84
0.85

DT_GNB_MLP_RF_SVM
0.55
0.87

0.74
0.85

0.84
0.85

DT_GNB_LR_MLP_RF_SVM
0.55
0.87

0.74
0.85

0.84
0.85

DT_GNB_LR_RF_SVM
0.55
0.87

0.74
0.85

0.84
0.85

LR_MLP_RF
0.55
0.87

0.74
0.85

0.84
0.85

DT_LR_MLP_RF_SVM
0.55
0.87

0.74
0.85

0.84
0.85

DT_LR_MLP
0.55
0.87

0.74
0.85

0.84
0.85

LR_MLP_RF_SVM
0.55
0.87

0.74
0.85

0.84
0.85

MLP_RF_SVM
0.55
0.87

0.74
0.85

0.84
0.85

Commits Feature(CF), Total Distinct Authors (TDA), Total Churn
Feature (TCF), and Total CoCommits Size (TCS). These combina-
tions in all 148 projects produced 2,220 individual results.

5.3 Study 3: Comparison of Process and Source
Code Metrics

This study aims at performing a comparison between the efficiency
of using Source Code Metrics versus using Process Metrics for
carrying out Fault-Proneness prediction. It is carried out on a subset
of data made available for software engineering research as part of
the PROMISE repository [30].

5.3.1 Study Set-up. All combinations of the available classifiers
were used for this experiment and the Feature combination used
was the one identified as optimal in Section 5.2. To select the subset
of systems onwhich to conduct this study wemanually investigated
the contents of the PROMISE repository to identify projects for
which a valid Git repository is still available. Given the age of the
repository and it’s specific structure this process yielded only 11
systems for which process metrics could be mined. For these 11
systems the data between the PROMISE dataset and our system
were reconciled. The reconciliation process consisted of only using
data pertaining to files present both in data extracted from Git
repositories and in the PROMISE dataset. In addition, the files had
to be active with at least a single commit in the latest 30% of the
total commits of the system. The files’ classes were set from the
manually curated PROMISE dataset. The process used afterwards
is the same as in Sections 5.1 and 5.2. The data were rebalanced
in both cases and independently scaled. The process presented so
far was designed to give both approaches an equal amount of data
and to be easily replicable by other researchers. The evaluation of
the models was implemented using k-fold cross validation where
k=5 for each of the approaches, Source-Code Metrics and Process
Metrics respectively, and the presented results depict the average
over all 5-folds of this evaluation.

129

CASCON’20, November 10 - 13 2020, Toronto, Canada Grigoriou and Kontogiannis et al.

Table 5: Results of Feature Combinations

Accuracy Range AUC Range F1 range
Feature (Min - Max) (Min - Max) (Min - Max)
Combination Median Accuracy Median AUC Median F1

Average Accuracy Average AIC Average F1
0.68 - 1.0 0.58 - 1.0 0.0 - 1.0

CF_TCF_TCS_TDA 0.89 0.86 0.8
0.89 0.86 0.76
0.7 - 1.0 0.55 - 1.0 0.0 - 1.0

CF_TCF_TCS 0.89 0.85 0.81
0.89 0.85 0.75
0.63 - 1.0 0.59 - 1.0 0.0 - 1.0

CF_TCS_TDA 0.88 0.85 0.8
0.88 0.85 0.76
0.66 - 1.0 0.6 - 1.0 0.0 - 1.0

CF_TCS 0.88 0.85 0.81
0.88 0.85 0.76
0.72 - 1.0 0.64 - 1.0 0.0 - 1.0

TCF_TCS_TDA 0.88 0.84 0.8
0.88 0.84 0.75
0.7 - 1.0 0.55 - 1.0 0.0 - 1.0

TCF_TCS 0.87 0.82 0.78
0.87 0.83 0.73
0.6 - 1.0 0.46 - 1.0 0.0 - 1.0

TCS_TDA 0.88 0.83 0.79
0.87 0.84 0.74
0.73 - 1.0 0.6 - 1.0 0.0 - 1.0

CF_TCF_TDA 0.86 0.83 0.78
0.87 0.83 0.72
0.62 - 1.0 0.5 - 1.0 0.0 - 1.0

CF_TCF 0.85 0.81 0.76
0.86 0.82 0.71
0.69 - 1.0 0.61 - 1.0 0.0 - 1.0

TCF_TDA 0.85 0.8 0.75
0.85 0.81 0.7
0.5 - 1.0 0.6 - 1.0 0.13 - 1.0

CF_TDA 0.84 0.81 0.77
0.85 0.82 0.71
0.33 - 1.0 0.4 - 1.0 0.13 - 1.0

CF 0.82 0.8 0.75
0.84 0.81 0.69
0.47 - 1.0 0.44 - 1.0 0.0 - 1.0

TCS 0.84 0.79 0.71
0.83 0.79 0.67
0.63 - 1.0 0.5 - 1.0 0.0 - 1.0

TCF 0.82 0.76 0.69
0.83 0.77 0.65
0.39 - 1.0 0.4 - 1.0 0.07 - 1.0

TDA 0.8 0.81 0.73
0.81 0.81 0.68

5.3.2 Obtained Results. For this study a hard-voting classifier was
utilised using all combinations of the following classifiers: De-
cision Trees (DT), Random Forests (RF), Linear Regression (LR),
Multi-Layer Perceptron (MLP), Support Vector Machines(SVM),
and Gaussian Naive Bayes(GNB). The Features used were: Number
of Commits Feature(CF), Total Distinct Authors (TDA), Total Churn
(TC), and Total CoCommitsSize Feature (TCS) for extracting pro-
cess metrics and all features available were used from the PROMISE
dataset. This process was applied on 11 projects and yielded a total
of 756 results for each metric type. The results are shown in Table
6.

5.4 Study 4: Cross Project Validation
For this study, we have trained the classifiers in a collection of
projects (training set) and we have applied them to another set
projects (testing set) for comparing the obtained results with the
ones obtained when the classifiers are trained and applied only in
one project.

5.4.1 Study Set-up. For this study the optimal classifier identified
in Section 5.1 and the optimal feature combination identified in

Table 6: Process Metrics vs Source Code Metrics

Process Metrics Source Code Metrics
Classifier Avg. F1 Avg. F1

Median F1 Median F1
Combination Avg. AUC Avg. AUC

Median AUC Median AUC

DT_GNB_RF

0.8
0.93
0.77
0.74

0.58
0.58
0.67
0.63

DT_MLP_RF

0.81
0.93
0.77
0.76

0.6
0.61
0.67
0.65

DT_RF_SVM

0.81
0.93
0.75
0.74

0.6
0.62
0.67
0.65

RF

0.8
0.93
0.79
0.76

0.59
0.61
0.66
0.63

DT_LR_RF

0.81
0.92
0.76
0.77

0.61
0.61
0.68
0.65

DT_GNB_MLP_RF_SVM

0.8
0.84
0.75
0.73

0.59
0.59
0.68
0.65

DT_GNB_LR_MLP_SVM

0.79
0.82
0.75
0.75

0.59
0.59
0.68
0.67

GNB_LR_MLP_RF_SVM

0.79
0.82
0.76
0.74

0.58
0.6
0.68
0.66

DT_LR_SVM

0.79
0.82
0.75
0.74

0.58
0.6
0.65
0.65

SVM

0.79
0.82
0.76
0.75

0.57
0.59
0.65
0.64

Section 5.2 were used. To prepare the data we filtered the available
systems selecting only those having less than 20K and more than
250 files and then split these into three performance classes using
the ratio of fault-prone over healthy files in the system. This yielded
a total of 26 projects with a B/C ratio in the interval [0, 0.25), 20
projects with a ratio in the interval [0.25, 0.5) and 44 projects with
a B/C ratio ≥ 0.5 (see also Table 4). These groups were then divided
into two randomly selected groups, and one group was used for
training a model while the other group was used for evaluation.
Given the uneven size of the different systems it was necessary to
upsample the data available for each one of them so as to have all
projects represented approximately equally in the training set and
avoiding it being dominated by the largest systems. Rebalancing of
the minority and majority classes was carried out on the upsampled
data separately for each project to provide the training algorithm
with equal amounts of positive and negative instances. In this study
there was no reason to use the k-fold cross validation technique
as the evaluation of the trained model happened on other systems
than the ones used for training.

5.4.2 Obtained Results. For this study a total of 45 results were
obtained one for each system used for testing. The results are pre-
sented grouped by faulty over healthy ratio in Table 7.

130

CASCON’20, November 10 - 13 2020, Toronto, Canada Grigoriou and Kontogiannis et al.

Table 7: Cross Project with Rebalancing

Cross Cross Cross
vs. vs. vs.

Within Project Within Project Within Project

B/C Value Avg. Accuracy
Accuracy Median

Avg. AUC
AUC Median

Avg. F1
F1 Median

B/C < 0.25 0.75 vs. 0.60
0.81 vs. 0.63

0.77 vs. 0.94
0.78 vs. 0.94

0.4 vs. 0.63
0.43 vs. 0.64

B/C ∈ [0.25,0.5) 0.69 vs. 0.76
0.74 vs. 0.76

0.73 vs. 0.86
0.76 vs. 0.86

0.62 vs. 0.78
0.66 vs. 0.77

𝐵/𝐶 ≥ 0.5 0.73 vs. 0.86
0.74 vs. 0.84

0.75 vs. 0.88
0.74 vs. 0.85

0.76 vs. 0.85
0.77 vs 0.84

6 DISCUSSION
6.1 General Observations
The first observation is that each software system is unique, and
there is no single best classifier which can be used to provide accu-
rate defect proneness classification results for all projects. What we
have observed is that a classifier or a collection of classifiers can
produce high performance scores (i.e. high accuracy, high F1, and
high AUC) for one project, and poor scores on another (see also
“No Free Lunch Theorem" [37]).

The second observation is that we were not able to identify a
feature, or a collection of features, that guarantee (i.e. with cer-
tainty) that such a classifier or a set of classifiers can be trained
to always yield high performance scores. The only measure we
have found to be a very good indicator of quality results is the
Buggy/Clean ratio, where in the vast majority of cases, if a project
has a Buggy/Clean ratio ≥ 0.5 it is almost certain that there exist a
classifier or a combination of classifiers which can produce F1 and
AUC scores higher that 0.85. This essentially means that classifiers
work best when the data (number of buggy vs. clean files) are bal-
anced. Classifiers on projects with Buggy/Clean ratio values less
than 0.2 almost certainly perform poorly.

The third general observation is that there is a need to devise
techniques for accurate tagging (i.e. to assign a buggy or clean label
to a file) to be used for training purposes. The heuristics used so far
in the literature and in this study, may introduce many false posi-
tives for training, skewing thus the obtained results. Furthermore,
there is a need to devise techniques for introducing a temporal
effect on the data, meaning that distant past commits should carry
less weight than recent commits.

Overall, ML shows to be an interesting technique for defect
proneness classification but we have not reached a point yet to
identify how these classifiers can be trained effectively to yield
trustworthy results for an arbitrary given project.

6.2 Detailed Observations
For research question 𝑅𝑄1: The combinations of classifiers which
included one or more tree-based models performed on average
better than any other combination of classifiers. This may have to
do with the nature of the problem which lends itself more naturally
to a binary type of classification (i.e. Buggy or Clean) in which tree-
based classifiers may perform better. We can say that combinations
of classifiers which include Decision Trees and Random Forests,
on average, outperform other combinations. Having said that, our
observation is that there are no guarantees that these classifiers

will perform as well when applied to a new arbitrary project, but
there is a higher likelihood they will.

For research question 𝑅𝑄2: By examining the obtained results the
features having the highest probability of generating high quality
results is the combination of all four features, followed by the
combination of CF (number of commits) and TCS (total co-commit
size) and TCF (total churn). However, looking at the minimal set of
features which can be used and still produce high quality results is
any combination of two of CF (number of commits) and TCS (total
co-commit size) and TCF (total churn). Another observation is that
the TDA (total distinct authors) feature on its own does not provide
high quality results, but only when combined with other features.

For research question 𝑅𝑄3: Here we can say that process metrics
clerly outperform the source code metrics for defect-proneness
classification purposes. This is an valuable observation as process
metrics are language agnostic and their compilation does not re-
quire specialised parsers and metrics extractors. This result can
be explained, as software metrics may often exhibit an unjustified
variability in their values over different commits of the same file
even if it maintains its status (i.e. Buggy or Clean). Vice versa, it can
also be the case that software metrics may exhibit no variability of
their values over different commits even if the file changes its tag
value. This behaviour of software metrics may generate conflicting
data for the classifier. In contrast, process metrics may exhibit a
variability too, but maintain a better type of “history” feature values
as the project evolves.

For research question 𝑅𝑄4: Here our observation is that cross
project classifier training and application does not yield high quality
results. When classifiers are trained in some projects and applied to
other projects the classification results are not as accurate as when
the classifier is applied to the same project as the one it is trained
on. This may be explained from the fact that the profiles of process
metric values are kind of project specific as they depict the history
of the project and the activity on each file. This is an interesting
result, as it disputes the case of one trained model fits all.

6.3 Threats to Validity
We identify three threats. The first threat has to do with the way
tagging is performed in order to create a training set. For our study
we consider for tagging purposes the most recent 30% of the com-
mits, while we maintain historical information from the past 70%
of commits. For the feature value vectors of the distant past 70%
of the commits we are either providing a DC value or no value
(e.g. see Section 4.3). This creates the potential for false positives
to be generated during tagging. The second threat has to do with
how files are tagged within a single commit. For this study, if a
file participates on a bug fixing commit then we consider all files
in the commit as buggy. This is an overestimate and introduces
the possibility of false positives, similarly fixes-in-passing can in-
troduce false negatives which again degrade the overall quality
of the data. The most accurate approach would be being able to
tag all files in all commits in the history of the project with their
correct label. However, this would be almost impossible for such
large projects as we have considered in the course of this study. It
would be though a valid approach for new projects, where accurate
labeling can commence on early stages of the project. The third

131

CASCON’20, November 10 - 13 2020, Toronto, Canada Grigoriou and Kontogiannis et al.

threat has to do with the used features. Since the purpose of the
study was to provide results from a large data set and not to propose
new features, we have considered features which are commonly
used in the research literature. There may be other features which
relate to process metrics and which the community has not consid-
ered yet, which may produce good defect proneness classification
results. This can also be considered an open problem for further
investigation.

7 CONCLUSION
This paper reports on the results of a set of experiments conducted
in order to evaluate the use of Machine Learning for defect prone-
ness classification. Over the past few years we have seen a tremen-
dous growth on research and publications related to Machine Learn-
ing for software maintenance, and in particular for defect proneness
classification and defect prediction. Even though there is a signif-
icant body of work conducted on evaluating Machine Learning
techniques for defect proneness classification, the significance of
this paper is that it is the first work to our knowledge that exam-
ines such a large corpus of open source data aiming to concretely
address four key research questions which relate to experimentally
identifying the best classifiers, the best features, whether process
metrics outperform software metrics as predictors, and whether
cross project training and application can be a viable option with
respect to the quality of the obtained results. The experiments con-
ducted revealed a number of observations. First, Machine Learning
techniques are not guaranteed to perform well in all projects. Each
software project has a specific life-cycle and “personality” profile
of its own, and “a one classifier fits all" approach is not feasible.
Second, we have seen that Machine Learning techniques are more
likely to perform well when the buggy/clean ratio of the system
files is between 0.5 and 2. Note that a ratio of 1 indicates that there
are as many buggy files and clean files. Third, there was a clear indi-
cation that process metrics perform better or, in some cases, at least
as well as software metrics. This implies that there is a strong indi-
cation that process related metrics can safely be used as predictors.
Fourth, training the classifiers in one set of systems and applying
on another is not a good approach, as the best classification results
are obtained when the classifier is applied on the same system it
is trained on. Overall, ML for defect proneness classification is a
promising area of work that still has a number of open problems
to investigate. including, identifying new features, creating better
tagging tools, combining ML with static and dynamic analysis to
increase the performance of the classifiers, and introducing a means
of grouping similar projects according to project-wide metrics.

REFERENCES
[1] C. Catal and B. Diri. 2009. Investigating the Effect of Dataset Size, Metrics Sets,

and Feature Selection Techniques on Software Fault Prediction Problem. Inf. Sci.
179, 8 (2009), 1040–1058.

[2] S. R. Chidamber and C. F. Kemerer. 1994. A metrics suite for object oriented
design. IEEE TSE 20, 6 (1994), 476–493.

[3] C. Tantithamthavorn et al. 2018. The Impact of Class Rebalancing Techniques
on the Performance and Interpretation of Defect Prediction Models. CoRR
abs/1801.10269 (2018).

[4] C. Tantithamthavorn et al. 2019. The Impact of Automated Parameter Optimiza-
tion on Defect Prediction Models. IEEE TSE 45, 7 (2019), 683–711.

[5] D. Gray et al. 2009. Using the Support Vector Machine as a Classification Method
for Software Defect Prediction with Static Code Metrics. In Engineering Applica-
tions of Neural Networks. 223–234.

[6] F. Touré et al. 2017. Predicting different levels of the unit testing effort of classes
using source code metrics: a multiple case study on open-source software. Innov.
in Systems and Software Eng. 14 (2017).

[7] F. Zhang et al. 2012. An Empirical Study on Factors Impacting Bug Fixing Time.
In 19th WCRE. 225–234.

[8] J. Jiarpakdee et al. 2019. The Impact of Correlated Metrics on the Interpretation of
Defect Models,. IEEE TSE.

[9] L. Pascarella et al. 2019. Fine-grained just-in-time defect prediction. JSS 150
(2019), 22–36.

[10] M. D’Ambros et al. 2012. Evaluating Defect Prediction Approaches: A Benchmark
and an Extensive Comparison. EMSE Vol. 17 pp.531-577.

[11] M. Kondo et al. 2019. The Impact of Feature Reduction Techniques on Defect
Prediction Models. EMSE 24:(4) pp. 1925-1963.

[12] P. He et al. 2015. An Empirical Study on Software Defect Prediction with a Simplified
Metric Set. Inf. Softw. Technol. 59C pp. 170-190.

[13] S. Lessmann et al. 2008. Benchmarking Classification Models for Software Defect
Prediction: A Proposed Framework and Novel Findings. IEEE TSE 34, 4 (2008),
485–496.

[14] T. Hall et al. 2012. A Systematic Literature Review on Fault Prediction Perfor-
mance in Software Engineering. IEEE TSE 38, 6 (2012), 1276–1304.

[15] T. Menzies et al. 2007. Data Mining Static Code Attributes to Learn Defect
Predictors. IEEE TSE 33, 1 (2007), 2–13.

[16] T. Menzies et al. 2010. Defect prediction from static code features: current results,
limitations, new approaches. Automated Soft. Engineering 17, 4 (2010), 375–407.

[17] T. Zimmermann et al. 2009. Cross-Project Defect Prediction: A Large Scale
Experiment on Data vs. Domain vs. Process. In 7th ESEC/FSE. 91–100.

[18] V. R. Basili et al. 1996. A validation of object-oriented design metrics as quality
indicators. IEEE TSE 22, 10 (1996), 751–761.

[19] V. U. B. Challagulla et al. 2005. Empirical assessment of machine learning based
software defect prediction techniques. In 10th IEEE International Workshop on
OO Real-Time Dependable Systems. 263–270.

[20] Y. Kamei et al. 2013. A large-scale empirical study of just-in-time quality assur-
ance. IEEE TSE 39, 6 (2013), 757–773.

[21] Z. Tóth et al. 2016. A Public Bug Database of GitHub Projects and Its Application
in Bug Prediction. In ICCSA. 625–638.

[22] Github. 2008. Github, Build software better, together - https://github.com.
[23] A. E. Hassan. 2009. Predicting faults using the complexity of code changes. In

31st ICSE. 78–88.
[24] T. M. Khoshgoftaar and N. Seliya. 2002. Tree-based software quality estimation

models for fault prediction. In Proceedings Eighth IEEE Symposium on Software
Metrics. 203–214.

[25] G. Lemaître, F. Nogueira, and C. K. Aridas. 2017. Imbalanced-Learn: A Python
Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning. J.
Mach. Learn. Res. 18, 1 (2017), 559–563.

[26] Nagappan et al. N. 2006. Mining Metrics to Predict Component Failures. In 28th
ICSE. 452–461.

[27] A. Okutan and O.T. Yundefinedldundefinedz. 2014. Software Defect Prediction
Using Bayesian Networks. Vol. 19. Kluwer Academic Publ., USA. 154–181 pages.

[28] F. Rahman and P. Devanbu. 2013. How, and why, process metrics are better. In
35th ICSE. 432–441.

[29] D. Romano and M. Pinzger. 2011. Using source code metrics to predict change-
prone Java interfaces. In 27th ICSM. 303–312.

[30] J. Sayyad Shirabad and T.J. Menzies. 2005. The PROMISE Repository of Software
Engineering Databases. School of Information Technology and Engineering,
University of Ottawa, Canada. http://promise.site.uottawa.ca/SERepository

[31] C. Tantithamthavorn and A.E. Hassan. 2018. An Experience Report on Defect
Modelling in Practice: Pitfalls and Challenges. In 40th ICSE. 286–295.

[32] M.M.T. Thwin and T.S. Quah. 2005. Application of Neural Networks for Software
Quality Prediction Using Object-Oriented Metrics. JSS 76, 2 (2005), 147–156.

[33] A. Tornhill. 2015. Your Code as a Crime Scene: Use Forensic Techniques to Arrest
Defects, Bottlenecks, and Bad Design in Your Programs. Pragmatic Bookshelf.

[34] B. Turhan and A. Bener. 2009. Analysis of Naive Bayes’ Assumptions on Software
Fault Data: An Empirical Study. Data Knowl. Eng. 68, 2 (Feb. 2009), 278–290.

[35] Unnamed. 2020. Study data. https://figshare.com/s/cc5bfdefd91442712b0b
[36] S. Wang and X. Yao. 2013. Using Class Imbalance Learning for Software Defect

Prediction. IEEE Trans. on Reliability 62, 2 (2013), 434–443.
[37] D. H.Wolpert andW. G. Macready. 1997. No free lunch theorems for optimization.

IEEE Trans. on Evolutionary Computation 1, 1 (1997), 67–82.
[38] T.T. Wong. 2015. Performance Evaluation of Classification Algorithms by K-Fold

and Leave-One-out Cross Validation. Pattern Recogn. 48, 9 (2015), 2839–2846.
[39] J. Zheng. 2010. Cost-Sensitive Boosting Neural Networks for Software Defect

Prediction. Expert Syst. Appl. 37, 6 (June 2010), 4537–4543.

132

http://promise.site.uottawa.ca/SERepository
https://figshare.com/s/cc5bfdefd91442712b0b

Moving from Cross-Project Defect Prediction to Heterogeneous
Defect Prediction: A Partial Replication Study

Hadi Jahanshahi

Data Science Lab

Ryerson University

Toronto, Ontario, Canada

hadi.jahanshahi@ryerson.ca

Mucahit Cevik

Data Science Lab

Ryerson University

Toronto, Ontario, Canada

mcevik@ryerson.ca

Ayşe Başar

Data Science Lab

Ryerson University

Toronto, Ontario, Canada

ayse.bener@ryerson.ca

ABSTRACT
Software defect prediction heavily relies on the metrics collected
from software projects. Earlier studies often used machine learning
techniques to build, validate, and improve bug prediction models
using either a set of metrics collected within a project or across
different projects. However, techniques applied and conclusions de-
rived by those models are restricted by how identical those metrics
are. Knowledge coming from those models will not be extensi-
ble to a target project if no sufficient ov erlapping me trics have
been collected in the source projects. To explore the feasibility of
transferring knowledge across projects without common labeled
metrics, we systematically integrated Heterogeneous Defect Pre-
diction (HDP) by replicating and validating the obtained results.
Our main goal is to extend prior research and explore the feasi-
bility of HDP and finally t o c ompare i ts p erformance w ith that
of its predecessor, Cross-Project Defect Prediction. We construct
an HDP model on different publicly available datasets. Moreover,
we propose a new ensemble voting approach in the HDP context
to utilize the predictive power of multiple available datasets. The
result of our experiment is comparable to that of the original study.
However, we also explored the feasibility of HDP in real cases. Our
results shed light on the infeasibility of many cases for the HDP
algorithm due to its sensitivity to the parameter selection. In gen-
eral, our analysis gives a deep insight into why and how to perform
transfer learning from one domain to another, and in particular,
provides a set of guidelines to help researchers and practitioners to
disseminate knowledge to the defect prediction domain.

KEYWORDS
Defect Prediction; Heterogeneous Metrics; Transfer Learning; Soft-
ware Quality
ACM Reference Format:
Hadi Jahanshahi, Mucahit Cevik, and Ayşe Başar. 2020. Moving from Cross-
Project Defect Prediction to Heterogeneous Defect Prediction: A Partial
Replication Study. In Proceedings of 30th Annual International Conference on
Computer Science and Software Engineering (CASCON’20). IBM Corp.,
Riverton, NJ, USA, 10 pages.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honoured. For all other uses, contact the owner/author(s).
CASCON’20, November 10-13 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

1 INTRODUCTION
Defect prediction is a powerful technique proposed to allocate lim-

ited testing resources efficiently and minimise the risk associated

with incurring post-release defects. This technique helps software

teams to prioritise potential defective modules (e.g., files or func-

tions) in the software systems. In most cases, the metrics extracted

from the historical defect dataset of a project are used to train a

binary classifier to predict the defects of new software modules

from the same project. This type of prediction is called Within-

Project Defect Prediction (WPDP). However, this approach does

not apply to the case where new software is launched, and there

is no significant evidence about the characteristics of bugs in the

system.

In Cross-Project Defect Prediction (CPDP) [27, 33], we may use

another project, with the same metrics as those of the testing set,

to build a model and create a promising prediction. CPDP aims

to predict bugs in a new project that lacks historical defect data.

This process constructs a model from a similar but not identical

project. Nevertheless, in practice, collecting datasets with the same

metrics is not feasible for all projects. To alleviate the limitations

due to heterogeneous metric sets in CPDP, Nam et al. [17] proposed

Transfer Learning or Heterogeneous Defect Prediction (HDP). They

presented an HDP method exploiting gain ratio feature selection

and metrics matching based on the Kolmogorov-Smirnov test (KS-

test) to choose the metrics with similar distribution in the training

set. There are other variations of the HDP method. Gong et al.

[8] suggested an unsupervised deep domain adaption method to

overcome the issues with heterogeneous metrics and unbalanced

datasets. Li et al. [15] proposed a two-stage ensemble learning for

HDP to alleviate the problem of linear inseparability and class

imbalance.

We first partially replicate the work by Nam et al. [17], and then

investigate new research questions on the possibility of transferring

the lessons learned from traditional defect prediction to a new

project with different features. To systematically explore the issue,

we construct our study along with the following four research

questions:

• RQ1: How do models selected using domain-agnostic simi-

larity perform in a cross-project context?

• RQ2: How do HDP methods predict the defect in the system

compared to WPDP methods?

• RQ3: How do the ensembles of models built from several

projects perform in an HDP context?

• RQ4: How feasible is HDP in terms of target prediction

coverage?

133

https://doi.org/10.1145/nnnnnnn.nnnnnnn

CASCON’20, Nov 10-13, 2020, Toronto, Canada Hadi Jahanshahi, Mucahit Cevik, and Ayşe Başar

The remainder of the paper is organised as follows. Section 2

presents a brief background of the original study. In Section 3,

we provide an overview of the replication study. Afterward, In

Section 4, the comparison of the result with the original study

has been discussed. Moreover, we report the performance of the

approach under different scenarios and investigate the coverage

ability of HDP. Section 5 discusses the threats to the validity of the

paper, and finally, Section 6 concludes the paper.

2 INFORMATION ABOUT THE ORIGINAL
STUDY

This paper reports on the replication and extension of a paper,

established upon the proposed guidelines for experimental replica-

tions [1].

Nam et al. [17] proposed HDP to circumvent the severe limitation

of CPDP: the need for a homogeneous set of metrics; i.e., different

projects should have the same (or at least sufficient common) met-

rics to make CPDP work. The notion of transfer learning [18, 30]

highlights the importance of exploiting all available resources, even

if the input feature space and data distribution characteristics are

not identical. In the original study [17], authors examine the possi-

bility of quickly transferring lessons learned from defect datasets

to new, unseen datasets.

The proposed methodology aims to employ the similarity be-

tween the distribution of heterogeneous metrics to address the

restrictions on CPDP. After applying feature selection on the train-

ing set (i.e., source project), they use metrics matching to find the

best-matched metrics in the testing set (i.e., target project) for each

selected metric of the training set. This step may lead to infeasible

HDP if the method is unable to find any paired metrics. They dis-

cussed the HDP target coverage to report the success rate of their

method. After obtaining the best-matched set of metrics, they build

a classifier on the source project and predict the defect-proneness of

the target project. Nam et al. [17] evaluate the performance of HDP

based on the Area Under the ROC curve metric. They reported the

representative HDP results using Gain Ratio for feature selection

(top 15% metrics), KS-test with the cutoff threshold of 5% (𝑝 = 0.05)

for similarity finding, and the Logistic Regression (LR) as the classi-

fier. Table 1 gives a summary of the research questions and the steps

followed in their paper. More details on their method are provided

in Section 4.2.

3 INFORMATION ABOUT THE REPLICATION
3.1 Benchmark datasets
In this paper, we abide by the publicly available datasets that were

used in earlier studies. The summary of the datasets is provided in

Table 2. Nonetheless, in some cases, e.g., NASA datasets, more than

one version of the datasets were available and some concerns about

the quality of the dataset have been reported [9, 22]. Hence, we

established three important inclusion criteria to filter out unreliable

datasets [23]:

(1) Criterion 1- different corpora: Since we are to implement

HDP, we need to choose our datasets from a multitude of

sources where there is a chance of inconsistency between

column names. Furthermore, this factor will augment the

generalizability of our conclusions.

(2) Criterion 2- Sufficient EPV: The number of Events Per

Variable (EPV) is the ratio of buggy instances to the number

of predictors (metrics). For instance, in JDT dataset, EPV is

206/19 = 10.85. To avoid problems related to the overfitting,

underfitting, and misleading associations, general guidelines

have been suggested for the minimum EPV required in multi-

variate analysis to be from 10 to 20 [24]. We set the minimum

acceptable EPV to 10 and discard any dataset whose EPV

is less than 10 since few events relative to the number of

independent variables produce unreliable results.

(3) Criterion 3- defect ratio: It is implausible to have more

defective software modules than those that are free of bugs.

Accordingly, we remove datasets whose defective rate is

more than half (> 50%).

Each group has a different set of measures in terms of the number

and type, making CPDP infeasible in many cases. Therefore, we

consider HDP as a remedy for incongruous metrics.

We analyse 136 publicly available defect datasets from various

sources [5, 6, 10, 12, 19, 22, 26, 31, 32].We apply the inclusion criteria

to sift qualified datasets out. 114 datasets have EPV less than 10,

and 5 datasets have defective ratio greater than 50%; consequently,

we arrive at 17 eligible datasets. In Table 2, the number of instances,

the number and the percentage of buggy instances per dataset, the

number of metrics, and the EPV score of those datasets are reported.

3.2 Level of interaction with authors of
original study

In this replication study, the original researchers, [17], provided us

most of the datasets; we queried about the detail of some parts that

were not clearly mentioned in the paper, and the authors responded

to our email. Since the scripts of the paper were not available, all

the codes have been written from scratch, and we did not request

the related codes from the authors.

3.3 Changes to the original experiment
We had original datasets, to some extent, to create our benchmark;

however, several new datasets are incorporated to validate the gen-

eralizability of the original paper. The replicated research questions

and the design of the experiments are similar to those of the original

study with the following modifications:

• We define three new Research Questions to first investi-

gate whether HDP has the transferability to be applied on a

dataset with a totally different nature, and second whether

the performance of the HDP can be improved through pool-

ing and voting approaches.

• Different points of view into the problem for each Research

Question are embodied in research.

• The original study used only Logistic Regression (LR) as

a classifier, whereas we implement both LR and Random

Forest (RF) with the number of trees equal to 100.

• Unlike the original study, we consider 136 different datasets,

and based on the predefined criteria we choose only 17 re-

liable projects. Hence, only 5 datasets, namely JDT, Mylyn,

134

Moving from CPDP to HDP: A Partial Replication Study CASCON’20, Nov 10-13, 2020, Toronto, Canada

Table 1: The overview of research questions and the steps taken in paper by Nam et al. [17]

Project data used EQ, JDT, LC, ML, PDE, Apache, Safe, ZXing, ant-1.3, arc, camel-1.0, poi-1.5, redaktor, skarbonka, tomcat,

velocity-1.4, xalan-2.4, xerces-1.2, cm1, mw1, pc1, pc3, pc4, jm1, pc2, pc5, mc1, mc2, kc3, ar1, ar3, ar4, ar5, ar6

Language Java / Weka

Preprocessing phase 1) Feature Selection (Gain Ratio* , chi-square, relief-F, and significance attribute evaluation)

2) Training/Testing sets’ metrics matching (Kolmogorov-Smirnov test based matching*, percentile based

matching, and Spearman’s correlation based matching)

Classifiers Simple logistic, Logistic regression*, Random Forest, Bayesian network, Support vector machine, J48 decision

tree, and Logistic model tree

Cross-Validation Method 500 times 2-fold stratified CV

Evaluation Method Area Under the Curve (AUC) of the Received Operating Characteristic (ROC)

Statistical Tests/Methods Wilcoxon signed-rank test, Cliff’s 𝛿 , and Kolmogorov-Smirnov test

Research Questions RQ1: Is Heterogeneous Defect Prediction Comparable toWPDP, Existing CPDPApproaches for Het-
erogeneous Metric Sets, and Unsupervised Defect Prediction? RQ2: What Are the Lower Bounds of
the Size of Source and Target Datasets for Effective HDP?

Items marked with an asterisk (*) are the main methods that are used in the research question. The rest are competitive approaches to check the validity of the model.

Table 2: Summary of the project data

Group Dataset Abbreviation buggy (%) # of instances buggy (#) # of metrics EPV

Eclipse

JDT [5, 6] JDT 20.7 997 206

19

10.8

Mylyn [5, 6] ML 13.2 1862 245 12.9

PDE [5, 6] PDE 14.0 1497 209 11.0

Debug 3.4 [12] DG 24.7 1065 263

17

14.6

SWT 3.4 [12] SWT 44.0 1485 653 38.4

Proprietary

Prop-1 [10] PR1 14.8 18471 2738

20

130.4

Prop-2 [10] PR2 10.6 23014 2431 115.8

Prop-3 [10] PR3 11.5 10274 1180 56.2

Prop-4 [10] PR4 9.6 8718 840 40.0

Prop-5 [10] PR5 15.3 8516 1299 61.9

Apache

Camel 1.2 [10] CML 35.5 608 216

20

10.8

Xalan 2.5 [10] XN2.5 48.2 803 387 19.4

Xalan 2.6 [10] XN2.6 46.4 885 411 20.6

Jira

Derby 10.2.1.6 [32] DY.2 33.7 1963 661

65

10.2

Derby 10.3.1.4 [32] DY.3 30.3 2206 669 10.3

NASA

JM1 [22] JM1 21.5 7782 1672 21 79.6

PC5 [22] PC5 27.5 1711 471 38 12.4

All the datasets can be downloaded via github.com/HadiJahanshahi/Replication-HDP.

PDE, JM1, and PC5, are common with the original study, and

the remaining 12 projects are new.

From the research questions of this study reported in Section 1,

RQ2 is identical to the original study, and the rest are newly defined.

4 COMPARISON OF RESULTS WITH
ORIGINAL STUDY

Our partial replication study includes one of the research questions

of the original study and three new research questions. Therefore,

we extend their work and provide a comparison for RQ2 that is

similar to the previous work.

In the first step, we experiment with all cross-project model

permutations for the 17 available datasets (2 ×
(
17

2

)
= 272 pairs).

For each pair, one project is selected to be the testing set and the

others as the training set. AUC values of the experiment have been

computed and listed in Table 3. Note thatmany of the cells are empty

in the table since we were unable to find enough common metrics

to develop the CPDP method. In most cases, sufficient common

metrics are found when we choose the training and testing set

within the same group. To measure WPDP, we applied 10-fold

cross-validation on a single dataset. The 10-fold cross-validation

divides the dataset to 10 folds, and in each step, one fold will be

used as the testing set and the remaining nine folds as the training

set. Since cross-validation is highly affected by the data which is

randomly selected in each fold [13], we repeated the process ten

times to overcome the randomness issue. Accordingly, each boldface

AUC value on the diagonal of Table 3 is the result of aggregating

(taking the average of) 10×10-fold cross-validation. Off-diagonal

values indicate CPDP’s performance using one dataset to predict

the defects of another dataset. Therefore, no CV has been done for

off-diagonal values, and they are obtained from a single experiment.

135

CASCON’20, Nov 10-13, 2020, Toronto, Canada Hadi Jahanshahi, Mucahit Cevik, and Ayşe Başar

In the HDP context, there exists a prediction potential of other

mature projects that remains intact. Any missing values in Table 3

offer an unused potential that requires exploration. In Section 4.2.2,

we aim to utilise the capability of the other projects in defect pre-

diction.

Using beanplots, Figure 1 demonstrates the cross-project per-

formance of the models scaled (normalised) by the AUC values of

the within-project model. The projects are sorted based on their

within-project AUC, starting with the SWT 3.4 project (AUC value

of 0.9) and ending to Camel 1.2 (AUC value of 0.65). Since they are

sorted in descending order based on their WPDP’s AUC values,

we expect to see a decrease in the AUC of CPDP; however, such a

pattern does not emerge. Similar to previous studies [11, 27], it can

be concluded that the remarkable performance of WPDP in models

is not a reliable indicator of that of CPDP.

Figure 1: Relation between the performance of CPDP and
WPDP. After normalising off-diagonal AUC values in Ta-
ble 3 by Diagonal of the matrix (columnwise), we sorted
projects based on their WP performance along the x-axis.

4.1 RQ1: How do models selected using
domain-agnostic similarity perform in a
cross-project context?

To address the first ResearchQuestion, we used the domain-agnostic

similarity of the projects introduced by Kamei et al. [11]. Algo-

rithm 1 lists the pseudocode to compute the domain-agnostic dis-

tance between two projects. First, the Spearman correlation of all

metrics concerning the dependant variable (buggy or not) is calcu-

lated. Then, we choose the top 3 correlated metrics from the project

and select the same ones from another project. Next, the pairwise

Spearman correlation between selected metrics for each project

is computed (

(
3

2

)
), and for each project, an array of 3 elements is

generated. The Euclidean distance between these arrays informs

us about the similarity of the projects.

Using Algorithm 1, we report the pairwise similarity of all the

projects in Table 4. We select the most similar project to the testing

project as our training set. For instance, in order to predict bugs

in JDT project, we select PDE (𝑑𝑖𝑠𝑡 = 0.11) which has the shortest

distance from the test set.

Figure 2 shows the AUC values of the models selected by the

domain-agnostic similarity. The values are normalised by WP per-

formance. We use a 𝑡-test to check the hypothesis whether the true

Algorithm 1: Domain-agnostic Dissimilarity calculation

1 for metrics ∈ Trainset do
2 compute Spearman correlation wrt a dependant variable

(label)

3 end
4 pick the top 3 metrics based on their Spearman correlation

∈ Trainset ∧ the same metrics ∈ Testset

5 for 𝑖 ∈ {1, . . . ,
(
3

2

)
} do

6 𝑄𝑖 ⇐ pairwise Spearman correlation of Trainset’s

picked metrics

7 𝑅𝑖 ⇐ pairwise Spearman correlation of Test set’s picked

metrics

8 end
9 return EuclideanDistance (𝑄, 𝑅)

mean of domain-agnostic models normalised by WPDP is equal

to 1 or not. The p-value of 0.83 indicates WPDP outperforms the

suggested defect prediction model at the significance level of 0.05

(𝛼 = 5%).

Figure 2: RQ1: the performance of the models selected by
the domain-agnostic similarity.

4.2 RQ2: How do HDP methods predict the
defect in the system compared to WPDP
methods?

One of the main issues of CPDP in traditional defect prediction

is its poor performance [27, 33]. However, some methods, such

as Peters filter and Transfer Naive Bayes, have been applied to

improve the performance of CPDP [20]. The main drawback of

cross-project defect prediction that is yet to be addressed is the

heterogeneous metrics that different projects may have. In some

cases, the overlap of the metrics between the projects is slight or

absent, making the CPDP almost infeasible. Therefore, a prediction

model cannot be built on either group to predict defects in the

other. The heterogeneous metrics in different datasets and metrics

collection tools have been reported elsewhere [16, 17, 21].

Nam et al. [17] proposed an HDP approach to address the limi-

tation of CPDP. First, they apply a feature selection technique on

the source project (i.e., training set) to remove noise or irrelevant

136

Moving from CPDP to HDP: A Partial Replication Study CASCON’20, Nov 10-13, 2020, Toronto, Canada

Table 3: Summary of AUC values forWPDP (boldface) andCPDP. Rows of the table indicate training projects, and the Columns
are testing project. Each cluster of AUC performances demonstrates a unique system. (Rows are training, and columns are test
sets.)

JDT ML PDE CML PR1 PR2 PR3 PR4 PR5 XN2.5 XN2.6 DY.2 DY.3 DG SWT JM1 PC5

JDT 0.81 0.86 0.74

ML 0.77 0.93 0.71

PDE 0.81 0.81 0.77
CML 0.65 0.55 0.58 0.59 0.51 0.59 0.62 0.66

PR1 0.54 0.75 0.65 0.64 0.71 0.65 0.50 0.54

PR2 0.56 0.71 0.72 0.69 0.70 0.69 0.58 0.69

PR3 0.58 0.67 0.69 0.72 0.65 0.71 0.58 0.66

PR4 0.54 0.70 0.62 0.62 0.76 0.62 0.61 0.68

PR5 0.59 0.68 0.69 0.70 0.65 0.71 0.61 0.69

XN2.5 0.59 0.52 0.50 0.53 0.59 0.52 0.69 0.70

XN2.6 0.60 0.58 0.63 0.63 0.60 0.64 0.64 0.82
DY.2 0.86 0.73

DY.3 0.84 0.83
DG 0.73 0.66

SWT 0.65 0.94
JM1 0.69 0.70

PC5 0.65 0.73

Table 4: Domain-agnostic Distance of the Projects. (Rows are training and columns are testing sets.)

JDT ML PDE CML PR1 PR2 PR3 PR4 PR5 XN2.5 XN2.6 DY.2 DY.3 DG SWT JM1 PC5

JDT 0.00 0.06 0.13

ML 0.49 0.00 0.54

PDE 0.11 0.04 0.00

CML 0.00 0.20 0.14 0.13 0.25 0.26 0.28 0.18

PR1 0.30 0.00 0.13 0.13 0.15 0.13 0.54 0.81

PR2 0.11 0.11 0.00 0.06 0.11 0.13 0.44 0.68

PR3 0.39 0.13 0.08 0.00 0.05 0.06 0.60 0.86

PR4 0.23 0.12 0.06 0.06 0.00 0.14 0.48 0.69

PR5 0.42 0.13 0.13 0.06 0.04 0.00 0.65 0.91

XN2.5 0.34 0.43 0.32 0.35 0.41 0.35 0.00 0.11

XN2.6 0.32 0.09 0.30 0.30 0.43 0.13 0.13 0.00

DY.2 0.00 0.04

DY.3 0.04 0.00

DG 0.00 0.40

SWT 0.57 0.00

JM1 0.00 0.05

PC5 0.02 0.00

metrics. Then, based on the similarity between the distribution of

the selected metrics and those of the target project (testing set), a

list of the most similar metrics between the two datasets is selected.

In this case, metrics’ labels may differ. Finally, a classifier is built

and trained using the set of the matched metrics and validated on

the target project. Figure 3 demonstrates the three main steps of

the HDP approach. Note that both the labels and the number of the

metrics may differ (𝑋1𝑡𝑜𝑋𝑛 compared to 𝑌1𝑡𝑜𝑌𝑚).

Although there is no best single feature selection technique for

all defect prediction models [2, 29], Nam et al. [17] reported that

the Gain-Ratio metric selection has the best performance on HDP.

In the feature selection part, the top 15% of the metrics have been

selected from the source project, as suggested by Gao et al. [7]. For

each selected metric in the source project, the HDP approach com-

putes the similarity between this metric and all metrics in the target

project. In the original paper, the KS-test based matching approach

has been implemented to find the best pair for each selected metric.

Since the KS-test is non-parametric, no presumption of the distribu-

tion, e.g., normality, is needed. Statistically, the p-value of the test
indicates whether the distribution of the two metrics is similar. The

more similar the metrics are, the closer to 1 the p-value would be.

Identical to the original experiment, we define the matching score

of metric 𝑖 of the source project with metric 𝑗 of the target project

as:

𝑀𝑖 𝑗 = p-value𝑖 𝑗 of KS-test. (1)

After finding all pairwise similarities (p-values) between the se-

lected sourcemetrics and targetmetrics, we define a cutoff threshold

to eliminate loosely correlated metrics. In Figure 4, if the cutoff

threshold is 0.4, the poorly matched metrics will be removed, and

we arrive at the top right graph. However, if our expectation of

similarity is higher, the cutoff threshold of 0.8 reaches to infeasible

HDP since the number of matched arcs (acceptable scores) is less

than the number of source nodes (source metrics). We define Target

Prediction Coverage (TPC) as the percentage of the target projects

that can be predicted by HDP. The lower TPC is, the less viable

HDP will be. In the original paper, the optimistic cutoff threshold

of 0.05 is selected, and we use the same value here. Moreover, our

HDP design is the same as that of the original study.

After applying the cutoff threshold, if HDP is feasible (i.e. cut-

off threshold of 0.4 in Figure 4), the Maximum Weighted Bipar-

tite Matching (MWBM) technique is used to decide on a group of

matched metrics whose sum of matching scores is higher. In the

top right graph of Figure 4, for metrics 𝑌𝑚 we have only one option:

𝑋𝑛′ . Hence, this pair will be assigned and the arc of 𝑋𝑛′-𝑌𝑚 will be

removed. Thus, for 𝑌1 there will be one option to be selected: 𝑋1.

137

CASCON’20, Nov 10-13, 2020, Toronto, Canada Hadi Jahanshahi, Mucahit Cevik, and Ayşe Başar

Figure 3: Heterogeneous Defect Prediction (HDP) [17]

Lastly, the pair of 𝑋2-𝑌2 will be created and the corresponding set

of matches ({𝑋1-𝑌1, 𝑋2-𝑌2, 𝑋𝑛′-𝑌𝑚}) will be obtained.
After attaining a feasible set of metrics, the prediction model

will be trained on the source project. We use both RF and the LR

classifier to predict defects in the target set. We compare the result

with WPDP as the baseline. Similar to the previous study, in WPDP,

no feature selection technique has been applied to the training set.

4.2.1 Experimental Design. FromTable 2, we use 17 eligible projects

to validate HDP. WPDP can be applied if and only if a dataset is

split into training and testing sets. For this purpose, we repeat

randomly 2-fold cross-validation (CV) 100 times. For each project,

200 testing sets are obtained. When conducting the 2-fold CV, we

used a stratified CV in which the buggy rate of both folds will be

the same as that of the original datasets. In WPDP, we use the

remaining 200 training sets to train the model; therefore, we obtain

3400 (= 17 × 200) AUC values for the within-project experiment.

On the other hand, in HDP, for each 200 test set, we train on all

other 16 projects to check the feasibility of HDP and the accuracy

of the model. Although in the optimal case, we should obtain 54400

(= 17 × 16 × 200) AUC values for HDP, we face several infeasible

cases in which, based on the cutoff threshold, no similar metric

can be selected between the source and target project. In Table 5, a

typical output of HDP is presented. In the provided result, “Project

3” is unable to have any prediction on “Project 1” since all 200

(= 2× 100) values in the subsequent columns are “NaN”. In addition

to infeasible HDP, in the first row, “Project 2” is able to achieve an

absolute prediction on “Project 1”. Nevertheless, in most pairwise

predictions, neither is the case. Out of 200 repetitions, some pro-

duce feasible HDP while others fail. Therefore, a threshold on the

acceptable number of predictions is required to claim whether HDP

between two projects is feasible.

Figure 5 shows different cutoff thresholds for the percentage

of acceptable NaNs. When we permit only 1% NaNs out of 200

replications, the feasibility of HDP reduces to 19.9% (= 54 feasi-

ble HDPs out 272). When we increase the threshold to 50%, the

power of HDP increases to 27.8% (= 75 feasible HDPs out 272), and

finally, when we accept 99% of NaNs that seems optimistic, only

114 feasible cases will be obtained (41.9%). Therefore, the KS-test

with a cutoff of 0.05 reaches a few feasible HDPs ranging between

19.9% (in the pessimistic case) to 41.9% (in the optimistic case) of

the total replications. Notwithstanding the limitation of HDP in

prediction, the original paper does not mention the cutoff threshold

for the acceptable number of NaNs. The authors of the original

study only mentioned the total number of feasible cases being 284

out of 962, which is close to the optimistic result that we reported

in our replication experiment.

4.2.2 Prediction Performance. We investigate the representative

HDP results based on Gain Ratio feature selection, K-S Test with

a cutoff threshold of 0.05, the LR classifier (in addition to RF), and

Area Under the ROC Curve (AUC). We also set the percentage of

acceptable NaNs in the prediction to 99%. Since each dataset has

a different set of metrics, the only acceptable baseline to compare

with is the WPDP.

Table 6 compares the performance of HDP (mean AUC) with the

baseline. The first column demonstrates the result of WPDP based

on the mean of AUC values for 200 replications on the target (test)

dataset. The performance of HDP on the target set using other

datasets is shown in the third column. The values are obtained

through feasible HDPs. For example, JDT project can be predicted

by other projects (from the same or different groups) in 34% of the

cases. The infeasible HDPs acquired from the remaining projects

are ignored. For the target project JDT, there exist 16 other projects

as the source project (train set). Furthermore, we split the target to

2 folds 100 times, and, in total, the potential 3200 cases of pairwise

prediction can be generated. The fourth column indicates that out

of these 3200 cases, only 1087 of them are feasible for JDT project.

Therefore, the average rate of predictability is only 28.1%. It indi-

cates that in 71.9% of the replications, no common metrics (similar

metrics based on KS-test with a cutoff of 0.05) have been found. The

second column reports the magnitude of the effect size between

WPDP and HDP in terms of Cliff’s 𝛿 [3]. Cliff’s 𝛿 ranges from +1

to -1. The more the Cliff’s 𝛿 is, the better the HDP performance

will be in comparison to WPDP. The estimate of Cliff’s 𝛿 magni-

tude (N: Negligible, S: Small, M: Medium, and L: Large) illustrates

how significant the statistics are. In all cases, we encounter signif-

icant, negative numbers, indicating the baseline outperforms the

proposed HDP.

As previously reported in Section 4.2.1, by setting the cutoff

threshold to 99% for NaNs acceptance, 114 feasible HDP models

would be achieved. To investigate further the results of the mean

and Cliff’s 𝛿 comparison, we appliedWilcoxon signed-rank test [28]

to the results. Using an alpha level of 5% (𝛼 = 0.05), we build a pair-

wise Wilcoxon test between all feasible HDPs and corresponding

WPDPs. Using LR Classifier, in all cases, WPDP outperforms while

this ratio is even higher when compared with RF. This observation

is different than the original study as we apply different filtering

138

Moving from CPDP to HDP: A Partial Replication Study CASCON’20, Nov 10-13, 2020, Toronto, Canada

Figure 4: How to match metrics of Source and Target Project. (MWBM: the MaximumWeighted Bipartite Matching)

Table 5: A sample result of the output of HDP. NaNs indicate infeasible HDP. It includes the result of 2-fold cross-validation
that is randomly repeated 100 times for each pair of projects. Therefore, the total number of columns is 202 (=2 + 100 × 2), and
the total number of rows is 272 (= 17 × 16).

Train Test CV1-1 CV1-2 CV2-1 CV2-2 · · · CV199-2 CV200-1 CV200-2
Project 2 Project 1 0.75 0.92 0.98 0.84

. . .

0.57 0.90 0.65

Project 3 Project 1 NaN NaN NaN NaN NaN NaN NaN

Project 4 Project 1 0.72 NaN 0.65 0.92 0.67 NaN 0.89

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Project 14 Project 17 0.82 0.62 NaN 0.79 . . .
0.91 NaN 1.00

Project 15 Project 17 1.00 0.71 0.32 NaN NaN 0.65 0.95

Project 16 Project 17 NaN 0.51 0.73 0.48 · · · 0.82 0.62 NaN

Figure 5: Feasibility of HDP on 17 defect prediction datasets.
The number of feasible HDP out of 272 pairwise HDPs, to-
gether with its acceptable ratio of NaNs, is reported.

mechanisms and report infeasible cases that are ignored in that

paper.

Statistically, it can be concluded that HDP is not a viable alter-

native for WPDP. For example, in Table 6, PDE was predicted in 8

prediction combinations, and WPDP outperforms in six combina-

tions, and they tie in two cases.

4.3 RQ3: How do the ensembles of models built
from several projects perform in an HDP
context?

In RQ2, we found that the performance of HDP is considerably

worse than the baseline, WPDP. Other papers reported the same

issue of poor performance in HDP due to class imbalance problem,

complex nonlinear relationship between source and target datasets,

and information loss in constructing similar distributions [14, 25].

Therefore, we propose an ensemble of learners in case of a lack of

common metrics to have a better HDP.

For this research question, we follow the same steps of HDP,

shown in Figure 3. For each project, we first choose only projects

that are considered as feasible based on the KS-test with a cutoff

threshold of 0.05. Then, we build a model on each of them and

predict the label of each instance in the target project. Afterward,

each model gives us a probability of being buggy, and we take

the average of the vote of all feasible models as the probability of

defectiveness. In this case, instead of pairwise prediction, we have

an ensemble of models voting for the correct label of the target set.

Unlike RQ2, we do not use any cross-validation on the target set;

instead, the whole target project is considered as the test set.

Table 7 shows the difference in the performance of ensemble

voting compared to normal HDP. We compare the mean of both

methods using the Wilcoxon signed-rank test with continuity cor-

rection, and the result for both classifiers, LR and RF, demonstrates

significant improvement, with p-value of 0.0058 and 0.0069 respec-

tively (𝛼 = 0.05). Hence, we recommend using the potential of all

feasible datasets instead of pairwise HDP implementation.

139

CASCON’20, Nov 10-13, 2020, Toronto, Canada Hadi Jahanshahi, Mucahit Cevik, and Ayşe Başar

Table 6: Comparing the performance of HDP and WPDP (by mean AUC of all feasible HDPs).

Logistic classifier (RWeka package in R) Random Forest

Target WPDP (mean) WPDP (Cliff’s 𝛿) HDP (mean) Predictability # Predictability % Win Tie Loss Win Tie Loss
JDT 0.821 -0.992 (L) 0.589 1087 34.0% 0 1 8 0 1 8

ML 0.920 -1.000 (L) 0.547 1245 38.9% 0 0 8 0 0 8

PDE 0.768 -0.997 (L) 0.556 1107 34.6% 0 2 6 0 2 6

DG 0.722 -0.967 (L) 0.552 1290 40.3% 0 0 7 0 0 7

SWT 0.879 -1.000 (L) 0.529 240 7.5% 0 0 3 0 0 3

PR1 0.745 -1.000 (L) 0.500 401 12.5% 0 1 2 0 1 2

PR2 0.711 -1.000 (L) 0.509 800 25% 0 0 1 0 0 4

PR3 0.692 -1.000 (L) 0.509 1167 36.5% 0 0 4 0 0 7

PR4 0.738 -1.000 (L) 0.499 587 18.3% 0 0 3 0 0 5

PR5 0.703 -1.000 (L) 0.491 939 29.3% 0 0 3 0 0 6

CML 0.629 -0.878 (L) 0.546 1382 43.2% 0 2 10 0 1 11

XN2.5 0.658 -0.969 (L) 0.560 1074 33.6% 0 2 8 0 2 8

XN2.6 0.793 -0.965 (L) 0.596 1116 34.9% 0 2 7 0 2 7

DY.2 0.841 -0.997 (L) 0.594 2246 70.2% 0 1 13 0 1 15

DY.3 0.813 -1.000 (L) 0.571 2071 64.7% 0 0 11 0 0 13

JM1 0.672 -1.000 (L) 0.566 270 8.4% 0 0 2 0 0 2

PC5 0.733 -0.999 (L) 0.495 793 24.8% 0 1 6 0 1 6

Total 0.755 - 0.541 - 32.7%

0

(0%)

12

(9.3%)

117

(90.7%)

0

(0%)

11

(8.6%)

118

(91.4%)

Table 7: Comparison of the performance of ensemble voting approach using Logistic Regression (LR) and Random Forest (RF)
in terms of the Area Under the ROC Curve (AUC).

Target Project Training Project(s)
Average AUC

using ensemble
voting (LR)

Average AUC
(LR)

Average AUC
using ensemble

voting (RF)

Average AUC
(RF)

JDT ML, PDE, PR2, PR4 60.3% 53.7% 60.3% 54.4%

ML JDT, PDE, CML, PR2, PR4 60.6% 54.0% 59.7% 53.8%

PDE JDT, ML, CML, PR2, PR4 66.1% 54.4% 65.7% 56.1%

CML XN2.5, XN2.6 59.3% 59.1% 57.6% 56.7%

PR1 ML, CML 49.9% 49.9% 49.3% 50.0%

PR2 JDT, ML, PDE, PR4 51.4% 50.9% 51.5% 51.1%

PR3 JDT, ML, PDE, PR2, PR4, DY.3 51.4% 50.8% 51.0% 50.8%

PR4 CML, PR2 49.4% 49.7% 50.1% 50.0%

PR5 JDT, ML, PR2, PR4 48.9% 49.5% 48.9% 49.4%

XN2.5 CML, XN2.6, DY.3 61.4% 57.8% 64.9% 58.9%

XN2.6 CML, XN2.5 75.1% 64.8% 73.2% 63.2%

DY.2 JDT, ML, PDE, PR2,

PR3, PR4, DY.3, JM1, PC5

73.3% 59.0% 77.8% 56.6%

DY.3 JDT, ML, PDE, PR2,

PR3, PR4, DY.2, JM1, PC5

71.0% 58.0% 71.2% 55.0%

DG CML, PR2, PR4, XN2.6, DY.3 68.6% 54.2% 56.5% 51.9%

SWT CML 54.0% 54.0% 53.9% 53.9%

JM1 CML 56.6% 56.6% 55.0% 55.0%

PC5 ML, CML 47.1% 47.1% 47.0% 47.0%

Mean peformance 59.1% 54.3% 58.4% 53.8%

4.4 RQ4: How Feasible is HDP in terms of
target prediction coverage?

HDP applicability is conditional on target prediction coverage —

the percentage of target projects that can be predicted by HDP

models. If no feasible HDP exists, due to missing matched metrics,

it might be impossible to utilise heterogeneous predictors.

Table 8 shows how frequently a source dataset (rows of the

table) can predict a target dataset (columns of the table) using the

HDP algorithm. For example, Eclipse dataset can predict Apache

dataset in 9 combinations, which is equal to 60% of all available

combinations between these two sets (= 𝑁
Eclipse

×𝑁
Apache

= 5× 3).

This pairwise prediction coverage reports many infeasible cases in

our experiment.

Another important implication is the bold-faced values on the

main diagonal of Table 8. Those values refer to the intragroup

prediction feasibility of HDP. Since within each group of projects

(e.g., Eclipse, Jira, etc.), almost all the metrics are the same, CPDP

on the main diagonal of Table 8 is also feasible. However, HDP

is unable to find similar metrics in some projects after applying

140

Moving from CPDP to HDP: A Partial Replication Study CASCON’20, Nov 10-13, 2020, Toronto, Canada

Table 8: Target Prediction Coverage of HDP.

Source Eclipse Proprietary Apache Jira NASA WPDP
AUC

HDP
AUC

HDP
Target

Coverage
Eclipse 8 (40%) 13 (52%) 9 (60%) 5 (50%) 0 (0%) 0.82 0.56 62.5%

Proprietary 1 (4%) 7 (35%) 4 (26.7%) 2 (20%) 0 (0%) 0.71 0.50 93.8%

Apache 10 (67%) 9 (60%) 6 (100%) 3 (50%) 3 (50%) 0.66 0.56 93.8%

Jira 4 (40%) 9 (90%) 6 (100%) 2 (100%) 4 (100%) 0.83 0.63 75.0%

NASA 4 (40%) 1 (10%) 2 (33%) 0 (0%) 2 (100%) 0.70 0.48 52.9%

feature selection. For example, Eclipse can predict itself in 8 out

of 20 possible combinations (= 𝑁
Eclipse

× (𝑁
Eclipse

− 1) = 5 × 4).

The poor performance of metric selection/matching might lead to a

lower self-coverage. We use the diagonal value and their available

WPDP to validate the feasibility of HDP.

In Table 8, also, the median of AUC values (using eitherWPDP or

HDP) for each group has beenmentioned.WPDP statically performs

better than HDP. The last column of Table 8 shows HDP target

coverage of each source group. As the definition offers, a source

group can cover a dataset of a different group if and only if at least a

dataset in the source group can be used to build an HDP model and

be tested on the target dataset. For example, NASA has coverage of

52.9% indicating that as the source group, its datasets (JM1 and PC5)

can predict 9 out of 17 datasets, namely four projects in Eclipse

group, one project in Proprietary, two projects in the Apache group,

and two projects from NASA group. Proprietary and Apache by

93.8% coverage are the most reliable dataset groups on which we

can build an HDP.

Figure 6: Pairwise target prediction coverage of HDP

Figure 6 illustrates the pairwise target prediction of group datasets.

The thicker the arc is, the better the coverage will be. The outgoing

arcs indicate the strength of target coverage, whereas the incoming

arcs show how coverable a group is. For example, even though Jira

can cover most of the datasets inside of the NASA group, NASA

does not have such a mutual success rate. Accordingly, the upshot

of the experiment indicates that there is a long path to build a real

successful HDP.

5 THREATS TO VALIDITY
Both stratified cross-validation and normal cross-validation are not

good representatives of the chronology of a dataset. In practice, the

training set is always older than the testing set, whereas when we

shuffle the dataset to implement CV, this order will be discarded.

Therefore, other validation techniques that capture the time order in

the dataset may yield different outcomes. Furthermore, we filter out

irrelevant and unreliable projects based on predefined assumptions;

however, there might exist some different criteria that influence

the quality of the defect datasets. Thus, the more comprehensive

project selection techniques may lead to better performance of the

methods.

Here, we only use publicly available datasets while industry-

related datasets may yield to a different conclusion; therefore, our

partial replication study can reflect the result of the experiments

where there is an overlap in our datasets. Such a difference does

not affect the validity of the study, while it may overlook some

conclusions in other types of projects.

The original work is implemented in Weka and Java, whereas

we applied HDP using R (RWeka). The difference in the results may

arise from the difference in their default variable options. Moreover,

the correct threshold setting for HDP is a challenging issue that re-

mains as future work. Finally, the granularity of the datasets differs.

Considering this phenomenon might result in different outcomes.

In future works, the datasets can be clustered based on their granu-

larity, and we need to check whether HDP is sensitive to similarity

in/difference between granularity of the source and target projects.

6 CONCLUSIONS ACROSS STUDIES
In this paper, we explored different approaches to build and vali-

date HDP models. Defect prediction plays a crucial role in terms

of efficiently allocating limited test resources. Traditional defect

models use code metrics (e.g., Halstead and McCabe Metrics[4]) to

classify a module as buggy or clean. Since there exist many poten-

tial defect datasets with heterogeneous metrics, we applied HDP

on publicly available traditional defect datasets to learn whether

transfer learning within traditional models is feasible.

We have conducted an empirical validation on HDP application

and applied guidelines for reporting an experimental replication [1]

to draw a cross-study conclusion between the original study and

our replication. The findings of this partial, empirical replication

study are as follows.

• The Within-Project performance of models is not a signifi-

cant factor while applying Cross-Project Models.

141

CASCON’20, Nov 10-13, 2020, Toronto, Canada Hadi Jahanshahi, Mucahit Cevik, and Ayşe Başar

• Even though applying a domain-agnostic similarity to pre-

define the best-performing model brings better performance

than the median AUC of CPDP, WPDP still outperforms the

models selected by domain-agnostic similarity (RQ1).

• Before usingHDP,we need to adjust several hyper-parameters.

The feature selection threshold (15%), cutoff threshold of KS-

test p-value (𝑝 = 0.05), and the maximum percentage of

acceptable infeasible cases (NaNs) (99%) raise the likelihood

of unsuccessful HDP (RQ2). Hence, there is a need to opti-

mise these techniques and balance the trade-off between the

sensitivity of the algorithm and the selection of the parame-

ters. The original study had not reported this issue.

• We proposed an ensemble voting approach in the HDP con-

text using multiple source projects where there is a lack of

common metrics. In terms of AUC, the performance of the

revised HDP has increased by 4.8 percent (RQ3) compared

to the original study.

• HDP Target Coverage was not promising. Besides, the per-

formance of WPDP is statistically more significant than that

of HDP (RQ2 and RQ4). These two issues indicate the need

for further analyses to improve and generalise the hetero-

geneous prediction model. This comparison had not been

performed in the original work.

• HDP cannot transfer the knowledge learned from a source

dataset due to the substantial difference between the distri-

bution of the metrics in a target and source project. In future

research, employing exploratory analyses and conducting

preprocessing techniques are highly recommended before

applying HDP approaches.

SUPPORTING INFORMATION
To make the study reproducible, the datasets, codes, and outputs are

publicly available at github.com/HadiJahanshahi/Replication-HDP.

REFERENCES
[1] J. Carver. 2010. Towards reporting guidelines for experimental replications:

A proposal. In 1st international workshop on replication in empirical software
engineering. Citeseer, 2–5.

[2] G. Chandrashekar and F. Sahin. 2014. A survey on feature selection methods.

Computers & Electrical Engineering 40, 1 (2014), 16 – 28. 40th-year commemora-

tive issue.

[3] N. Cliff. 1993. Dominance statistics: Ordinal analyses to answer ordinal questions.

Psychological bulletin 114, 3 (1993), 494.

[4] B. Curtis, S. B. Sheppard, P. Milliman, M. A. Borst, and T. Love. 1979. Measuring

the Psychological Complexity of Software Maintenance Tasks with the Halstead

and McCabe Metrics. IEEE Transactions on Software Engineering SE-5, 2 (Mar

1979), 96–104.

[5] M. D’Ambros, M. Lanza, and R. Robbes. 2010. An extensive comparison of bug

prediction approaches. In 2010 7th IEEE Working Conference on Mining Software
Repositories (MSR 2010). 31–41.

[6] M. D’Ambros, M. Lanza, and R. Robbes. 2012. Evaluating defect prediction

approaches: a benchmark and an extensive comparison. Empirical Software
Engineering 17, 4 (01 Aug 2012), 531–577.

[7] K. Gao, T. Khoshgoftaar, H. Wang, and N. Seliya. 2011. Choosing software metrics

for defect prediction: an investigation on feature selection techniques. Software:
Practice and Experience 41, 5 (2011), 579–606.

[8] L. Gong, S. Jiang, Q. Yu, and L. Jiang. 2019. Unsupervised deep domain adaptation

for heterogeneous defect prediction. IEICE TRANSACTIONS on Information and
Systems 102, 3 (2019), 537–549.

[9] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson. 2011. The misuse of the

NASA metrics data program data sets for automated software defect prediction.

In 15th Annual Conference on Evaluation Assessment in Software Engineering
(EASE 2011). 96–103.

[10] M. Jureczko and L. Madeyski. 2010. Towards Identifying Software Project Clusters

with Regard to Defect Prediction. In Proceedings of the 6th International Conference
on Predictive Models in Software Engineering (PROMISE ’10). ACM, New York, NY,

USA, Article 9, 10 pages.

[11] Y. Kamei, T. Fukushima, S. McIntosh, K. Yamashita, N. Ubayashi, and A. E. Has-

san. 2016. Studying just-in-time defect prediction using cross-project models.

Empirical Software Engineering 21, 5 (01 Oct 2016), 2072–2106.

[12] S. Kim, H. Zhang, R. Wu, and L. Gong. 2011. Dealing with noise in defect

prediction. In 2011 33rd International Conference on Software Engineering (ICSE).
481–490.

[13] D. Krstajic, L. J. Buturovic, D. E. Leahy, and S. Thomas. 2014. Cross-validation

pitfalls when selecting and assessing regression and classification models. Journal
of Cheminformatics 6, 1 (29 Mar 2014), 10.

[14] Z. Li, X.-Y. Jing, F. Wu, X. Zhu, B. Xu, and S. Ying. 2018. Cost-sensitive trans-

fer kernel canonical correlation analysis for heterogeneous defect prediction.

Automated Software Engineering 25, 2 (01 Jun 2018), 201–245.

[15] Z. Li, X.-Y. Jing, X. Zhu, H. Zhang, B. Xu, and S. Ying. 2019. Heterogeneous defect

prediction with two-stage ensemble learning. Automated Software Engineering
26, 3 (2019), 599–651.

[16] R. Lincke, J. Lundberg, and W. Löwe. 2008. Comparing Software Metrics Tools. In

Proceedings of the 2008 International Symposium on Software Testing and Analysis
(ISSTA ’08). ACM, New York, NY, USA, 131–142.

[17] J. Nam, W. Fu, S. Kim, T. Menzies, and L. Tan. 2018. Heterogeneous Defect

Prediction. IEEE Transactions on Software Engineering 44, 9 (Sep 2018), 874–896.

[18] S. J. Pan and Q. Yang. 2010. A Survey on Transfer Learning. IEEE Transactions on
Knowledge and Data Engineering 22, 10 (Oct 2010), 1345–1359.

[19] F. Peters and T. Menzies. 2012. Privacy and utility for defect prediction: Experi-

ments withMORPH. In 2012 34th International Conference on Software Engineering
(ICSE). 189–199.

[20] F. Peters, T. Menzies, and A. Marcus. 2013. Better Cross Company Defect Predic-

tion. In Proceedings of the 10thWorking Conference on Mining Software Repositories
(MSR ’13). IEEE Press, Piscataway, NJ, USA, 409–418.

[21] D. Rodriguez, I. Herraiz, and R. Harrison. 2012. On software engineering reposi-

tories and their open problems. In 2012 First International Workshop on Realizing
AI Synergies in Software Engineering (RAISE). 52–56.

[22] M. Shepperd, Q. Song, Z. Sun, and C. Mair. 2013. Data Quality: Some Comments

on the NASA Software Defect Datasets. IEEE Transactions on Software Engineering
39, 9 (Sep 2013), 1208–1215.

[23] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto. 2017. An

Empirical Comparison of Model Validation Techniques for Defect Prediction

Models. IEEE Transactions on Software Engineering 43, 1 (Jan 2017), 1–18.

[24] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto. 2018. The

Impact of Automated Parameter Optimization on Defect Prediction Models. IEEE
Transactions on Software Engineering (2018), 1–1.

[25] H. Tong, B. Liu, and S.Wang. 2019. Kernel Spectral Embedding Transfer Ensemble

for Heterogeneous Defect Prediction. IEEE Transactions on Software Engineering
(2019), 1–1.

[26] A. Tosun and A. Bener. 2009. Reducing False Alarms in Software Defect Prediction

by Decision Threshold Optimization. In Proceedings of the 2009 3rd International
Symposium on Empirical Software Engineering and Measurement (ESEM ’09). IEEE
Computer Society, Washington, DC, USA, 477–480.

[27] Burak Turhan, Tim Menzies, Ayşe B. Bener, and Justin Di Stefano. 2009. On the

relative value of cross-company and within-company data for defect prediction.

Empirical Software Engineering 14, 5 (01 Oct 2009), 540–578.

[28] Frank W. 1945. Individual Comparisons by Ranking Methods. Biometrics Bulletin
1, 6 (1945), 80–83.

[29] H. Wang, T. M. Khoshgoftaar, and A. Napolitano. 2010. A Comparative Study of

Ensemble Feature Selection Techniques for Software Defect Prediction. In 2010
Ninth International Conference on Machine Learning and Applications. 135–140.

[30] K. Weiss, T. M. Khoshgoftaar, and D. Wang. 2016. A survey of transfer learning.

Journal of Big Data 3, 1 (28 May 2016), 9.

[31] R. Wu, H. Zhang, S. Kim, and S. Cheung. 2011. ReLink: Recovering Links Between

Bugs and Changes. In Proceedings of the 19th ACM SIGSOFT Symposium and the
13th European Conference on Foundations of Software Engineering (ESEC/FSE ’11).
ACM, New York, NY, USA, 15–25.

[32] S. Yatish, J. Jiarpakdee, P. Thongtanunam, and C. Tantithamthavorn. 2019. Mining

Software Defects: Should We Consider Affected Releases?. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). 654–665.

[33] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy. 2009. Cross-

project Defect Prediction: A Large Scale Experiment on Data vs. Domain vs.

Process. In Proceedings of the the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering (ESEC/FSE ’09). ACM, New York, NY, USA, 91–100.

142

Identifying External Cross-References Using

Natural Language Processing

Elham Rahmani
 Dept. of Computer Science

 University of Western Ontario
 London, Ontario, Canada

 erahman3@uwo.ca

Nazim H. Madhavji
 Dept. of Computer Science

 University of Western Ontario
 London, Ontario, Canada

madhavji@gmail.com

Ibtehal Noorwali
 Dept. of Computer Science

 University of Western Ontario
 London, Ontario, Canada

 inoorwal@uwo.ca

ABSTRACT

Software engineers build systems that need to be compliant with

relevant regulatory requirements. Project contract contains cross-

references to these regulatory requirements that usually exist in

numerous and voluminous external documents. Identifying cross-

references in such documents is enormously time consuming,

costly, and error-prone in software projects. We use Natural

Language Processing, Pattern Recognition and Web Scraping

techniques to automatically extract external cross-references from

a contract and web resources, and summarize them for the

stakeholders. The novelty in this work is an algorithm based on:

(i) semantic cues for identifying cross-references, (ii) grammatical

structures for supporting various combinations of word roles in a

sentence, (iii) APA standards for validating cross-references, and

(iv) access to web resources. To operationalize this approach, we

have created a tool that parses the given project contract and

creates a summary of cross-references (currently limited to two

levels of indirection) for use by stakeholders for project

management, requirements elicitation, and testing. From a case

study using an industrial-scale project contract, the performance

of the tool suggests a precision of 99%, recall of 87%, and F-

measure of 0.92.

CCS CONCEPTS

•Computing methodologies •Artificial intelligence •Natural
language processing •Information extraction

KEYWORDS

Regulatory compliance, Regulatory requirements, Cross-

references, Natural Language Processing, Pattern Recognition,

Web Scraping

ACM Reference format:

1 Introduction

Software systems are required to comply with applicable

regulations and standards [1] such as HIPPA (USA) [7] (health)

and Sarbanes-Oxley Act [6] (financial). The applicable

regulations and standards permeate the functional and

nonfunctional (i.e., quality) requirements of both legacy and new

systems.

In order to ensure that a system’s requirements are compliant with

relevant regulations and standards, analysts often need to identify

and follow cross-references in project documents (e.g., a project

contract). Such a cross-reference can be from one part of a

document to another part of the same document (e.g., Division 4,

paragraph 35) or to another part of a third-party document (e.g.,

IXXX Std 1016 paragraph 3)[3].

To our knowledge, previous work has focused on extracting cross-

references internal to the same document and not on cross-

references external to the primary document. These two situations

are quite different.

For dealing with internal cross-references, all the elements of the

document (e.g., headers, footers, titles, chapters, sections, sub-

sections, and paragraphs) may refer to one another as necessary

[4]. In contrast, for dealing with cross-references to external

documents, one needs to, first, access the target document, which

can be one of many according to the complexity of the primary

document or project. Once the relevant external document is

accessed, finding the target text or relevant information can be

quite time consuming given that the structure of all relevant

documents is not uniform. Moreover, once the target piece of

information is identified, it may contain yet more external cross-

references. The bigger picture is thus that of external documents

forming a network through cross-references. Identifying cross-

references in this context is thus arduous, time consuming, and

error-prone [3].

For automating the extraction of cross-references internal to a

document, researchers have used different techniques such as Part

Of Speech Tagging (POST) techniques [19], MaxEnt statistical

classification model [2], Support Vector Machine techniques [5],

designing UML class diagram, transforming non-markup text to

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this

work must be honored. For all other uses, contact the owner/author(s).

CASCON’20, Nov 10-13, 2020, Toronto, Canada

© 2020 Copyright held by the owner/author(s).

143

CASCON'20, November 10 – 13, 2020, Toronto, Canada E. Rahmani, N. Madhavji, I. Noorwali

XML markup text, etc. The type of documents processed are legal

texts [4, 8, 9]. Some have classified cross-references based on

semantic intent [9]. Section 2 gives more details about such

related work.

The key elements of our approach are:

1. Analyzing the format of external cross-references in the
primary document.

2. Analyzing phrases (called reporting phrases) that surround
cross-references.

3. Creating a list of grammatical structures for supporting word-
ambiguities that exist in different sentences.

4. Implementing a tool for identifying internal and external
cross-references including from the world wide web.

5. Summarizing the identified cross-references for use by
stakeholders.

The novelty of this work lies not only in the collective set of steps
described above but also in the use of specific techniques used in
individual steps. Section 3.2 describes the foundations for the
proposed solution described in Section 4 which also describes a
new algorithm at the core of the proposed solution. Using a large
sized industry project contract document, the accuracy and
precision of the algorithm are 99%, recall is 86%, and the F-
measure is 92.

The summary output produced by the solution can save a

significant amount of time and effort while avoiding or

minimizing errors and frustration in ploughing through regulatory

and standards documents during system development

(specifically, eliciting regulatory requirements, ensuring design

and code compliance, creating test cases, and resource

estimation).

We conducted an empirical study on a "contract" for a systems

engineering project. Typically, in-house software projects in

industry do not have a formal contract as the developing teams are

all internal to the same company. However, many projects are

outsourced where a formal contract is signed by both the parties.

Such projects are called "contractual projects". Our study is in this

context.

The rest of the paper is organized as follows: Section 2 describes

related work. Section 3 gives analyses of problem and solution-

approach. Section 4 describes the proposed solution. Section 5

depicts the underlying algorithm. Section 6 compares our results

with related work. Section 7 discusses limitations of the

algorithm. Section 8 concludes the paper and describes future

work.

2 Related Work

As mentioned earlier for dealing with the internal cross-references
all the document’s elements, including headers, footers, titles,
chapters, sections, sub-sections, and paragraphs, may refer to each
other. Therefore, any automated solution approach for detecting

internal references needs to determine the essence of such entities.
For example, the automated approach should identify the position
of the referred “paragraph” or the referred “section” in the current

document. In contrast, since external references refer to the
documents existing out of the current document, they do not
consist of static and certain terms including “paragraph”,
“section”, “subsection”, etc. Therefore, for identifying external
references we are facing various unpredicted combinations of
alphabets, numbers, special characters and words (see Section
3.2.1), which current solutions do not address. In this section, we
describe three kinds of related works that focus on internal cross-
references: (i) Automated reference resolution in legal texts [8],

(ii) An Automated Framework for Detection and Resolution of
Cross-References in Legal Texts [4] , and (iii) Automated
Classification of Legal Cross-References Based on Semantic
Intent [9].

Tran et al. [8] identify internal references in the law corpus. They

split references by sequence labelling and Part Of Speech Tagging

(POST) techniques [19] in order to determine where each word is

located in a given string. Also, they define specific notations for

tagging: the beginning of a reference, the inner part of a reference,

the end of a reference, and all the elements outside the reference.

Further, they define two classes of references, where Class 1 are

those references that refer to an entire document; Class 2 for a

fragment of a document. They also used two robust classifiers

which have demonstrated strong performance in many

classification tasks especially in statistical NLP. In the first

classifier, the classification is performed with a statistical

approach, built around the maximum entropy principle. In the

second classifier, they used support vector machines (SVMs); a

statistical machine learning technique to determine the class of

each reference. Then they attempt to identify the positions of

articles, paragraphs and items that are referred to by cross-

references.

Adedjouma, et al. [4] implemented an automated approach for

identifying internal references in legal documents. They manually

built a UML class diagram, where classes represent the structural

elements (e.g., articles, clauses, and paragraphs, etc.) of a legal

text. These classes are linked via aggregation associations

representing the hierarchical containment relationships between

the elements. They further include in the schema the multiplicity

constraints that need to be satisfied for the legal text to be

structurally sound. Algorithmically, they generate markup scripts

and execute regular expressions for marking the heads of sections.

As for dealing with the internal cross-references all the

document’s elements, including headers, footers, titles, chapters,

sections, sub-sections, and paragraphs, may refer to each other,

thus, it is important to determine the essence of such entities and

specify where an entity begins and ends. The annotations

produced over a non-markup legal text by the regular expressions

can be easily turned into a markup format, (e.g., XML). They then

attempt to automatically detect explicit and implicit Cross

Reference Expressions (CREs) in a given legal text. Based on the

CRE categorization they define specific terms and patterns and

then interpret the detected CREs into a set of individual cross-

144

 CASCON'20, November 10 – 13, 2020, Toronto, Canada

references. For example, “article, articles, art, paragraph” are the

predefined patterns used for explicit CREs and “above, below,

preceding, following” are the predefined patterns used for implicit

CREs.

Some of the phrases have similar meanings and intention but are

semantically different than other types of phrases. Based on the

semantic intention of phrases, Sannier, et al. [9] categorized

phrases into eleven semantic intent types which were originally

proposed by J. C. Maxwell in [1]. They described an automated

approach for classifying cross-references by using a taxonomy of

eleven semantic intent types including: Compliance, Constraint,

Definition, Delegation, Exception, Refinement, General

Amendment, Amendment by Addition, Amendment by Deletion,

Amendment by Resignation, and Amendment by Replacement.

Their main idea for such classification is identifying cross-

references based on the appearance of phrases before or after

cross-references.

The described related works [8, 4, 9] exemplify the type of

research conducted on cross-references. Their primary focus is

identifying cross-references internal to a given document (i.e.,

legal text). In contrast, in the world of contractual projects, the

cross-references from a contract references third party documents

(such as regulatory code and standards), which add another level

of complexity to the document. Moreover, such third-party

documents are structured in undefined or non-uniform ways,

making the structure of these “external” cross-references

complicated as is their automated identification. To our

knowledge, there is no solution that deals with external cross-

references, which is the focus of our work, described hereon.

3 Problem and Solution-approach Analysis

To better understand the problem, we provide an overview of a

contractual document and its cross-references contained therein

from a case study. This is followed by a description of our

solution-approach.

3.1 Problem Analysis

Traditionally, the method used in industry for identifying cross-

references is to manually identify regulatory requirements

scattered in undefined ways in the contract [3]. In turn, a

regulatory requirement may refer to an external document such as

regulatory code or a standard. An externally referenced document

may refer to yet other documents which, in turn, may repeatedly

do so [3]. Thus, without automated support, identifying cross-

references is arduous and error-prone and can easily result in

systems that are non-compliant.

In this paper, we describe an investigation involving an industrial-

scale project-contract of the size of approximately 700 pages

containing approximately 10,300 paragraphs of text that have

large number of external cross-references. Such contracts are

quite typical in large systems engineering projects where system

compliance to regulatory requirements is critical. Failing to satisfy

compliance can lead to penalties or other forms of punishment to

supplier organizations. The proposed approach (Section 4) should

be generalizable to similar projects in industry.

3.2 Foundational Concepts

In this section, we describe the foundational concepts used in the

design of the solution. In particular, we discuss four key concepts:

Cross-References, Reporting Phrases, Cross-Reference Validation

Conditions, and a high-level analysis of the NLP techniques

applicable for phrase processing.

3.2.1 Cross-References

A Cross Reference Expression (CRE) (e.g.,”Submit shop

drawings, diagrams, plans and details associated with demolition

and removals work in accordance with Section 01340 SHOP

DRAWINGS, and IXXX Std 1016 - Software Quality Assurance

Plan”) is a natural language phrase [4] which embodies one

internal cross-reference: “Section 01340 SHOP DRAWINGS” by

virtue of the fact that a document section number is cited and no

external document is cited. The cross-reference “IXXX Std 1016 -

Software Quality Assurance Plan” is an external reference.

An external cross-reference is a combination of letters (e.g.,

IXXX Std 1016 - Software Quality Assurance Plan) containing

one or more sequence of words, acronyms, alphanumeric and

characters such as: “/, -, _, ., (,)”. In order to algorithmically

recognize such cross-references, we decomposed its structure into

meta-categories: “proper singular noun” (e.g., IXXX or Std) and

number (e.g., 1016). Our algorithm uses such meta-categories

(when parsing the contract document) since we are facing a

problem that cross-references can be composed of recognizable

(e.g., “Software”) or unmeaningful (e.g., “IXXX”) tokens. Also,

each reference component (e.g., “Software”, “Quality”,

“Assurance”, “Plan”) has a unique identity in the structure of an

English sentence (e.g., the role of “Software” is a noun in the

CRE). Thus, it is important to identify each component of a CRE

in the identification process.

3.2.2 Reporting Phrases

Upon analysis of the case study contractual document, we noted

that cross-references are predominantly associated with specific

kinds of key-phrases in the contract (e.g., in accordance with,

indicated in, specified in). We observed from published English

literature [11, 13, 14, 15, 16] that the majority of such key-phrases

used in our case study lies in the group of “Reporting Phrases”. A

Reporting Phrase is a phrase that is used for referring to the key

details that uniquely identify a source of information [10]. Table 1

shows some of the reporting phrases from diverse literature (and

their frequency count) prior to an external cross-reference in our

case study contract. We, thus, use reporting phrases to identify

cross-references in the contract. A key advantage of using

Reporting Phrases from the established literature, as opposed to of

creating our own scheme, is the generalizability of this idea across

other contractual documents.

145

CASCON'20, November 10 – 13, 2020, Toronto, Canada E. Rahmani, N. Madhavji, I. Noorwali

Table 1: Example reporting phrases identified from

established sources [11, 13, 14, 15, 16]

Based on the position/status of reporting phrases in a CRE we

categorized CREs into three groups for ease of processing: (i)

Direct Cue (DC) – the reporting phrase appears prior to the

reference (83%) (e.g., “Designed and certified for 85 dBA

maximum noise level when measured in accordance with IXXX

No.85”); (ii) In-Direct Cue (IDC) – a part of the reference appears

before the reporting phrase and the rest of the reference appears

after the reference (1.8%) (e.g., “Cooper E90 loading in

accordance with AREAA”); and (iii) No Cue (NC) – there is no

key-phrase associated with the reference (13.96%) (e.g., “DSPO

2110.050”). In this paper, we focus on DCs due to their high

frequency in documents.

3.2.3 Cross-Reference Validation Conditions

Our cross-reference detection algorithm consists of conditions that

validate the components of a cross-reference in the contract

document. We defined validating conditions based on the

American Psychological Association (APA) properties of in-text

citations. APA in-text citations standards [12] are used for

referring to, summarizing, paraphrasing or quoting from another

source [18]. Thus, in our solution strategy, once a reference is

identified, its components should be presented in one or more of

the following APA in-text citation formats to be accepted as valid

components of a cross-reference:

1. Acronym with all capital letters (e.g., In accordance with
IXXX No. 85)

2. Sequence of words where each word starts with a capital

letter (e.g., in accordance with National Building Code)
3. Digits (e.g., in accordance with IXXX Std No. 85)
4. Characters such as “/, -, _, ., (,)” (e.g., given in NAC/ASC

A23.1/A23.2-M)
5. A CRE may contain more than one reference separated by:

i. And (e.g., in accordance with the Manufacturer's
Instructions and NAC/ASC A23.1/A23.2-M)

ii. Or (e.g., shown in the Contract Documents or as
determined by the GO Wheel)

iii. And Or (e.g., in accordance with the NAC / ASC S16.1-
M and or National Building Code)

iv. Comma (e.g., in accordance with IXXX Std 1058,
Software Project Management Plans)

We observed that 8 out of a total number of 802 external

references (i.e., 1%) in our case study contract do not meet APA

properties. An example of this is:

Prior to placing fresh concrete apply epoxy bonding agent in

accordance with manufacturer’s instructions or a neat cement

wash consisting of one (1) part latex bonding agent mixed with

two (2) parts cement and in accordance with manufacturer’s

instructions.

In this example, “manufacturer’s instructions” is an external

reference that does not start in capital letters and, hence, fail to

meet APA properties #1 or #2. Currently, such cases are not in the

scope of our design solution.

3.2.4 Analysis of NLP techniques applicable for phrase
processing

We observe from the analyses provided in the previous

subsections that in order to identify cross-references, we need to

deal with various types of phrases, words, alphabets, numbers and

special characters see Section 3.2.1). Part of Speech Tagging

(POST) [19] and Named Entity Recognition (NER) [19] are two

different types of sequence labeling Techniques in NLP that can

be applied on different components of a sentence. Part of speech

tagging aims to identify which grammatical group a word belongs

to, e.g., whether it is a noun, adjective, verb, or adverb and so

forth, based on its context. The technique identifies relationships

within the sentence and gives a corresponding tag to each word in

the sentence.

Furthermore, regular expressions provide the possibility to

process symbols and characters in a string or pattern to be

searched for within a longer piece of text. Thus, they can be used

for identifying sequence of grammar roles in a string.

On the other hand, Named Entity Recognition attempts to

discover whether or not a word is a named entity (e.g., persons,

locations, organizations, and time expressions etc.). This problem

can be broken down into detection of names followed by

classification of name into the corresponding categories. Most

often once a word is recognized by NER, it may be recognized as

a noun by POST. So, POST is more global, since it can determine

the relationships between the first and the last word of a sentence.

For dealing with words and phrases in natural language, Word

Lexical Disambiguation (Semantic or Syntactic) [19] is a

commonly used approach. Semantic ambiguity occurs when a

word, phrase or sentence of a context, has more than one

interpretation. Word Sense Disambiguation (WSD) is defined as

the ability to determine which meaning of word is activated by the

use of word in a particular context. On the other hand, syntactic

ambiguity is a situation where a sentence may be interpreted in

more than one way due to ambiguous sentence structure.

Therefore, considering the above, in our problem, POST can be

the choice NLP technique for figuring out the essence of each

Reporting

phrases

Frequency Reporting

phrases

Frequency

in accordance

with

241 based

on

 12

conforms to 65 proposed by 16

specified in 32 determined by 10

approved by 16 suggested by 14

indicated in 26 required by 12

recommended by 13 according to 10

146

https://en.wikipedia.org/wiki/Semantic_ambiguity
https://en.wikipedia.org/wiki/Sentence_(linguistics)
https://en.wikipedia.org/wiki/Syntax

 CASCON'20, November 10 – 13, 2020, Toronto, Canada

token in a CRE in our specific context. This is because, as

discussed in the problem analysis, we are not only faced with

recognizing the names in a sentence; we are also facing various

formats and identities of words. For dealing with these

complexities, NER cannot provide us sufficient power to identify

the identity of all the tokens. On the other hand, individual words

that may be interpreted differently and causes ambiguity do not

constitute a problem in our case. Thus, the techniques for word

lexical disambiguation are not deemed an appropriate solution for

our problem.

4 Proposed Solution

In this section, we describe the elements of the proposed cross-

reference detection method (including an algorithm) consisting of

the following key steps: (i) Create a whitelist and a pattern list; (ii)

Check for reference patterns; (iii) Identify References, (iv) Find

External Resources, and (v) Visualize References.

4.1 Create a Whitelist and Patterns List

4.1.1 Creating a whitelist of Reporting Phrases

With reference to Table 1, the purpose of “Reporting Phrases” is

to help identify references [11, 13, 14, 15, 16]. Thus, we created a

“whitelist” of these terms. Our aim is to recognize that a cross-

reference (e.g., CAN/CSA A23.1/A23.2-M) exists in a given

regulatory requirement (e.g., “Treat and finish exposed formed

surfaces in accordance with CAN/CSA A23.1/A23.2-M”).

4.1.2 Creating HasLeaf_Pattern list

From the analysis of numerous cross-reference expressions (CRE)

in the contract document, we noted the existence of specific

patterns in stating the references such as “in accordance with

CAN/CSA A23.1/A23.2-M.” We, thus, identified these patterns to

create a list of patterns. By using a pattern recognition technique

(RegExp Parser), it would then be possible to identify the

matching patterns in the contract document.

To define patterns, we needed to understand the linguistic

structure in the English grammar and specify the role of each

word of a sentence. By using Part of Speech Tagging (POST)

[19], we can tag the word types (e.g., VB for verbs, NN for nouns,

etc.). With this, we created a list of grammatical patterns that we

called “HasLeaf_Pattern”. For example, the pattern

“{<VB><IN><DT><NNP>+}” created by parsing some text

denotes a sequence of words that are: verb, proposition,

determiner and pronoun noun. Such patterns are also helpful in

specifying the start and end points of a cross-reference pattern.

For example: “in accordance with CAN/CSA A23.1/A23.2-M” is

the start and end point of a cross-refence pattern which should be

automatically specify from “Treat and finish exposed formed

surfaces in accordance with CAN/CSA A23.1/A23.2-M.” The

main features of the “HasLeaf_Pattern” list consist of the

following items:

i. One pattern can be matched with numerous references

ii. Different tenses/forms of reporting phrases are
considered

iii. Supporting different propositions for different key-
phrases

iv. Supporting key-phrases that do not have propositions
v. Supporting different propositions for one reporting

phrase
vi. Supporting different determiners which might/might not

be present after the reporting phrases and before the
reference part

4.2 Check for Reference Pattern

The contract document is decomposed into individual paragraphs

so that each paragraph is checked against the whitelist items (see

Section 3.2.2 and 4.1.1 for the creation of the whitelist). If the

paragraph contains whitelist items, it means that the paragraph

might contain references. Following this, tokenization and POST

are applied on that paragraph to specify the grammatical role of

each paragraph tokens. Figure 1 depicts these steps which,

together with Figure 2 and Section 4.3, illustrate how our

proposed algorithm detects cross-references.

Paragraph before tokenization: Conductor shall be soft or

annealed copper, in accordance with CBC B3-95, stranded in

accordance with CBC B8-95.

After tokenization: ['Conductor', 'shall', 'be', 'soft', 'or',

'annealed', 'copper', ',', 'in', 'accordance', 'with', 'CBC', 'B3-95', ',',
'stranded', 'in', 'accordance', 'with', 'CBC', 'B8-95', '.']

POST result over tokens: [('Conductor', 'NNP'), ('shall', 'MD'),
('be', 'VB'), ('soft', 'JJ'), ('or', 'CC'), ('annealed', 'VBN'), ('copper',

'NN'), (',', ','), ('in', 'IN'), ('accordance', 'NN'), ('with', 'IN'), ('CBC',
'NNP'), ('B3-95', 'NNP'), (',', ','), ('stranded', 'VBD'), ('in', 'IN'),

('accordance', 'NN'), ('with', 'IN'), ('CBC', 'NNP'), ('B8-95', 'NNP'),
('.', '.')]

Figure 1: Tagging paragraph tokens

Following the application of POST, the tagged tokens of each

paragraph is processed by a regular expression parser,

RegexpParser from NLTK [17] in search for patterns from the

“HasLeaf_Pattern” list. If one or more patterns are identified in

the paragraph, the “HasLeaf_Pattern” label is assigned to each

pattern. Figure 2 shows the two identified cross-references from

the sample paragraph of Figure 1. Each reference pattern

(“Reporting phrase” and associated cross-reference) is shown as a

leaf.

147

CASCON'20, November 10 – 13, 2020, Toronto, Canada E. Rahmani, N. Madhavji, I. Noorwali

Figure 2: Tagging paragraph tokens

4.3 Identify Reference

Having obtained “HasLeafPatterns” as described in section 4.1.2,

the whitelist item (i.e., reporting phrase) should be removed from

each leaf because it is no longer needed (or rather all we need

from the leaf is the cross-reference portion). For ensuring that the

residue portion is a reference, it is checked against the standard

properties of APA in-text citations (see Section 3.2.3).

“Has_APA_Properties” is a module that we designed for checking

the value of each identified leaf with the standard properties of

APA in-text citations that are proposed by American

Psychological Association.

The reason for considering this step as the step of reference

validation is because, in some cases, the identified reference

contains extra tokens that might be identified as one of the main

components of the reference. For instance, the word “the” has a

<DT> (Determiner) grammatical role in “comply with the CP-

100 SCM-S-0930-01” and we have defined this grammatical role

in the patterns of the proposed “HasLeaf_Patterns” list

({<VB><IN><DT><NNP>+}). Once the identified reference has

been determined to contain the token “the”, the reference is then

transmitted to the “Has_APA-Properties” module, which then

removes the token “the” from the rest of the reference components

because "the" does not satisfy any of the APA properties.

Another example that demonstrates the functionality of the

“Has_APA-Properties” module is that if a CRE contains the

“CBC-100 CND-S-0930-01” reference, the pattern {<NNP>+} is

matched with this reference. “NNP” refers to any word which has

the role of “noun” or “proper singular noun”. Thus, in this

example, both the “CBC-100” and “CND-S-0930-01” components

are labeled as “NNP” by POST. Therefore, <NNP>+ is matched

with the above-mentioned reference. The quantifier (+) after the

<NNP> means supporting unlimited number of sequential words

which have an “NNP” grammatical role in the sentence. An

important point to make is that the pattern {<NNP>+} can also be

matched with the “Software Quality Assurance Plan” reference

because all the components of this reference are also tagged as

NNP by POST. That means that one {<NNP>+} pattern can

support all references that have a sequence of NNP tokens. This is

a strength of our “HasLeaf_Pattern” list, which allows us to detect

numerous references that follow the same pattern by using only

one pattern.

However, the “HasLeaf_Pattern” list may cause a problem in

some cases. Particularly, when the parser considers the next

<NNP> tokens as the reference component when, in fact, they are

not reference components. For example, suppose that there is a

regular word written in small letters (e.g., “conductor”) and have

the NNP role after this reference “CBC-100 CND-S-0930-01”. In

such a situation, the pattern identifier (RegExpress) will not detect

that such a word (“conductor”) is not a reference component

because this word is another NNP and can be matched with the

<NNP>+ pattern. Thus, the “Has_APA-Properties” module is

helpful in dealing with such situations because all the components

of the identified reference must satisfy at least one of the

properties of APA standards. Therefore, words that are not written

with capital letters identified as extra tokens and would be

removed from the identified reference. Therefore, the “Has_APA-

Properties” module operates as a filter for dismissing extra

reference components and helps to choose the standard identified

components.

4.4 Find External Resources

Having identified the cross-references in the given set of

paragraphs from the project contract, the proposed algorithm

considers each identified reference as a keyword. If no local

sources are found for a given keyword (denoted by the node “Is

there any local resource for the identified reference?” in Figure 3),

a web scraping technique [15] invokes the Google search engine

API (denoted by the node “Receiving reference by Google search

API” in Figure 3), using the Request Python library, to find and

open an external resource for the intended reference.

We choose the first recommended URL which may be directed to

a pdf or an HTML file. If it is directed to a pdf file, we add it to

our local database and convert it to unstructured data. Otherwise,

by using the BeautifulSoup Python library the HTML page

context is parsed from which we extract all the HTML open-close

tags (e.g., <a>, <p>, <title>, etc.) including the intervening text.

This is denoted by the node “Extracting HTML context” in the

algorithm depicted in Figure 3. Thus, in this step, we have again

structured textual data that may contain cross-references.

For example, with reference to Table 2, (see the column

“Reference Level 2”) our algorithm identified the following two

references (among others) from third party documents: “ASTM

A653/A653M SS Grade 80 (550)” and “ICA T1.1/T1.1R” – by

first identifying reference “CSA S136-M” in the contract itself.

We can then repeat: steps in Section 4.2 (denoted by the node

“Splitting the context into paragraphs” in Figure 3); and Section

4.3, for finding any further references in the text contained in the

two “Reference Level 2” documents mentioned above. For

example, once the algorithm opens the resource “Reference Level

1” “CSA S136-M”, it then looks for “reporting phrases” (see

148

 CASCON'20, November 10 – 13, 2020, Toronto, Canada

Table 1) -- in this document -- that are followed by any matching

pattern with the patterns defined in “HasLeaf_Patterns”. For

instance, in the following paragraph (in document CSA S136-M)

“conforming to” is tagged as a reporting phrase and it then looks

for a matching pattern for “ASTM A653/A653M SS Grade 80

(550)” in “HasLeaf_Patterns” list:

“Steels conforming to ASTM A653/A653M SS Grade 80 (550),

that do not meet the minimum 10 percent elongation requirement

in Section A2.3.1.”

4.5 Visualize References

This step is concerned with visually representing all the identified

references which have been gathered in the previous steps. Once

the references of each contractual requirement are identified, we

generate a table using Textable Python library to depict the

identified references of the contract. Once the tool finds a local or

external resource related to the intended reference, the tool

reapplies the reference identification step to that resource. The

newly identified references are listed in the second column of the

table.

In Table 2, the first column consists of the contractual

requirement ID. The second column shows the first level

references identified for the requirement. The third column

represents all the indirect references identified through the

documents at Level 1. In principle, the cross-reference

identification can be extended to more levels of indirect

references. However, we restrict the scope of our work in this

study to two levels of references. It is important to note that all the

listed references in the “Reference level 2” column are identified

in the resources of the first reference from the “Reference Level

1” column. Pinpointing specific parts (e.g., paragraph, table,

figure, etc.) embedded within the identified cross-references at

“Reference Level 2” (or in further indirect documents) is not in

the scope of this paper.

Table 2: Two levels of indirection of identified references starting from the contractual requirement.

4.6 Flowchart Algorithm

Figure 3 depicts the flowchart of the proposed algorithm. It

consists of five main steps that are described in Sections 4.1 to

4.5.

Figure 3: Flowchart of algorithm for Extracting External Cross-references (DC Reference)

Contractual
Requirement Num

Reference Level 1 Reference Level 2

CR 2.4.1 1- CSA S136-M

2- CRL/AMQ G164

3- FBC 41-GP-34M Type G

4- McFfoy Foundry Co. Ltd. MH332

1- ASTM A653/A653M SS Grade 80 (550)

2- A1008/A1008M SS Grade 80 (550)

3- A792/A792M Grade 80 (550)

CR 4.1.1 1-Document 00500 SPECIAL CONDITONS

2-CAN/ACA-A6/A362 Portland Type

1- ICA T1.1/T1.1R

2- Contract Code 7104

149

CASCON'20, November 10 – 13, 2020, Toronto, Canada E. Rahmani, N. Madhavji, I. Noorwali

4.7 Performance of the Algorithm

To test our algorithm’s performance, we ran the algorithm on the

case study contract document as described in Section 3.1. In this

work, a word or sequence of words with all capital letters or a

word or sequence of words starting with capital letters are

considered an observation. For example: “Products”, “Contract

Documents”, “RSS”, “USRC” are some examples of observations.

Since our dataset (contractual document) consists of raw textual

data, and positive and negative observations are not automatically

labelled, we manually labelled the sample data and tested the

algorithm on 3,405 observations (approximately 20% of the total

number of observations in the contractual document). The results

of the algorithm’s performance are as follows: True Positive: 258;

True Negative: 3,104; False Positive: 2; False Negative: 41;

Accuracy: 99%; Recall: 86%; Precision: 99%; and F-measure:

0.92.

5 Comparison with Related Work

Our approach (Section 4.6) for identifying external references

differs from the discussed related works (Section 2) in a variety of
ways. Table 3 provides a summary of the comparison.

Table 3: Summary of comparison with related work

No. Comparison
criterion

Tran, et al.,
2014] [8]

(Adedjouma
et al., 2014)

[4]

(Sannier et
al., 2016) [9]

Proposed approach

1 Text-Type Law document Law document Law

documents

Project contract

2 Type of cross-

references

Internal Cross-

References

Internal Cross-

References

Internal Cross-

References

External

Cross-references

3

Phrase-Types

Classifying

phrases into the

11 groups

Using a huge diversity of

reporting phrases

4 Source of Phrases ---- ---- Two legal

documents

Established English

literature (see Table 1)

5 Determining

references boundaries

Tagging

different parts

of the

references

Creating

patterns based

on explicit and

implicit CREs

---- Creating
“Has_Leaf_Pattern” list

(see Section 4.1)

6 Validation of Cross-

references

Non-Existent Non-Existent Non-Existent The identified references
must satisfy APA

properties (see Section
3.2.3)

7 Access to third party

resources

Non-Existent Non-Existent Non-Existent Using web scraping
techniques (see Section

4.4)

With Reference to Table 3:

1. Text-Type: All related studies dealt with law documents;

whereas, our approach deals with a systems project contract.
2. Type of Cross-References: This criterion is a key

differentiator. Tran et al. [8] and Adedjouma et al. [4]
focused solely on extracting cross-references internal to a

given document and not external ones referring to external
documents.

3. Phrase-Types: As described in Section 2, Sannier et al. [9]
proposed a taxonomy of 11 phrase-categorizations for
identifying cross-references. In contrast, the proposed

algorithm creates a huge variety of “Reporting Phrases” (see
Table 1) from diverse sources.

4. Source of Phrases: In Sannier et al. [9], the authors
identified their phrases from two legislative documents. In
contrast, the reporting phrases are identified from established

English literature resources [11, 13, 14, 15, 16]. This gives a
wide latitude to the proposed algorithm to fit in different
problem contexts

5. Determining Reference Boundaries: In Tran et al. [8], the
starting and ending points of a reference is determined by
defining different notations for different parts of the

150

 CASCON'20, November 10 – 13, 2020, Toronto, Canada

reference. Adedjouma et al. [4] used predefined terms and
patterns based on their CRE categorization (explicit and
implicit). In this paper, by creating the HasLeaf_Pattern list
(see Section 4.1.2), we use a new approach for defining the
boundaries of references. Specifically, by using POS tagging,
we generate a list containing various grammatical structures.
Thus, if a CRE contains the reference “Electrical Code”, the
pattern {<JJ><NNP>} is matched with the reference.
However, “JJ” also refers to any “adjective” role and “NNP”

refers to any “noun” or “proper singular noun” role. Thus, by
using this approach, the starting and ending points of a
reference can be identified without predefined values.

6. Validation of Cross-References: As described in Section
4.3, sometimes the patterns in the “Has_Leaf_Pattern” list
causes that RegExpress parser to detect extra tokens as the
boundary of the reference. We define APA standards and
design a cross-reference validation step for verifying the

validity of identified tokens which is, to our knowledge, a
novel approach in detecting reference components.

7. Access to Third-Party Resources: Our approach involves
creating a chain of references, across a set of target
documents for each contractual requirement, which we have
implemented up to two levels of indirection thus far. In
addition, we use web scrapers to access third party resources
that are not locally available. This is a new approach as the

surveyed related approaches were restricted to identifying
internal references in one legal document and, thus, did not
need to identify such indirections. Therefore, our approach
shifts the focus to the network of external project documents,
which current methods do not address.

In summary, the above comparison demonstrates the significantly
different approach we have taken in identifying cross-references

in contractual documents in software projects. More specifically,
our approach contributes to, and complements, existing work by
adding to the set of available tools for identifying cross-
references. In other words, stakeholders can identify external
references in addition to identifying internal references, which is
anticipated to further facilitate the compliance process.

6 Limitations

With reference to Section 3.2.2, our analysis focused on
identifying the Direct Cue (DC) category of references. One
limitation of the current result is that it does not deal with the type
of key-phrases that appear prior to the reference but are not in the
group of reporting phrases (listed in Table 1). Examples of such
key-phrases include “length to”, “joints to”, and “element to”.

This calls for a mechanism to identify cross-references which are
not followed by reporting phrases.

Also, recall that in Section 3.2.2 we identified three types of
references: DC (83%), IDC (1.8%) and NC (13.96%). The latter

two are out of the scope of the current work.

In addition, as we discussed in Section 4.4, in our current work
when the identified references are posted to google search API, it
recommends 10 URLs from which, for simplicity, the current
algorithm chooses the first one as the related resource. However,

this may not be the best choice resource. Further analysis is
needed to identify the most relevant URL based on the content

from the recommended URLs. This can have a huge impact on the
quality of the requirements elicited for the project.

With reference to Table 2, the proposed algorithm can identify
cross-references in the case-study contract document (e.g., those
listed in the column “Reference Level 1”). The algorithm also

identified a number of cross-references from within the resources
listed under “Reference Level 1” (e.g., those listed under
“Reference Level 2”). In the current work, however, we do not
explore this, indirect access in more detail but – from the
preliminary experience -- are optimistic about the prospects with
the proposed algorithm, perhaps with some adjustments, to make
it generalizable across other contracts and regulatory documents.

Identifying references that are not APA-like, and are also not
absolute cross-references (i.e., those that do not refer to a
regulatory document) – e.g., “manufacturer's instructions'' (see
Section 3.2.3) -- are not in the scope of this paper.

7 Conclusion and Future Work

Project contracts or official documents in an organization often
contain intra- and inter-document cross-references. Other
researchers have attempted to automate the identification of intra-
document references, e.g., within: legislative documents Tran et
al. [8], Adedjouma, et al. [4], and Sannier, et al. [9]. Inter-
document references can be significantly more challenging due to
non-standard structure of the external documents (e.g., regulatory
codes and standards), formats of the cross-references, and

accessibility issues with third-party documents. There is also the
issue of a chain of cross-references through multiple third-party
documents. In large projects, manually identifying the cross-
references is both time consuming and error-prone [3] and thus
calls for automation.

This paper describes a new approach (see Sections 4 and 5) that

identifies external references from a project contract and

indirectly from external documents including the world wide web.

This approach involves: (i) a list of semantic cues for identifying

cross-references, (ii) a list of grammatical structures for

supporting various combinations of word roles in a sentence, (iii)

APA standards for validating cross-references, and (iv) third party

access for unavailable resources. An overall algorithm (see

Section 4.6) binds these aspects into a cohesive flow of steps

implemented as a tool.

The tool produces a summary of cross-references (currently

limited to two levels of indirection – see Table 2) that can be used

for such tasks as: (i) time and resource estimation in project

management, (ii) requirements elicitation, and (iii) creating test

cases. In a case study (see Section 3.1) evaluation of this tool,

using an industrial-scale project contract, the output suggests a

precision of 99%, recall of 87%, and F-measure of 0.92.

From this advancement, we can conclude that extracting external
cross-references from a network of documents is strongly feasible.
Further work remains, of course as described in Section 6
(Limitations) as fodder for future work.,.

151

CASCON'20, November 10 – 13, 2020, Toronto, Canada E. Rahmani, N. Madhavji, I. Noorwali

ACKNOWLEDGMENTS

We are most grateful to the reviewers for their constructive

comments that helped us to improve this paper. Also, we are very

grateful to NSERC, Canada, for supporting this research.

REFERENCES
[1] J. C. Maxwell, A. I. Antón, and P. Swire, “A legal cross-references taxonomy

for identifying conflicting software requirements,” Proc. 2011 IEEE 19th Int.

Requir. Eng. Conf. RE 2011, pp. 197–206, 2011.

[2] B. Mack and B. Waske, “In-depth comparisons of MaxEnt, biased SVM and

 one- class SVM for one-class classification of remote sensing data,” Remote

 Sens. Lett., vol. 8, no. 3, pp. 290–299, 2017.

[3] M. R. I. Nekvi and N. H. Madhavji, “Impediments to regulatory compliance

 of requirements in contractual systems engineering projects: A case study,”

 ACM Trans. Manag. Inf. Syst., vol. 5, no. 3, 2014.

[4] M. Adedjouma, M. Sabetzadeh, and L. C. Briand, “Automated detection and

resolution of legal cross references: Approach and a study of Luxembourg’s

legislation,” in 2014 IEEE 22nd International Requirements Engineering

Conference, RE 2014 - Proceedings, 2014, pp. 63–72.

[5] Scikit-learn developers (BSD License), “Support Vector Machines (SVM),

 2020. Available: https://scikit-learn.org/stable/modules/svm.html.

[6] Sarbanes-Oxley Act (2017),“Sarbanes-Oxley Act of 2002,”. Available at:

https://pcaobus.org/About/History/Documents/PDFs/Sarbanes_Oxley_Act_of_2002.

pdf.

[7] O. for C. R. (OCR) (2017), “Health Insurance Portability and Accountability

 Act of 1996 (HIPAA),”. Available at:

 https://www.hhs.gov/hipaa/for-professionals/index.html.

[8] O. T. Tran, B. X. Ngo, M. Le Nguyen, and A. Shimazu, “Automated reference

resolution in legal texts,” Artif. Intell. Law, vol. 22, no. 1, pp. 29–60, 2014.

[9] L. B. Nicolas Sannier, Morayo Adedjouma, Mehrdad Sabetzadeh, “Automated

Classification of Legal Cross References Based on Semantic Intent,” in IEEE

Software, 2016, vol. 28, no. 4, pp. 86–91.

[10] U. Sydney, “Introducing Quotations and Paraphrases,” 2019. Available at:

https://student.unsw.edu.au/introducing-quotations-and-paraphrases.

[11] EAP Foundaton (2019), “Reporting verbs,".

 Available at: https://www.eapfoundation.com/writing/references/reporting/

[12] PennState Library University (2020), “APA Quick Citation Guide”,

 Available at: https://guides.libraries.psu.edu/apaquickguide/intext.

[13] AUSB, “APA Signal Phrases for Quotes/Paraphrases,” 2017. Available at:

https://www.antioch.edu/santa-barbara/wp-content/uploads/sites/4/2017/02/APA-

Signal-Phrases-for-Quotes-and-Paraphrases.pdf.

[14] Toronto, U. of (2005), “Verbs For Citing Sources,”. Available at:

https://www.utsc.utoronto.ca/ccds/sites/utsc.utoronto.ca.ccds/files/5.pdf.

[15] Mitchell, R. (2018), Web Scraping with Python:

 Collecting More Data from the Modern Web.

 Available at: https://yanfei.site/docs/dpsa/references/PyWebScrapingBook.pdf.

[16] T. R. University, “Reporting Words / Phrases,” p. 2007, 2007.

[17] Hardeniya, N. (2015) NLTK Essentials. Available at:

https://books.google.ca/books?hl=en&lr=&id=NDlECgAAQBAJ&oi=fnd&pg=

PP1&dq=NLTK+Library&ots=dCgq1d61TC&sig=MNqZmCjgLkYjkSH1_Dfx

zdWcoM4&redir_esc=y#v=onepage&q=NLTK&f=false.

[18] Association, A. P. (2019b), "APA Style".

 Available at: https://apastyle.apa.org/style-grammar-guidelines/citations/index.

[19] Steven Bird, Ewan Klein, and E. L. (2009)

 Natural Language Processing with Python. Available at:

http://www.nltk.org/book/.

152

Time Series Sampling for Probabilistic Forecasting
Nicholas Prayogo
Ryerson University

Toronto, Ontario, Canada
nprayogo@ryerson.ca

Mucahit Cevik
Ryerson University

Toronto, Ontario, Canada
mcevik@ryerson.ca

Merve Bodur
University of Toronto

Toronto, Ontario, Canada
bodur@mie.utoronto.ca

ABSTRACT
Deep learning-based models for multiple time series probabilistic
forecasting have gained significant attention in the recent liter-
ature. Given the abundance of data, many successful global and
hybrid models that can learn complex patterns from multiple re-
lated time series have been developed. The main focus being on
novel architecture development, little attention has been given to
the investigation of input data for those models, making the impres-
sion that using more data is always better. In this paper, we strive
to answer the following question: Is using more time series always
better? Specifically, we investigate the usefulness of time series sam-
pling in achieving better performance within lower run times on
time series probabilistic forecasting. We evaluate the performance
of two state-of-the-art models, namely DeepAR and DeepState,
when using different numbers of time series that are selected based
on a variety of distance-based similarity criteria for forecasting
a single target time series. Through empirical evaluation on var-
ious common real-life datasets from the literature, we show that
strategically selecting time series to train could help state-of-the-art
models achieve improved forecasting accuracy while requiring a
significantly less model training time.

KEYWORDS
Probabilistic forecasting, time series, DeepAR, DeepState
ACM Reference Format:
Nicholas Prayogo, Mucahit Cevik, and Merve Bodur. 2020. Time Series
Sampling for Probabilistic Forecasting. In Proceedings of 30th Annual Inter-
national Conference on Computer Science and Software Engineering (CAS-
CON’20). ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
Time series forecasting has applications across various industries,
such as finance [15], energy [11, 13], weather [2], and business [28].
Accurate forecasts not only give businesses immediate insights
on a fair assessment of their past actions, currently implemented
policies and overall trends in the domain, but also play a crucial
role in future policy making, being inputs to downstream decision-
making problems. In regards to the latter, probabilistic forecasting
became increasingly more popular since it allows sampling of future

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honoured. For all other uses, contact the owner/author(s).
CASCON’20, November 10-13 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

scenarios of uncertain parameters, which in turn helps making
better decisions (via stochastic optimization, for instance).

Methods for time series forecasting have evolved from traditional
ARIMA and exponential smoothing methods [6], which in general
work well with structured and limited data, to neural network based
methods such as recurrent neural networks (RNNs) and convolu-
tional neural networks (CNNs), and attention-based models [16],
which are capable of capturing more intrinsic and complex patterns
and likely more useful in data-rich settings. Moreover, merge of
such models, such as a hybrid ARIMA and neural network forecast-
ing model proposed in [27] has also been studied and can result in
well-performing models. For more details on neural network based
forecasting methods and in particular on deep learning approaches,
we refer the reader to the recent surveys [4] and [16], respectively.

For the purpose of our study, we look at some recent deep
neural network-based probabilistic forecasting models, namely
DeepAR [20] and DeepState [19]. In particular, these are global
models capable of providing probabilistic forecasts of multiple time
series simultaneously, which is not to be confused with multivariate
forecasting where one model uses multiple time series to forecast
a single time series. Leveraging information from multiple related
time series, especially for the underlying global nonlinear patterns,
these models have been shown to work particularly well across a
variety of real-life datasets, such as electricity [25], traffic [10], and
even most notably the recent M4 competition dataset [17]. How-
ever, the use of RNNs for these models limits training parallelism
and thus often requires long run times to obtain a well-performing
model, especially if trained with large amounts of data, where the
size of the data is not only a function of the length of time series
but also the number of time series itself. Perhaps in the interest of
shorter training times, can these models be trained with a smaller
subset of the data and still perform sufficiently well? This question
has been theoretically and empirically investigated in terms of time
series length. Differently, in this work, we propose to conduct a
sensitivity analysis on the number of time series.

We study whether carefully selecting a subset of the time series
as input can result in a similar or even better predictive perfor-
mance for modern global deep neural models, especially when the
objective is to forecast an individual target time series. We empiri-
cally analyze the impact of multiple distance-based time series sam-
pling strategies, such as training with the most similar or dissimilar
time series based on dynamic time warping, pointwise Euclidean
norm in the frequency domain and Pearson correlation coefficient.
We also consider clustering-based and data normalization-based
approaches. The main contribution of this empirical study is to
illustrate that a modern global probabilistic forecasting model can
be trained quicker and achieve comparable or better performance
with a carefully selected and significantly smaller subset of time
series in the dataset.

153

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CASCON’20, November 2020, Toronto, Ontario, Canada Nicholas Prayogo, Mucahit Cevik, and Merve Bodur

The rest of the paper is organized as follows. Section 2 reviews
the most closely related literature, while Section 3 sets up the stage
by formally defining the time series sampling problem. Section 4
walks through the components used to form this empirical study,
both in terms of global models and sampling methods used, and
outlines how we execute our experiments and which datasets were
used. Lastly, Section 5 presents our results, followed by a conclusion
and future research direction discussion in Section 6.

2 LITERATURE REVIEW
Some studies have indeed explored methods to forecast time series
with limited data, mostly done by fusing capabilities of forecasting
models. For instance, Choi et al. [8] combined the extreme learn-
ing machine and the grey model, Christodoulos et al. [9] combined
ARIMA and diffusion models, and Tiwari and Adamowski [24] used
an ensemble wavelet–bootstrap–artificial neural network, all to
form a more robust time series forecasting model that performs
well with limited data. However, this requires a significant amount
of trial and error in terms of model combinations. Moreover, little
study has been done on whether more advanced, neural proba-
bilistic forecasting models [19, 20, 26], which are mostly known to
require large amounts of data, can perform well or even better with
less data.

In a recent study, Rabanser et al. [18] provided an empirical
study on the impact of data input and output transformations,
specifically data scaling and conversion of real-valued time series
into categorical ones, on the predictive performance of multiple
global neural probabilistic forecasting models. They showed that
improved accuracy can be achieved via such data transformations.

As also mentioned in [18], the importance of careful data pre-
processing for learning across multiple time series has been pointed
out in the literature, despite not being explored in detail. The focus
of the studies empirically analyzing this question, including the
original papers proposing the model architectures, has been on the
careful selection of features, covariates, time steps as well as data
scaling. We instead focus on the selection of time series for training
to obtain improved forecasts for a target time series, which to the
best of our knowledge has not been studied before.

Hewamalage et al. [12] conducted a thorough empirical study on
popular RNN-based forecasting models with the main motivation of
showing their competitiveness against traditional methods. In the
data preprocessing phase of their study, the authors mostly applied
the ideas by Bandara et al. [3]. Although their study was limited
to point forecasting in a univariate context, it shed some light into
some of the aforementioned data pre-processing aspects that have
been pointed out in the literature. Moreover, they observed that
global models may not be suitable for the individual requirements
of certain time series, and suggested that training single models
on different subsets of time series as done by Bandara et al. [3]
especially combined with some hybrid models as also performed by
Sen et al. [21] can help. In that regard, our proposal of time series
sampling can provide a simple remedy for such certain time series
suffering from low accuracy in predictions of a global model trained
with (a large number of) all available time series.

One of the most closely related work to ours is by Bandara et al.
[3], who proposed to cluster a given set of time series and build a

global model per cluster, in order to benefit more from local struc-
tures. More specifically, they obtained clusters using the unusual
time series detection idea by Hyndman et al. [14], and trained an
long short term memory (LSTM) network for each cluster. Their ap-
proach yielded consistent forecast accuracy improvements against
learning a single global model on multiple commonly used datasets
from the literature. Different than their feature-based clustering
approach, we consider distance-based time series sampling as well
as clustering in our study. Also, while their main motivation arose
from the observation that training a global model using disparate
time series may be detrimental to the overall forecasting accuracy,
we propose sampling even for similar time series to significantly
reduce training time for global model training without losing accu-
racy in obtained predictions.

The other closest work to ours is by Tadayon and Iwashita [23]
who combined anomaly detection with clustering to improve pre-
dictive performance of an LSTM model. They proposed two feature
extraction methods for time series data, which in turn outperform
distance-based clustering methods in terms of speed, yielding simi-
lar forecast accuracy on their synthetically created dataset. They
also analyzed the impact of adding more measurements to the
training set, and observed that it does not necessarily improve the
predictive performance. In our study, we analyze the same question
in terms of addition of time series, rather than time steps.

3 PROBLEM DESCRIPTION
We define the necessary notation for our analysis as follows. For
𝑎, 𝑏 ∈ Z+ with 𝑏 ≥ 𝑎 ≥ 1, let [𝑎, 𝑏] := {𝑎, 𝑎 + 1, . . . , 𝑏} denote the
set of integers between 𝑎 and 𝑏. Also, let [𝑎] := [1, 𝑎].

3.1 Probabilistic forecasting problem
Given a forecast horizon 𝐻 ∈ Z+, and 𝐼 length-𝑇 time series, de-
scribed by tuples

{𝑧𝑖 }𝑖∈[𝐼] :=
{(
(𝑦𝑖𝑡)𝑡 ∈[𝑇] , (𝑥𝑖𝑡)𝑡 ∈[𝑇+𝐻]

)}
𝑖∈[𝐼]

of observations (denoted by 𝑦𝑖) and input covariates (denoted by
𝑥𝑖), the probabilistic forecasting problem aims to model the joint
conditional probability (P) distribution of future observations rep-
resented by random variables {𝒚𝑖𝑡 }𝑖∈[𝐼],𝑡 ∈[𝑇+1,𝑇+𝐻] :

P
(
{𝒚𝑖𝑡 }𝑖∈[𝐼],𝑡 ∈[𝑇+1,𝑇+𝐻] | {𝑧𝑖 }𝑖∈[𝐼]

)
. (1)

That is, given the values observed at 𝑇 consecutive time steps
for each series together with their characteristics in the form of
covariates until the end of the prediction horizon, it tries to give
an idea about the likelihood of observations to be made in the
subsequent 𝐻 time steps.

In this work we focus on global neural models, which define
some global parameters Θ for (1) that are learned using all the
available time series simultaneously,

Θ = 𝑔

(
{𝑧𝑖 }𝑖∈[𝐼]

)
,

which is then used to estimate the prescriptive probability distribu-
tion of individual time series as

P𝑖 := P
(
{𝒚𝑖𝑡 }𝑡 ∈[𝑇+1,𝑇+𝐻] | 𝑧𝑖

)
∼ 𝑓𝑖 (𝑧𝑖 ,Θ), for all 𝑖 ∈ [𝐼] . (2)

154

Time Series Sampling for Probabilistic Forecasting CASCON’20, November 2020, Toronto, Ontario, Canada

In other words, they construct separate (local) models of condi-
tional probability distributions for individual time series, that are
parametrized by a set of common (global) factors, which requires
learning 𝑔 and 𝑓1, . . . , 𝑓𝐼 functions whose forms are usually fixed
based on the considered neural architecture with parameters to be
learned.

The goal is to minimize the error in the approximations in (2) as

min
𝑔,{𝑓𝑖 }𝑖∈[𝐼] ,Θ

∑
𝑖∈[𝐼]

𝜌

(
P𝑖 , 𝑓𝑖

(
𝑧𝑖 ,Θ

))
(3a)

subject to Θ = 𝑔

(
{𝑧𝑖 }𝑖∈[𝐼]

)
(3b)

where 𝜌 denotes an error measure, which is usually considered to
be a log-likelihood type of loss function.

3.2 Time series sampling problem
Suppose that the global model is fixed, i.e., the forms of 𝑔 and 𝑓
functions are fixed. Given a subset of target time series, indexed
by Itarget ⊆ [𝐼], for which we care about obtaining accurate fore-
casts, or rather improved accuracy from the global model under
certain computational effort considerations, we define the time
series sampling problem as the following bilevel problem:

min
Isample⊆[𝐼]

min
𝑔,{𝑓𝑖 }𝑖∈Isample ,Θsample

∑
𝑖∈Itarget

𝜌

(
P𝑖 , 𝑓𝑖

(
𝑧𝑖 ,Θsample

))
(4a)

subject to Θsample = 𝑔
(
{𝑧𝑖 }𝑖∈Isample

)
(4b)

TrainEffort(Isample) ≤ 𝐸 (4c)

where we aim to find a subset of time series, indexed by Isample ⊆
[𝐼], using which the global model can be trained respecting our
capacity constraints (such as time and memory limits) given in (4c),
and yield the lowest possible prediction error for our target time
series. Note that the global model is now constructed using the
time series included in the selected sample, as indicated in (4b).

In this work, as the first step to analyze the time series sampling
problem, we limit our focus to |Itarget | = 1, and investigate alterna-
tive methods to construct Isample to obtain good quality solutions
to this bilevel problem.

4 METHODOLOGY
In this section, we first provide a short description of the forecasting
models and then elaborate on time series sampling methods em-
ployed in our analysis. Then, we provide the data and experimental
setting information.

4.1 Models
We experiment with two state-of-the-art multiple time series fore-
casting models, namely DeepAR and DeepState, whose details are
briefly explained below.

4.1.1 DeepAR [20]. DeepAR is an RNN-based global time-series
forecasting method; it uses an autoregressive recurrent network
architecture of LSTM cells to model the joint conditional probability
distribution, given in (1). It can learn complex patterns, such as
seasonality, but as observed in the literature since it does so purely
from the data, its performance usually improves when the training

data size is increased. We question whether the same phenomenon
occurs when the available number of time series increases. Another
advantage of DeepAR is that it can handle large variations in time
series scales thanks to its internal data normalization and velocity-
based sampling features. In fact, in the next subsection, we propose
a time series sampling idea based on this underlying normalization
process of DeepAR.

4.1.2 DeepState [19]. Deep State Space Models (SSMs), DeepState
in short, combines the capabilities of understanding structural time
series of traditional SSMs like ARIMA, with deep recurrent neural
networks’ ability to capture inherent and complex temporal pat-
terns. This results in a model that can be trained with little data and
still perform well due to the structure imposed by the SSM and its
ability to still extract latent features. It has been noted to be more
suitable for datasets of related time series [19], where the relation is
interpreted as the belonging to the same domain. This leads to the
question of whether this global model can perform better with a
carefully chosen subset of time series versus when using the entire
dataset. In other words, we question whether there could be more
to the relation for an improved predictive performance.

4.2 Sampling methods
In this study, we test a variety of sampling ideas, based on standard
distance-based measures for time series [1] except a new one based
on our observations on how DeepAR architecture works. (For the
literature on time series clustering, we refer the readers to the
survey paper by Aghabozorgi et al. [1].)

4.2.1 DTW. While L2-norm can be used to measure point-wise
distance between time series, this measure can be misleading when
lag exists between two time series. To overcome this issue, an
algorithm such as dynamic time warping (DTW) [5] can be useful.
DTW is indeed the most commonly used distance measure for
time series. The idea is to find a nonlinear mapping of two series
that minimizes the point-wise distance between the mapped series.
More specifically, DTW uses a dynamic programming algorithm
to determine an optimal warping path traversing a set of points,
satisfying certain conditions (e.g. boundary, monotonicity and step
size), where the objective is to minimize the L2-norm of the point
vector describing the path. Having a quadratic complexity, DTW
can be slow for long time series, although the run times can be
possibly improved Silva and Batista [22].

4.2.2 Freq-L2. Given that any time series is essentially a sum of
sinusoids of various frequencies, Fourier transform converts one
from time domain to frequency domain. The frequency domain thus
represents an amplitude-frequency graph that shows the magnitude
of each frequency captured by the time series. This is useful in
terms of capturing the seasonality of the time series data, and
thus to compare the seasonality between two time series, where
the standard L2-norm measure can be used. An example for this
approach is provided in Figure 1. While the magnitudes of two time
series in the time domain differ significantly, which would result in
a high pointwise L2 distance, they follow a similar seasonality and
thus are relatively close in the frequency domain.

155

CASCON’20, November 2020, Toronto, Ontario, Canada Nicholas Prayogo, Mucahit Cevik, and Merve Bodur

Figure 1: Calculating the distance between two time series
in the frequency domain

4.2.3 Pearson Correlation Coefficient. Given two time series, Pear-
son Correlation Coefficient divides the product of the covariances
of the time series over the product of their respective standard
deviations, giving a value between -1 and 1, where these extreme
values respectively mean that the series are perfectly negatively

Figure 2: Elbow method to determine the optimal number
of clusters

and positively correlated. For sampling, we choose to start with
time series that have higher absolute correlations to the target time
series.

4.2.4 K-Means Clustering. K-means clustering is an unsupervised
learning algorithm that identifies 𝐾 centroids and assigns data
points to the nearest centroid. By clustering time series, we train
the model using only time series belonging to the same cluster as
the target time series. To determine the optimal number of clusters,
we use the elbowmethod as shown in Figure 2. As mentioned in Sec-
tion 2, [3] employed time series clustering to build multiple global
models, one per cluster, to improved predictive performance. While
the authors in [3] obtained clusters based on some extracted feature
vectors of the given time series, we experiment with distance-based
clustering.

4.2.5 Normalizing Constant. For the case of time series, we define
normalizing constant as the sum of all values of a time series. This
definition is particularly useful for the training of DeepAR, since it
is trained via weighted Monte Carlo simulation where the sorted
normalizing constants are used to decide on sampling weights [20].
As such, time series with larger normalizing constants have a higher
impact in the loss minimization process.

Figure 3: Area Coverage of Normalizing Constant

As Figure 3 illustrates, for our two datasets, we find that roughly
15% of the time series represents 75% of the normalizing constant
area under the curve. This means that only this 15% is mostly
sampled by the DeepAR model and affects the loss minimization
the most during training. As such, we propose to use only this

156

Time Series Sampling for Probabilistic Forecasting CASCON’20, November 2020, Toronto, Ontario, Canada

percentile of the dataset to train the model, with the expectation
that the model would perform similarly to the case where we train
using the entire dataset.

4.3 Data
Our empirical study was conducted on electricity [25], traffic [10],
and m4_hourly [17] datasets, whose properties are summarized in
Table 1.

The electricity dataset consists of electricity consumption of 370
households for more than 1400 days during 4 years. The records for
some clients were created after 2011, for which the consumption
before their creation date is assumed to be zero. For the sake of a
more qualified data, we eliminated the time series with high volume
of missing values and/or zeros. After this elimination, we decided
to use only 321 households’ electricity consumption data for two
years.

The traffic data is collected from over 39,000 detectors at 10
minute intervals. These sensors span the freeway system across all
major metropolitan areas of the State of California, US. This dataset
consists of 15 months worth of daily data, describing the occupancy
rate, between 0 and 1, of different car lanes of San Francisco Bay
Area freeways. Every single lane in this database is considered as
one time series.

The m4_hourly dataset consists of 414 hourly time series, which
is a subset of the M4 competition dataset. These time series were
selected from a database called ForeDeCk compiled at the National
Technical University of Athens (NTUA) which highlights a wide
range of business forecasting applications including domain from
natural resources and tourism to stocks and bonds [17]. This dataset
is also scaled such that observations are neither negative nor less
than 10, as well as ignores low-volume and intermittent time series,
to prevent methodology, architecture, or error measure-related
problems.

Figure 4 demonstrates a sample from the target time series of
the electricity, traffic, and m4_hourly datasets, all of which shows
a certain degree of seasonality.

4.4 Experimental setup
Our experiments were conducted with GluonTS, a Python library
for probabilistic time series forecasting. Many hyperparamaters in
GluonTS are set to certain default values, which are not necessarily
ideal for the model. For that, we listed the parameters we used for
training the models on Table 2. Also note that, to ensure that the
model goes through the entire training set every epoch, given that
𝑇 is the number of training time steps, 𝐶 is the context length, 𝑁
is the number of time series to be trained with, and 𝐵 is the batch
size, the number of batches per epoch is scaled as (𝑇 /𝐶) × (𝑁 /𝐵).
We also observe that when trained with covariates, the model did
not show significant improvements and in some occasions even
performed worse than the version without covariates. Thus, since
training with covariates also significantly increases runtime, for
this empirical study, covariates were not used.

To compare model performance over the various distance and
correlation measures, we define six different time series sampling
methods: 1) “random", which chooses 𝑛 time series at random for
each run, 2) “dtw_min", which chooses 𝑛 time series closest in DTW

2014-05-19

2014-05-20

2014-05-21

2014-05-22

2014-05-23

2014-05-24

2014-05-25

2014-05-26

2014-05-27

200

300

400

500

600

ts
_5

0:
 m

w
h

(a) electricity target time series 50

2016-07-31

2016-08-01

2016-08-02

2016-08-03

2016-08-04

2016-08-05

2016-08-06

2016-08-07

2016-08-08
0.0

0.1

0.2

0.3

ts
_5

0:
 r

at
io

(b) traffic target time series 50

2010-01-22

2010-01-23

2010-01-24

2010-01-25

2010-01-26

2010-01-27

2010-01-28

2010-01-29

2010-01-30

300

400

500

600

ts
_5

0:
 c

ou
nt

(c) m4_hourly target time series 50 (data start dates are not known and are arbi-
trarily set to Jan 1, 2010)

Figure 4: Electricity, traffic, and m4_hourly data samples

measure to the target time series, 3) “freq_min", which chooses 𝑛
time series closest in Freq-L2 measure, 4) “dtw_max", 𝑛 farthest
in DTW measure, 5) “freq_max", 𝑛 farthest in Freq-L2 measure,
and 6) “pearson", 𝑛 most correlated in Pearson’s coefficient. Using
these selection methods, we start off with evaluating the model’s
performance when trained with the target time series itself, then
increment by 𝑛 where 𝑛 = 10 for electricity, 𝑛 = 25 for traffic, and
𝑛 = 15 for m4_hourly until the model is trained with the entire
dataset. We used Numpy for all of these selection methods, with
the addition of fastdtw Python library, specifically for DTW.

For the remaining methods, different experimental setups were
used. For the normalizing constant method in particular, we find
the number of time series that represents 75% of the area under the
curve (AUC) of the sorted normalizing constant plot, and train the
model using that number of time series. Then, when using K-means
clustering, we cluster the time series into the optimal number of
clusters obtained from the elbow method, then select the top 25%
time series closest to the centroid of the cluster that the target time
series belongs to.

157

CASCON’20, November 2020, Toronto, Ontario, Canada Nicholas Prayogo, Mucahit Cevik, and Merve Bodur

Table 1: Dataset Properties

Dataset Number of time series Length Domain Granularity Any missing data Min Max

electricity 321 21068 R+ Hourly No 0 764000
traffic 862 14036 R+ Hourly No 0 1
m4_hourly 414 854 (mean) R+ Hourly No 10 703008

Table 2: DeepAR and DeepState model parameters

Data Epochs Learning
rate

Batch
size

Context
length

Prediction
length

of batches
per epoch

electricity 40 0.001 64 168 24 Scaled
traffic 40 0.001 64 168 24 Scaled

m4_hourly 40 0.001 16 48 48 Scaled

4.5 Performance Evaluation
We evaluate the performances of the forecasting models with the
following metrics:

• Normalized Deviation (ND)

𝑁𝐷 =

∑
𝑖,𝑡 |𝑧𝑖,𝑡 − 𝑧𝑖,𝑡 |∑

𝑖,𝑡 |𝑧𝑖,𝑡 |

• Normalized Root Mean Squared Error (NRMSE)

𝑁𝑅𝑀𝑆𝐸 =

√
1
N

∑
𝑖,𝑡 (𝑧𝑖,𝑡 − 𝑧𝑖,𝑡)2

1
N

∑
𝑖,𝑡 |𝑧𝑖,𝑡 |

• 90% Quantile Loss or p90 (where 𝜌 = 0.9)

𝑝90 = 2
∑
𝑖,𝑡 𝑃𝜌 (𝑧𝑖,𝑡 , 𝑧𝑖,𝑡)∑

𝑖,𝑡 |𝑧𝑖,𝑡 |

𝑃𝜌 (𝑧, 𝑧) =
{
𝜌 (𝑧 − 𝑧) if 𝑧 > 𝑧

(1 − 𝜌) (𝑧 − 𝑧) otherwise

where 𝑧𝑖,𝑡 and 𝑧𝑖,𝑡 are the actual value and predicted median value
respectively for item 𝑖 ∈ ℐ at time 𝑡 ∈ 𝒯, and N = |ℐ | × |𝒯 |. For
each metric, the lower values point to a better model performance.

5 RESULTS
In this section, we present the results of our detailed numerical study
along with relevant observations and conclusions. We first provide
an overview of themodels performance on the entire data set as well
as a couple arbitrarily selected target time series. Next, we assess
the impact of distance and correlation-based time series sampling
strategies on predictive performance for individual target time
series. Lastly, we focus on sampling strategies based on clustering
and data normalization.

5.1 Performance of the forecasting models
Before evaluating our time series sampling approaches, we first
compare the performance of DeepAR and DeepState when trained
with the entire dataset, and evaluated on both the entire and single

time series scenarios. Table 3 shows lower ND, NRMSE, and p90 val-
ues for DeepAR, indicating that DeepAR consistently outperforms
DeepState across all three datasets and evaluation scenarios. Also,
as expected, the methods can yield significantly different errors for
different individual time series. We next analyze whether better
predictions can be obtained for the two individual target time series
(indexed by 8 and 50) when these global models are trained with
smaller samples of time series.

Table 3: Performance comparison with the models trained
over the entire dataset

Evaluation set ND NRMSE p90

DeepAR

electricity 0.075 0.680 0.042
electricity - 8 0.103 0.171 0.068
electricity - 50 0.132 0.183 0.070
traffic 0.134 0.412 0.095
traffic - 8 0.123 0.241 0.070
traffic - 50 0.076 0.188 0.061
m4_hourly 0.073 0.427 0.054
m4_hourly - 8 0.072 0.082 0.033
m4_hourly - 50 0.071 0.071 0.032

DeepState

electricity 0.095 0.750 0.057
electricity - 8 0.143 0.207 0.102
electricity - 50 0.205 0.288 0.085
traffic 0.241 0.526 0.230
traffic - 8 0.186 0.323 0.195
traffic - 50 0.173 0.262 0.203
m4_hourly 0.377 2.917 0.038
m4_hourly - 8 0.337 0.469 0.051
m4_hourly - 50 0.339 0.475 0.039

5.2 Distance and correlation-based sampling
We provide box plots for the aforementioned six distance- and
correlation-based sampling strategies in Figure 5 and Figure 6. For
each strategy, four boxes are drawn corresponding to the error
ranges obtained by using the labeled percentage of the total number
available time series in the dataset. The (blue) straight line in these
plots represent the ND value obtained by using all the time series,
that are provided to the global models in the order of the “random"
strategy, thus constitutes a baseline.

In these plots, we observe that, for DeepState, selecting relevant
time series might enable the model to perform better than when

158

Time Series Sampling for Probabilistic Forecasting CASCON’20, November 2020, Toronto, Ontario, Canada

random dtw_min freq_min dtw_max freq_max pearson
selection_mode

0.10

0.12

0.14

0.16

ND

<10% 10-25% 25-50% 50-100%

(a) DeepAR on electricity

random dtw_min freq_min dtw_max freq_max pearson
selection_mode

0.125

0.150

0.175

0.200

0.225

ND

<10% 10-25% 25-50% 50-100%

(b) DeepState on electricity

random dtw_min freq_min dtw_max freq_max pearson
selection_mode

0.12

0.14

0.16

0.18

ND

<10% 10-25% 25-50% 50-100%

(c) DeepAR on traffic

random dtw_min freq_min dtw_max freq_max pearson
selection_mode

0.16

0.18

0.20

0.22

0.24

ND

<10% 10-25% 25-50% 50-100%

(d) DeepState on traffic

random dtw_min freq_min dtw_max freq_max pearson
selection_mode

0.0

0.1

0.2

0.3

0.4

ND

<10% 10-25% 25-50% 50-100%

(e) DeepAR on m4_hourly

random dtw_min freq_min dtw_max freq_max pearson
selection_mode

0.2

0.3

0.4

0.5

0.6

ND

<10% 10-25% 25-50% 50-100%

(f) DeepState on m4_hourly

Figure 5: Distance- and correlation-based sampling results for target time series 8

using the entire dataset in certain cases e.g. for the electricity dataset.
Also, the minimum distance-based strategies yield a much smaller
variance for small sample cases, thus can be seen as better sampling
options. On the other hand, for DeepAR, it seems like the inclusion
of more time series leads to improved performance, while it is again
possible to obtain smaller errors with a much smaller sample of
time series. Although these plots show there is not necessarily a
clear winner regarding which selection method works best for time
series sampling, we can see that in most cases, training with less yet
strategically-sampled data can give the model a similar, and even
better, forecasting performance. These general findings actually
align well with our expectations based on the observations from
the literature that (i) DeepAR learns complex patterns purely from
data, thus its performance usually improves when the training data
size is increased, and (ii) DeepState is more suitable for datasets of
related time series. Accordingly, the differences in our results can
be attributed to the architecture differences in these global models.
Lastly, we note that our conclusions for this experiment are quite
similar for both target time series 8 and 50.

5.3 Other sampling strategies
Since we have seen that distance- and correlation-based sampling
might allow DeepState to perform better with little and carefully se-
lected data, we provide in Table 4 our results of using other sampling
methods for DeepAR specifically, to see whether this architecture
can benefit from other sampling methods. For comparison, we also
show results when using dtw_min to sample 25% of the dataset
(dtw_min_25). As shown here again, carefully selecting time series
allows the model to almost emulate its performance when trained
with the entire dataset while taking significantly less time to train.

Looking at the Normalizing Constant (NC) selection method for
instance, when trained to forecast electricity data, even when using
only 15% of the dataset representing those with highest normalizing
constant, the DeepAR model is able to forecast time series 8 and
50 almost as well as when it uses the entire dataset (9.7% and 2%
difference for ND). A similar observation can be made for traffic
dataset.While it requires about 64% of the traffic dataset to represent
75% of the AUC, we can see that especially for target 50, the model
even performs better with only 64% of the dataset. This method can

159

CASCON’20, November 2020, Toronto, Ontario, Canada Nicholas Prayogo, Mucahit Cevik, and Merve Bodur

random dtw_min freq_min dtw_max freq_max pearson
selection_mode

0.13

0.14

0.15

0.16

0.17

ND

<10% 10-25% 25-50% 50-100%

(a) DeepAR on electricity

random dtw_min freq_min dtw_max freq_max pearson
selection_mode

0.150

0.175

0.200

0.225

0.250

ND

<10% 10-25% 25-50% 50-100%

(b) DeepState on electricity

random dtw_min freq_min dtw_max freq_max pearson
selection_mode

0.07

0.08

0.09

0.10

0.11

0.12

ND

<10% 10-25% 25-50% 50-100%

(c) DeepAR on traffic

random dtw_min freq_min dtw_max freq_max pearson
selection_mode

0.14

0.16

0.18

0.20

ND

<10% 10-25% 25-50% 50-100%

(d) DeepState on traffic

random dtw_min freq_min dtw_max freq_max pearson
selection_mode

0.1

0.2

0.3

ND

<10% 10-25% 25-50% 50-100%

(e) DeepAR on m4_hourly

random dtw_min freq_min dtw_max freq_max pearson
selection_mode

0.2

0.3

0.4

0.5

0.6

ND

<10% 10-25% 25-50% 50-100%

(f) DeepState on m4_hourly

Figure 6: Distance- and correlation-based sampling results for target time series 50

thus be used to significantly reduce training data especially when a
small percentage of the dataset represents a large percentage of the
AUC curve. A possible extension to this approach can be to find
the optimal percentile given accuracy and run time constraints.

Similarly, by using only the top 25% closest to the target cluster
centroid (kmeans_25), the model is able to perform almost as well
while taking only roughly 6%, 1%, and 3% of the time to train for
electricity, traffic, m4_hourly respectively. However, as we similarly
observe in the previous section, there is no clear distinction on
which sampling method is the best.

6 CONCLUSION AND FUTURE DIRECTIONS
In this paper, we present an empirical study to quantify the impact
of adding more time series to the training set of a global deep neural
probabilistic model on improving the predictive performance. We
find that a careful selection of time series can leverage cross-series
information better and in turn yield improved forecasts for a target
time series, and save significant computational effort. Consider-
ing the fact that the performance of many modern global methods

working with a large number of time series highly depend on data
pre-processing, e.g., scalarization, and careful hyperparameter tun-
ing, time series sampling can also help in reducing such efforts and
help us obtain more robust methods.

In that regard, we see our study as the first step to investigate
the impact of strategically sampling time series in global forecast-
ing models. We conclude the paper by outlining some intriguing
directions for future research as follows:

• Experiment with other methods such as Deep Factors [26]
and Deep TCN [7]

• Compare with feature-based sampling
• Extend from a single target time series to a subset of target
time series

• Combine time series sampling with input transformation
• Develop a dynamic/adaptive time series sampling method
• Extend to an interpretability setting to determine the impor-
tance of individual time series in global models

• Incorporate these ideas into architecture design

160

Time Series Sampling for Probabilistic Forecasting CASCON’20, November 2020, Toronto, Ontario, Canada

Table 4: Impact of time series sampling on DeepAR model performance

target_id mode n_series training_time (sec) ND NRMSE p90

electricity

8 full 321 24,859.2 0.103 0.171 0.068
8 dtw_min_25 80 5,436.8 0.123 0.187 0.067
8 kmeans_25 63 1,491.1 0.117 0.182 0.070
8 NC 51 1,867.5 0.113 0.180 0.066
50 full 321 22,269.9 0.132 0.183 0.070
50 dtw_min_25 80 5,732.4 0.135 0.181 0.071
50 kmeans_25 63 1,529.5 0.131 0.180 0.073
50 NC 51 1,837.2 0.134 0.183 0.076

traffic

8 full 862 38,887.6 0.123 0.241 0.070
8 dtw_min_25 225 9,053.7 0.137 0.267 0.088
8 kmeans_25 37 473.1 0.146 0.283 0.085
8 NC 551 11,185.4 0.140 0.268 0.088
50 full 862 34,896.6 0.076 0.188 0.061
50 dtw_min_25 225 10,082.4 0.076 0.174 0.066
50 kmeans_25 45 587.6 0.078 0.175 0.066
50 NC 551 11,132.4 0.073 0.170 0.061

m4_hourly

8 full 414 2191.2 0.072 0.082 0.033
8 dtw_min_25 105 229.6 0.052 0.066 0.019
8 kmeans_25 3 6.4 0.065 0.081 0.039
8 NC 31 67.9 0.092 0.101 0.036
50 full 414 2190.0 0.071 0.089 0.032
50 dtw_min_25 105 230.4 0.049 0.065 0.023
50 kmeans_25 84 182.9 0.092 0.106 0.035
50 NC 31 67.6 0.054 0.067 0.030

Acknowledgment. The authors would like to thank Juyoung
Wang for valuable discussions throughout this work. The authors
also would like to thank LG Sciencepark for providing support for
this project.

REFERENCES
[1] Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah. 2015. Time-

series clustering–a decade review. Information Systems 53 (2015), 16–38.
[2] S Santhosh Baboo and I Kadar Shereef. 2010. An efficient weather forecasting

system using artificial neural network. International journal of environmental
science and development 1, 4 (2010), 321.

[3] Kasun Bandara, Christoph Bergmeir, and Slawek Smyl. 2020. Forecasting across
time series databases using recurrent neural networks on groups of similar series:
A clustering approach. Expert Systems with Applications 140 (2020), 112896.

[4] Konstantinos Benidis, Syama Sundar Rangapuram, Valentin Flunkert, Bernie
Wang, DanielleMaddix, Caner Turkmen, Jan Gasthaus,Michael Bohlke-Schneider,
David Salinas, Lorenzo Stella, et al. 2020. Neural forecasting: Introduction and
literature overview. arXiv preprint arXiv:2004.10240 (2020).

[5] Donald J Berndt and James Clifford. 1994. Using dynamic time warping to find
patterns in time series.. In KDD workshop, Vol. 10. Seattle, WA, 359–370.

[6] George EP Box and GwilymM Jenkins. 1968. Some recent advances in forecasting
and control. Journal of the Royal Statistical Society. Series C (Applied Statistics) 17,
2 (1968), 91–109.

[7] Yitian Chen, Yanfei Kang, Yixiong Chen, and Zizhuo Wang. 2020. Probabilistic
forecasting with temporal convolutional neural network. Neurocomputing (2020).

[8] Tsan-Ming Choi, Chi-Leung Hui, Na Liu, Sau-Fun Ng, and Yong Yu. 2014. Fast
fashion sales forecasting with limited data and time. Decision Support Systems 59
(2014), 84–92.

[9] Charisios Christodoulos, ChristosMichalakelis, and Dimitris Varoutas. 2010. Fore-
casting with limited data: Combining ARIMA and diffusion models. Technological

forecasting and social change 77, 4 (2010), 558–565.
[10] M. Cuturi. 2015. UCI Machine Learning Repository. https://archive.ics.uci.edu/

ml/datasets/PEMS-SF.
[11] Chirag Deb, Fan Zhang, Junjing Yang, Siew Eang Lee, and Kwok Wei Shah. 2017.

A review on time series forecasting techniques for building energy consumption.
Renewable and Sustainable Energy Reviews 74 (2017), 902–924.

[12] Hansika Hewamalage, Christoph Bergmeir, and Kasun Bandara. 2019. Recurrent
neural networks for time series forecasting: Current status and future directions.
arXiv preprint arXiv:1909.00590 (2019).

[13] Che-Chiang Hsu and Chia-Yon Chen. 2003. Regional load forecasting in Taiwan—
-applications of artificial neural networks. Energy conversion and Management
44, 12 (2003), 1941–1949.

[14] Rob J Hyndman, Earo Wang, and Nikolay Laptev. 2015. Large-scale unusual time
series detection. In 2015 IEEE international conference on data mining workshop
(ICDMW). IEEE, 1616–1619.

[15] Bjoern Krollner, Bruce J Vanstone, and Gavin R Finnie. 2010. Financial time series
forecasting with machine learning techniques: a survey.. In ESANN.

[16] Bryan Lim and Stefan Zohren. 2020. Time Series ForecastingWith Deep Learning:
A Survey. arXiv preprint arXiv:2004.13408 (2020).

[17] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. 2020. The
M4 Competition: 100,000 time series and 61 forecasting methods. International
Journal of Forecasting 36, 1 (2020), 54–74.

[18] Stephan Rabanser, Tim Januschowski, Valentin Flunkert, David Salinas, and Jan
Gasthaus. 2020. The Effectiveness of Discretization in Forecasting: An Empirical
Study on Neural Time Series Models. arXiv preprint arXiv:2005.10111 (2020).

[19] Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella,
Yuyang Wang, and Tim Januschowski. 2018. Deep state space models for time
series forecasting. In Advances in neural information processing systems. 7785–
7794.

[20] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. 2019.
DeepAR: Probabilistic forecasting with autoregressive recurrent networks. Inter-
national Journal of Forecasting (2019).

161

https://archive.ics.uci.edu/ml/datasets/PEMS-SF
https://archive.ics.uci.edu/ml/datasets/PEMS-SF

CASCON’20, November 2020, Toronto, Ontario, Canada Nicholas Prayogo, Mucahit Cevik, and Merve Bodur

[21] Rajat Sen, Hsiang-Fu Yu, and Inderjit S Dhillon. 2019. Think globally, act locally:
A deep neural network approach to high-dimensional time series forecasting. In
Advances in Neural Information Processing Systems. 4837–4846.

[22] Diego F Silva and Gustavo EAPA Batista. 2016. Speeding up all-pairwise dynamic
time warping matrix calculation. In Proceedings of the 2016 SIAM International
Conference on Data Mining. SIAM, 837–845.

[23] Manie Tadayon and Yumi Iwashita. 2020. Comprehensive Analysis of Time Series
Forecasting Using Neural Networks. arXiv preprint arXiv:2001.09547 (2020).

[24] Mukesh K Tiwari and Jan F Adamowski. 2015. Medium-term urban water demand
forecasting with limited data using an ensemble wavelet–bootstrap machine-
learning approach. Journal of Water Resources Planning and Management 141, 2

(2015), 04014053.
[25] A. Trindade. 2015. UCI Machine Learning Repository. https://archive.ics.uci.

edu/ml/datasets/ElectricityLoadDiagrams20112014.
[26] Yuyang Wang, Alex Smola, Danielle C Maddix, Jan Gasthaus, Dean Foster,

and Tim Januschowski. 2019. Deep factors for forecasting. arXiv preprint
arXiv:1905.12417 (2019).

[27] G Peter Zhang. 2003. Time series forecasting using a hybrid ARIMA and neural
network model. Neurocomputing 50 (2003), 159–175.

[28] G Peter Zhang. 2004. Neural networks in business forecasting. IGI global.

162

https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014

Insights into WebAssembly: Compilation Performance and
Shared Code Caching in Node.js

Tobias Nießen
Faculty of Computer Science
University of New Brunswick

tniessen@unb.ca

Michael Dawson
IBM Runtime Technologies

IBM Canada
Michael_Dawson@ca.ibm.com

Panos Patros
Software Engineering
University of Waikato

panos.patros@waikato.ac.nz

Kenneth B. Kent
Faculty of Computer Science
University of New Brunswick

ken@unb.ca

ABSTRACT
Alongside JavaScript, V8 and Node.js have become essential com-
ponents of contemporary web and cloud applications. With the
addition of WebAssembly to the web, developers finally have a fast
platform for performance-critical code. However, this addition also
introduces new challenges to client and server applications. New
application architectures, such as serverless computing, require
instantaneous performance without long startup times. In this pa-
per, we investigate the performance of WebAssembly compilation
in V8 and Node.js, and present the design and implementation of
a multi-process shared code cache for Node.js applications. We
demonstrate how such a cache can significantly increase applica-
tion performance, and reduce application startup time, CPU usage,
and memory footprint.

CCS CONCEPTS
• Software and its engineering → Compilers; Software per-
rmance; • Computer systems organization Cloud comput-fo →

ing.

KEYWORDS
WebAssembly, compiler, code cache, Node.js, V8, JavaScript
ACM Reference Format:
Tobias Nießen, Michael Dawson, Panos Patros, and Kenneth B. Kent. 2020.
Insights into WebAssembly: Compilation Performance and Shared Code
Caching in Node.js. In Proceedings of 30th Annual International Conference
on Computer Science and Software Engineering (CASCON’20). IBM Corp.,
RIverton, NJ, USA, 10 pages.

1 INTRODUCTION
WebAssembly is a new hardware abstraction that aims to be faster
than interpreted languages without sacrificing portability or secu-
rity. Conceptually, WebAssembly is a virtual machine and binary-
code format specification for a stack machine with separate, linearly
addressable memory. However, unlike many virtual machines for
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CASCON’20, November 10–13, 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

high-level languages, the WebAssembly instruction set is closely re-
lated to actual instruction sets of modern processors, since the initial
WebAssembly specification does not contain high-level concepts
such as objects or garbage collection [8]. Because of the similarity of
the WebAssembly instruction set to physical processor instruction
sets, many existing “low-level” languages can already be compiled
to WebAssembly, including C, C++, and Rust.

WebAssembly also features an interesting combination of secu-
rity properties. By design, WebAssembly can only interact with its
host environment through an application-specific interface. There
is no built-in concept of system calls, but they can be implemented
through explicitly imported functions. This allows the host to mon-
itor and restrict all interaction between WebAssembly code and
the host environment. Another important aspect is the concept
of linear memory: Each WebAssembly instance can access mem-
ory through linear memory, a consecutive virtual address range
that always begins at address zero. The host environment needs
to translate virtual memory addresses into physical addresses on
the host system, and ensure that virtual addresses do not exceed
the allowed address range. On modern hardware, this can be imple-
mented using the Memory Management Unit (MMU) and hardware
memory protection features, leading to minimal overhead while
allowing direct memory access to linear memory and preventing
access to other memory segments of the host system [8]. Combined,
these properties allow running the WebAssembly code both with
full access to the real system, and in a completely isolated sandbox,
without any changes to the code itself.

These properties make WebAssembly an attractive platform for
performance-critical portable code, especially in web applications.
However, WebAssembly makes no inherent assumptions about its
host environment, and can be embedded in other contexts such as
Node.js, a framework built on top of the JavaScript engine V8. Not
only does Node.js share many technological aspects, such as the
programming language JavaScript, with web applications, but its
performance and portability goals align well with those of Web-
Assembly. Sandboxing, platform-independence, and high perfor-
mance are especially relevant in cloud-based application backends,
the primary domain of Node.js.

However, one hindrance remains: Because WebAssembly code is
tailored towards a conceptual machine, it can either be interpreted
on the host machine, or first be compiled into code for the actual
host architecture. As we will see below, interpretation leads to

163

CASCON’20, November 10–13, 2020, Toronto, Canada Tobias Nießen, Michael Dawson, Panos Patros, and Kenneth B. Kent

inadequate performance. At the same time, compilation of large
WebAssembly modules can lead to considerable delays during the
application’s startup phase.

Node.js is often used in “serverless computing:” Instead of keep-
ing a number of servers running at all times, the provider allocates
resources dynamically with aminimal scope. For example, Function-
as-a-Service (FAAS), sometimes referred to as “serverless functions,”
is a deployment model in which the provider only allocates enough
resources for a single function to be executed for each request, and
no internal state is preserved between requests [2]. In this scenario,
it is crucial for the function to be executed quickly in order to
produce the desired response to an incoming request with mini-
mal latency, making it unfeasible to compile large WebAssembly
modules on each request.

In this paper, we analyze the performance of V8’s WebAssembly
compilers. Sections 2 and 3 provide an overview of background
and related work. We analyze the performance of code generated
by V8 in Section 4. In Section 5, we investigate the performance
of V8’s WebAssembly compilers themselves, and the performance
benefits of caching compiled code. Finally, in Section 6, we present
and evaluate the design and implementation of a multi-process
shared code cache for WebAssembly code in Node.js applications.

2 BACKGROUND
With the addition of WebAssembly to Node.js, there are three kinds
of code that are supported: JavaScript, native addons, and Web-
Assembly. While JavaScript code and WebAssembly are interpreted
and/or compiled by V8 (see Section 4), native addons behave like
shared libraries and allow embedding “native” code, e.g., compiled C
or C++ code. UnlikeWebAssembly, native addons have direct access
to the underlying system and its resources (file systems, network
interfaces, etc.). While this might be a desired or even required
feature for some use cases, it might be a security risk in others
[7]. Additionally, native addons usually need to be compiled on
the target platform, while WebAssembly is portable and agnostic
of the system architecture. Most existing research around Web-
Assembly focuses on performance comparisons between JavaScript,
WebAssembly, and native code.

Haas et al. described the motivation behind WebAssembly, its
design goals, code execution and validation [8]. The authors used
the PolyBench/C benchmark [23] to compare the performance of
WebAssembly to that of native code and asm.js [12], a subset of
JavaScript designed to be used as a compilation target for C code,
which could then be executed by a JavaScript runtime. They found
that WebAssembly was 33.7% faster on average than asm.js, and
that the execution time of WebAssembly was less than 150% of the
native execution time for 20 out of 24 benchmarks. It is important
to note that V8 only implemented the TurboFan compiler [25] at
that time, and did not use the Liftoff compiler [10].

Herrera et al. used the Ostrich benchmark suite [16] to compare
the performance of native code, WebAssembly, and JavaScript. The
benchmark performs numerical computations that are deemed rel-
evant for scientific computations, such as machine learning. While
they also found WebAssembly in Node.js to be slower than native
code, WebAssembly consistently outperformed JavaScript in all
tested web browsers and Node.js [13, 14].

Malle et al. conducted experiments comparing WebAssembly
to JavaScript, asm.js, and native code in the context of artificial
intelligence algorithms [18]. The results are in line with the results
reported by Haas et al. [8] and Herrera et al. [13, 14], and again show
that WebAssembly is faster than JavaScript, but slower than native
code. The authors suggest that future additions to WebAssembly
such as SIMD instructions will likely reduce the difference between
WebAssembly and native code.

Hall et al. investigated WebAssembly as a platform for server-
less applications. They came to the conclusion that the security
properties of WebAssembly allow isolation similar to virtualization
via containers, and that, while WebAssembly generally did not out-
perform native code, containers often took longer to start than the
respective WebAssembly implementations [9].

Matsuo et al. suggested using WebAssembly in browser-based
volunteer computing. They found WebAssembly outperformed
JavaScript for long-running tasks, but the overhead of compiling
and optimizing WebAssembly before being able to run it caused
performance gains to disappear for tasks with short durations [19].

Jangda et al. exposed performance flaws of WebAssembly im-
plementations in web browsers [15]. They found that, on average,
WebAssembly code in the V8-based web browser Chrome is 55%
slower than native code. While comparing code generated by V8 to
native code generated by a C compiler, the authors observed that V8
produces more instructions. This leads to more CPU cycles required
to execute the code and more cache misses in the processor’s L1
instruction cache. Code generated by V8 also suffers from increased
register pressure due to sub-optimal register allocations and the fact
that V8 reserves some registers for memory management. Finally,
the WebAssembly specification mandates certain safety checks at
runtime, which also incur a performance cost. However, despite
these problems, the authors also showed that WebAssembly was
54% faster than asm.js in the same browser.

The multitude of publications highlighting the performance ben-
efits of WebAssembly over JavaScript has inspired efforts to sim-
plify the integration of WebAssembly into existing JavaScript ap-
plications. For example, Reiser et al. proposed a cross-compilation
method from JavaScript toWebAssembly that resulted in significant
speedups of computationally intensive algorithms [24].

3 RELATEDWORK
The idea of caching compiled code beyond single processes is not
new, and has been implemented for other languages.

Bhattacharya et al. discussed improvements for the shared class
cache (SCC) used by the J9 Java virtual machine. While its primary
purpose is to reduce memory usage by sharing required class files,
the SCC also contains compiled code, reducing application startup
times significantly [3, 11].

Patros et al. invented a mechanism to reuse compilation results
for Platform as a Service (PaaS) clouds via Dynamically Compiled
Artifact Sharing (DCAS), with a focus on the Java SCC [6, 21].

Park et al. proposed a method to reuse code generated by an
optimizing JavaScript just-in-time (JIT) compiler, allowing ahead-
of-time (AOT) compilation based on previous compilations of the
same code. Their benchmarks demonstrated significant speedups

164

Insights into WebAssembly: Compilation Performance and Shared Code Caching in Node.js CASCON’20, November 10–13, 2020, Toronto, Canada

in JavaScript application performance [20]. The authors also high-
lighted the need for such technologies due to the increasing code
size of web applications.

Haas et al. discuss two ways to improve compilation and startup
times for WebAssembly in web browsers [8]. According to their
research, parallel compilation using multiple threads leads to com-
pilation times that are 80% lower than those of single-threaded
compilation. V8 already implements parallel compilation by as-
signing individual WebAssembly functions to separate compilation
threads. The authors also suggest that developers cache compiled
WebAssembly modules in browsers using client-side IndexedDB
databases [1]. However, IndexedDB is not available in Node.js,
and as of 2020, support for WebAssembly modules in IndexedDB
databases has been removed from V8, making it impossible for
developers to explicitly cache compiled WebAssembly modules.
Instead, web browsers are encouraged to implement implicit code
caching as part of streaming WebAssembly compilation [4], which
is not available in Node.js.

4 COMPILATION AT RUNTIME
The compiler infrastructure within V8 has changed significantly in
the last few years. Even for the relatively new WebAssembly lan-
guage, V8 implements a complex combination of compilation proce-
dures for WebAssembly. The basic components are a WebAssembly
interpreter, the baseline compiler Liftoff [10], and the optimizing
compiler TurboFan, that V8 also uses to compile JavaScript [25, 26].

Since JavaScript code itself does not contain static type informa-
tion, it is difficult to compile it directly [20]. Due to this difficulty, V8
begins JavaScript execution using the Ignition interpreter, and only
when the interpreter has identified “hot” code sections, the Turbo-
Fan compiler is used to optimize and compile these JavaScript func-
tions using type information gathered by Ignition. WebAssembly,
on the other hand, is not a high-level language, and not dynamically
typed, and it is, therefore, not necessary to collect dynamic type
information before compiling WebAssembly code [10].

The TurboFan compiler optimizes and compiles WebAssembly
through a complicated pipeline that first decodes WebAssembly
function bodies and constructs graph representations. These graph
representations are in Static Single Assignment form (SSA) and use
the “Sea of Nodes” concept introduced by Click in his dissertation
[5]. TurboFan then applies optimizations to the SSA, selects ap-
propriate instructions for the target architecture, allocates CPU
registers, and finally generates code.

The Liftoff compiler, on the other hand, was designed to be fast
at the cost of generating less optimized code. Even though it is
newer than the TurboFan compiler, it is not meant as a replacement,
but as the initial compilation stage to quickly produce a usable
module. Like TurboFan, Liftoff begins by decoding WebAssembly
function bodies, but then immediately begins code generation in a
single pass, without constructing an SSA graph representation or
optimizing the code [10].

4.1 WebAssembly JavaScript Interface
From an application developer’s perspective, JavaScript applications
can compile WebAssembly modules in two ways. The first is to
call the constructor of the WebAssembly.Module class, which will

synchronously compile the code, meaning that it will block the
calling thread for the duration of the compilation. The second is
the asynchronous function WebAssembly.compile, which will not
block the calling thread.

By default, WebAssembly.Module uses Liftoff to compile the
code, which is the faster compiler, and thus causes the smallest
delay in the calling thread. V8 compiles the same module again, in
a set of background threads, using the optimizing TurboFan com-
piler. When the optimized compilation result for a WebAssembly
function is ready, the next invocation of the function uses the code
produced by the TurboFan compiler instead of the output of Liftoff.
This process is called “tiering up”, and is a tradeoff between startup
time and code generation quality [10].

WebAssembly.compile, on the other hand, is an asynchronous
function and, therefore, not as concerned with blocking the calling
thread. Its default behavior is to use the TurboFan compiler, skip-
ping the baseline compilation step. This causes the compilation to
generally take longer than synchronous compilation would, but
produces the optimized result directly.

4.2 Performance of generated code
In order to compare the performance of code generated by Liftoff
to code generated by TurboFan, we compiled the PolyBench/C 4.2
benchmarks [23] to WebAssembly with compiler optimization and
Link Time Optimization (LTO) enabled. These benchmarks are
scientific computing kernels andwere already used byHaas et al. [8]
and Jangda et al. [15] to compare the performance of WebAssembly
to the performance of native code execution. Instead, we use the
benchmarks to compare the performance of code generated by
Liftoff to the performance of code generated by TurboFan.

We conducted all experiments on Ubuntu 19.04 running on an
Intel® Core™ i7-8700 processor (base frequency 3.20GHz, turbo
frequency 4.60GHz, 6 cores, 12 threads) with 32GB of memory (2666
MHz). We used Node.js v14.2.0, the most recent Node.js version at
the time of writing, which is based on V8 version 8.1.307.31-node.33.

We compiled and ran each of the 30 PolyBench/C benchmarks
one hundred times with only Liftoff enabled, and another one hun-
dred times with only TurboFan enabled. We measured the time it
took for the benchmarks to complete, which does not include their
respective compilation times. Figure 1 shows the average speedup
of the code generated by TurboFan with respect to the code gen-
erated by Liftoff for each benchmark, with error bars indicating
the standard deviation. All benchmarks were faster when compiled
with TurboFan, the average speedup across all benchmarks is 2.0,
and the maximum speedup is 3.2.

We also ran all benchmarks using V8’s WebAssembly interpreter.
On average, the PolyBench/C benchmarks were 247 times slower
when interpreted than when compiled using TurboFan, and 115
times slower than when compiled using Liftoff. Sixteen of the 30
benchmarks were at least 200 times faster when compiled with Tur-
boFan than when interpreted. While interpretation allows running
WebAssembly code without prior compilation, its code execution
is too slow for use in real applications.

We can conclude that the optimized code generated by TurboFan
is indeed significantly faster than code generated by the baseline
compiler Liftoff, and that the code produced by both compilers is

165

CASCON’20, November 10–13, 2020, Toronto, Canada Tobias Nießen, Michael Dawson, Panos Patros, and Kenneth B. Kent

2m
m
3m
m adi ata

x
bic
g

cho
les
ky

cor
rel
ati
on

cov
ari
an
ce

der
ich
e

do
itg
en
du
rbi
n
fdt
d-2
d

flo
yd
-w
ars
ha
ll
gem

m
gem

ver

ges
um
mv

gra
ms
chm

idt

he
at-
3d

jac
ob
i-1
d

jac
ob
i-2
d

lud
cm
p lu mv

t

nu
ssi
no
v

sei
del
-2dsym

m
syr
2k syr

k
tris
olvtrm

m
0

0.5

1.5
2

2.5
3

1

PolyBench/C 4.2 benchmark

Sp
ee
du

p

Figure 1: Speedup of code generated by TurboFan with respect to Liftoff

much faster than V8’s WebAssembly interpreter. However, Poly-
Bench/C is not a good basis for testing the performance of the
compilers themselves, since the benchmarks are small and the Web-
Assemblymodules are structurally very similar. In the following, we
compare compilation times as well as CPU and memory footprint
of both compilers.

5 CODE CACHING
Due to portability and security concerns, WebAssembly was de-
signed to be compiled to the target architecture’s instruction set at
runtime. However, when running code from a trusted source on a
single architecture, or untrusted code within a container or sand-
box, these concerns become less relevant. Especially in scenarios
where a Node.js application is expected to be initialized quickly, for
example, when used as a command-line tool, as a desktop appli-
cation, or in serverless computing, performance might be a more
crucial factor. Here, usingWebAssembly modules by first compiling
them can cause visible delays.

5.1 Code extraction and insertion
Prior to designing a shared code cache, we need to find a way to
efficiently retrieve compiled code from V8, and later inject the same
code in a different V8 process.

While current versions of V8 provide such features for streaming
WebAssembly compilation, no usable interface exists for Node.js,
which only supports non-streaming WebAssembly compilation.
However, V8 has internal functions that allow serializing compiled
WebAssembly modules into byte sequences, and deserializing byte
sequences into compiled WebAssembly modules. We developed
an add-on for Node.js that exposes these internal V8 features to
Node.js applications: serialize returns a JavaScript ArrayBuffer
based on a given WebAssembly.Module, and deserialize creates
a WebAssembly.Module based on the WebAssembly module bytes
(referred to as “wire bytes” within V8) and the byte sequence gen-
erated by the serialize function.

This pair of functions is sufficient to extract code from a compiled
module, store it in a cache entry, and later use the cache entry to
obtain a usable module. This data flow is depicted in Figure 2.

V8 allows selectively disabling Liftoff and TurboFan. If a pro-
cess is started with only Liftoff enabled, V8 prevents inserting code

Wire Bytes

Compiler

Module

Serializer Cache Entry

Wire Bytes

Deserializer

Module

Figure 2: WebAssembly cache data flow: Cache entry cre-
ation (left) and cache entry retrieval (right)

generated by TurboFan (and vice versa). A proper cache lookup
therefore requires knowledge about the current process’s V8 con-
figuration. To achieve this, our Node.js add-on allows applications
to check relevant V8 flags.

In order to create realistic benchmarks, we extracted 115 Web-
Assembly modules from existing JavaScript applications, with mod-
ule sizes ranging from as little as 1068 bytes to 37.3 MiB. It would be
difficult to run the code represented by the WebAssembly modules
in the way intended by their creators, since each module performs
application-specific tasks and has certain requirements towards its
host environment. However, our experiment is focused on compil-
ing WebAssembly modules, which does not require running the
compiled modules.

The approach Park et al. [20] used to cache compiled JavaScript
code used cache entries that were much larger than the original
JavaScript files. Similarly, we observe that serialized compiled Web-
Assembly modules are often considerably larger than the original
WebAssembly files. Figure 3 shows the ratio of the serialized size to
the original size based on the WebAssembly modules we extracted
from existing applications, depending on which compiler was used
by V8. In the case of JavaScript, better performance was achieved
by caching optimized code in addition to intermediate bytecode, ef-
fectively increasing the size of cache entries [20]. For WebAssembly,

166

Insights into WebAssembly: Compilation Performance and Shared Code Caching in Node.js CASCON’20, November 10–13, 2020, Toronto, Canada

TurboFan Liftoff
0
1
2
3
4
5
6

Compiler

Si
ze

fa
ct
or

Figure 3: Ratio of serialized compilation result size to Web-
Assembly module size

it is sufficient to store the optimized compilation result (left side),
which is significantly smaller than the result of the non-optimizing
compiler Liftoff (right side), but still up to five times larger than the
original WebAssembly module.

5.2 Compiler performance
Most importantly, we need to compare the performance of both
compilers to the previously mentioned deserialization method. The
hypothesis is that deserializing cached code uses less resources
than compiling a WebAssembly module.

In order to test the hypothesis, wemeasured the real elapsed time
it takes to obtain a compiled, usable module from the WebAssembly
module bytes (“wire bytes”). To achieve comparable results, we
disabled tiering up (see Section 4.1), only enabled one compiler at a
time, and used the synchronous WebAssembly.Module constructor
for Liftoff and TurboFan. Additionally, we took the same measure-
ments for the previously described deserialization method. In this
case, the module had already been compiled and optimized by the
TurboFan compiler, and the serialized compiled module is available
in memory (in addition to the wire bytes).

Each measurement is taken in a separate process. For each such
process, we also record the CPU time of the process, that is, the
total duration that threads of the process were scheduled on any
of the CPU cores in user or system mode, and the peak physical
memory usage through the VmHWM statistic provided by the Linux
kernel. These metrics are equally if not more important than the
elapsed real time required to compile a module. Even under the
simplified assumption that CPU time and memory are the only
resource constraints of a process, both of these resources are finite,
and must be shared among all processes on the same system. While
a high CPU time to real elapsed time ratio is an indication of well-
designed parallelism, it also means that few concurrent instances of
the same process might already use all available CPU time, and any
additional instances could cause the performance of all processes to
degrade. For cloud applications, it is realistic to assume that more
than one process will be active on the same hardware at a time.

We recorded eachmeasurement for each of the 115WebAssembly
modules 100 times. The mean values of elapsed real time, CPU time,
and memory usage for each module are depicted in Figures 4, 5,
and 6, respectively.

As shown in Figure 4, all three methods generally take longer for
larger modules than for smaller ones. For legibility, Figures 4, 5, and
6 do not include errors bars. Instead, Figures 7, 8, and 9 show the
significance of improvements. For two variables with mean values
𝜇1, 𝜇2 and standard deviations 𝜎1, 𝜎2, we define the significance
of the change as (𝜇1 − 𝜇2)/(𝜎1 + 𝜎2). By convention, we call the
difference statistically significant if the significance is at least one.

By this definition, Liftoff was significantly faster than TurboFan
for 111 modules (96.5%), used significantly less CPU time for 98
modules (85.2%), and had a significantly smaller memory footprint
for 110 modules (95.7%).

When comparing deserialization to compilation using TurboFan,
we measured statistically significant compilation time improve-
ments for 112 modules (97.4%), CPU time improvements for 102
modules (88.7%), and memory usage improvements for 101 modules
(87.8%). For 111 modules (96.5%), the speedup was at least 2, and
for 77 modules (67.0%), the speedup was at least 20. Similarly, for
98 modules (85.2%), the CPU time was reduced by at least 50%, and
for 54 modules (47.0%), it was reduced by at least 90%.

Compared to compilation using Liftoff, we observed significant
compilation time improvements for 99 modules (86.1%), significant
CPU time improvements for 77 modules (67.0%), and significant
memory usage improvements for 41 modules (35.7%). For 69 mod-
ules (60.0%), the speedup was at least 2. The CPU time was reduced
by at least 50% for 64 modules (55.7%).

The only statistically significant regression is an increase in
memory usage for 39 modules (33.9%) when compared to Liftoff,
and for 6 modules (5.2%) when compared to TurboFan. In these
cases, however, the difference is small (less than 20%, see Figure 6).

Since the deserializer is synchronous, it is consistent to compare
it to synchronous WebAssembly compilation. However, we also
repeated this experiment with asynchronous WebAssembly compi-
lation, and found that asynchronous compilation was significantly
slower than synchronous compilation for 85 modules (73.9%) in
the case of TurboFan, and for 91 modules (79.1%) in the case of
Liftoff. For both compilers, this results in even larger differences
when compared to deserialization, and we therefore decided not to
present these results in detail.

We also repeated the experiment with deserialization of code
generated by Liftoff instead of optimized code produced TurboFan,
which leads to a larger serialized format (see Section 5.1). We found
that it also causes longer deserialization times, and no significant
improvements of real elapsed time, CPU time, or memory usage.

5.3 Module identification
The client needs to be able to identify each WebAssembly module
in order to look it up in a cache. Since the JavaScript WebAssembly
API is agnostic to the source of the WebAssembly module code, a
module can only be identified by its code, and no file path or URL
is available. Traditional information-theoretic algorithms, such as
CRC32C, and cryptographic hash functions, such as SHA-1, pro-
vide reliable and, in the case of hash functions, collision-resistant
identification methods. In scenarios where a hash collision could
result in a security problem, cryptographic hash functions must be
used for identification. However, these functions generally run in

167

CASCON’20, November 10–13, 2020, Toronto, Canada Tobias Nießen, Michael Dawson, Panos Patros, and Kenneth B. Kent

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

100

101

102

103

WebAssembly module size [bytes]

El
ap
se
d
re
al
tim

e
[m

s]

TurboFan
Liftoff
Deserialization

Figure 4: Compilation times by approach

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

102

103

104

WebAssembly module size [bytes]

Co
m
pi
la
tio

n
CP

U
tim

e
[m

s]

TurboFan
Liftoff
Deserialization

Figure 5: Compilation CPU times by approach

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
225

226

227

228

229

230

WebAssembly module size [bytes]

M
em

or
y
us
ag
e
[b
yt
es
]

TurboFan
Liftoff
Deserialization

Figure 6: Compilation memory usage by approach

168

Insights into WebAssembly: Compilation Performance and Shared Code Caching in Node.js CASCON’20, November 10–13, 2020, Toronto, Canada

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

10

100

1

WebAssembly module size [bytes]

D
iff
er
en
ce

(d
iv
id
ed

by
𝜎
1
+𝜎

2) Improvement over TurboFan
Improvement over Liftoff

Figure 7: Significance of compilation time improvements

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

10

100

1

WebAssembly module size [bytes]

D
iff
er
en
ce

(d
iv
id
ed

by
𝜎
1
+𝜎

2) Improvement over TurboFan
Improvement over Liftoff

Figure 8: Significance of compilation CPU time improvements

213 214 215 216 217 218 219 220 221 222 223 224

10

100

1

WebAssembly module size [bytes]

D
iff
er
en
ce

(d
iv
id
ed

by
𝜎
1
+𝜎

2) Improvement over TurboFan
Improvement over Liftoff

Figure 9: Significance of memory usage improvements

169

CASCON’20, November 10–13, 2020, Toronto, Canada Tobias Nießen, Michael Dawson, Panos Patros, and Kenneth B. Kent

211 214 217 220 223
103

104

105

106

107

WebAssembly module size [bytes]

Ti
m
e
[n
s]

CRC32C
SHA-1
fp16

Figure 10: Performance comparison between fp16, CRC32C,
and SHA-1 in Node.js

mq

wasm

Lx Lt

Tx Tt

Server

Compiler

Figure 11: Shared cache server architecture

Θ(𝑛), which is undesirable for large WebAssembly modules in situ-
ations where a collision would not result in a security problem, e.g.,
because access to the cache is restricted to a single client. For such
cases, we define the function family fp𝑟 for 𝑟 ≥ 2 as follows: Let
𝑏0, . . . , 𝑏𝑛−1 be the input byte sequence, with 𝑏𝑖 ∈ { 0, . . . , 28 − 1 }
for 0 ≤ 𝑖 < 𝑛. Let 𝑝 be a linear congruential generator with
𝑝 (0) = 𝑏 ⌊𝑛/2⌋ and 𝑝 (𝑖 + 1) = (𝑎 ∗ 𝑝 (𝑖) + 𝑐) mod 232. We chose
𝑎 = 1664525 and 𝑐 = 1013904223 as suggested by Knuth [17]. Let
the result be the 𝑟 byte vector 𝑓0, . . . , 𝑓𝑟−1 with 𝑓0 = ⌊𝑛/28⌋ mod 28,
𝑓1 = 𝑛 mod 28, and 𝑓2+𝑖 = 𝑏𝑝 (𝑖+1) mod 𝑛 . In other words, the re-
sult consists of the length 𝑛 modulo 216 and the module bytes at
𝑟 − 2 pseudo-random locations. Each such function fp𝑟 only re-
quires 32-bit integer arithmetic, can be implemented efficiently in
JavaScript, and runs in O(1). While the resulting “fingerprint” is
neither unique nor collision-resistant, it is sufficiently unlikely to
collide with another module’s fingerprint. Figure 10 shows a perfor-
mance comparison between fp16, CRC32C, and SHA-1 in Node.js,
based on running each function 100,000 times on each of the 115
WebAssembly modules. With a constant runtime of 4.0 𝜇s, fp16 is
significantly faster than other identification methods.

6 SHARED CODE CACHE
With the previously discussed cache creation and retrieval method
from Section 5.1 and the performance benefits of code caching pre-
sented in Section 5.2, it is viable to construct a disk-based cache that
can be populated and used by individual processes. However, this
approach is troublesome for large application clusters: First, write

access to the code cache should be controlled strictly to prevent
malicious code injections, and it might be undesirable for all pro-
cesses that use WebAssembly to have permission to write compiled
code to the cache. Second, if a process uses Liftoff or tiering up to
improve its own startup time (see Sections 4 and 5.2), it might not
insert optimized code into the cache, but instead the output of the
baseline compiler. Third, a disk-based cache might reduce expected
speedups due to disk access times associated with potentially large
cache entries (see Section 5.1), which each new process might copy
from disk into memory.

6.1 Design and Implementation
To circumvent these problems, we designed and implemented a
novel approach to share compiled WebAssembly code between
Node.js processes. In the following, we will refer to the processes of
one or more Node.js applications as client processes. In this context,
a V8 configuration is a set of flags that affect V8’s internal behavior.
The cache implementation prevents loading incompatible cache
entries, and potentially maintains multiple cache entries for the
same WebAssembly module, but for different V8 configurations.
For example, Figure 11 includes a matrix of four configurations Lx,
Lt, Tx, and Tt, where the first letter indicates which is the fastest
enabled compiler (Liftoff or TurboFan), and the second indicates
whether the compiler is used exclusively, or if tiering up is enabled.

Client processes compile WebAssembly modules through a mod-
ified WebAssembly JavaScript Interface, which is compatible with
the one described in Section 4.1. The compilation procedure, given
a module represented by bytes 𝑏0, . . . , 𝑏𝑛−1, computes the module
identifier fp16 (𝑏0, . . . , 𝑏𝑛−1), and attempts to locate a cache entry
in a shared memory segment based on the computed module iden-
tifier and the current V8 configuration. If such an entry exists, the
compilaton procedure deserializes the cache entry to obtain a Web-
Assembly module instance without having to compile the module
bytes. If no such entry exists, the client process copies 𝑏0, . . . , 𝑏𝑛−1
into a new sharedmemory segment (wasm in Figure 11), and sends a
pointer to the new shared memory segment and the current V8 con-
figuration to an existing message queue (mq in Figure 11). Finally,
the client process falls back to V8’s original compilation procedure,
which, depending on the current configuration, uses Liftoff and/or
TurboFan to compile the code.

A separate server process is responsible for creating the message
queue mq. Upon receiving a pointer to a shared memory segment
wasm along with a valid V8 configuration, the server process starts
a new compiler process with parameters matching the received
V8 configuration. The compiler process loads the module bytes
𝑏0, . . . , 𝑏𝑛−1 from the sharedmemory segment, unlinks the segment,
and computes the module’s fingerprint fp16 (𝑏0, . . . , 𝑏𝑛−1). After
ensuring that no other compiler process is already compiling the
same module with the same V8 configuration, the process compiles
the module. If TurboFan has not been disabled in the given V8
configuration, the compiler process uses it to produce optimized
code. Only if TurboFan has been disabled, the compiler process uses
Liftoff, and therefore generates unoptimized code. Once compilation
finishes, the compiler process serializes the compiled WebAssembly
module, and writes the result to shared memory.

170

Insights into WebAssembly: Compilation Performance and Shared Code Caching in Node.js CASCON’20, November 10–13, 2020, Toronto, Canada

The modified WebAssembly JavaScript Interface was implement-
ed in JavaScript, except for the deserialization logic, which was
implemented in C++ due to the necessity to access internal V8
features, and communication with the message queue, which was
implemented in C++ and uses POSIX functions.

The server process code is written in C using POSIX functions
to access the message queue. The compiler processes execute Java-
Script code, and serialization logic written in C++. The actual com-
pilation procedures are an existing part of V8.

6.2 Evaluation
To evaluate our design and implementation, we consider two cases:

Cache miss: When a client process fails to locate a compiled
WebAssembly module in the shared cache, it not only needs to
compile the module itself, but also suffers from two additional
performance impairments. First, the client process needs to copy
the WebAssembly module bytes to a shared memory segment, and
notify the server process about the cache miss. Depending on the
module size, this can cause a short delay before compilation begins.
Second, while the client process compiles the module itself, the
server process will spawn a compiler process, which also compiles
the module, effectively increasing the system load, and potentially
increasing compilation times.

Cache hit: Upon successfully locating a compiled WebAssembly
module in the shared cache, the client process benefits from two
performance aspects. First, it does not need to compile the module,
which, on average, improves the time until the module is available,
and likely reduces CPU load and memory footprint (see Section 5.2).
According to the model proposed by Patros et al. [22], this also
reduces performance interference on co-located cloud tenants. Sec-
ond, if not forbidden by the process’s V8 configuration, the obtained
compiled code is already optimized, which would not be the case
with V8’s default tiering up behavior, or when using Liftoff. As we
have seen in Section 4.2, this can lead to improved execution times.

While we already know the impact of deserialization as com-
pared to compilation based on Section 5.2, we used PolyBench/C
(see Section 4.2) to create a set of artificial Node.js applications to
evaluate the performance impact of the shared cache. We measured
the real elapsed time it takes for each application to compile and
then execute its associated PolyBench/C benchmark. For this ex-
periment, we use the default V8 configuration, which enables both
Liftoff and TurboFan, and uses tiering up (see Section 4), and ran
each application 45 times.

Figure 12 shows the mean execution times for cache misses and
cache hits, with error bars corresponding to the standard deviation.
Since execution times between benchmarks vary tremendously,
all execution times were divided by the same measurement taken
without a cache in place. Similarly, the ratio between execution time
and compilation time varies greatly, therefore, we do not display
compilation and execution times in a stacked manner.

As expected, we see a performance regression for cache misses.
It is worth noting that the benchmarks with the largest (by per-
centage) performance regressions such as jacobi-1d are particularly
short-running, which means that the delay caused by copying the
module bytes to shared memory has a larger (by percentage) impact
on the total elapsed time.

We also observe performance improvements for almost all bench-
marks when a cache entry is found. The average speedup is 1.8, and
the maximum speedup is 3.0. We expect that different Node.js appli-
cations would see vastly different performance benefits, depending
on the WebAssembly modules in use.

Finally, most operating systems allow protecting shared memory
segments from unintended write access. It appears that such mea-
sures allow controlling read and write access to the shared code
cache sufficiently to prevent malicious code injections, for example,
by only giving write access to the compiler processes, and not to
client processes.

7 FUTUREWORK
A future direction for a shared code cache could be an extension to
a disk-based cache. While the system kernel might keep frequently
accessed cache entries in memory up to a certain size, large cache
entries might still have to be loaded from the disk, and could nega-
tively affect the cache performance. A balanced strategy might be
to only move modules from shared memory to disk when most of
the available memory is in use, and to prioritize frequently accessed
modules in memory.

While our shared cache implementation prevents duplicate com-
pilation on the server side, it does not prevent duplicate work
among client processes. The primary reason is that client processes
benefit from the shorter compilation times of tiering up, whereas
the server process is focused on producing optimized code at the
cost of longer compilation times. A future implementation could
reduce the amount of duplicate work between processes further.

It might also be worth considering data compression for cache
entries. Park et al. compressed cache entries in their JavaScript code
cache implementation, and successfully reduced the size of the code
cache with only minimal performance sacrifices [20]. However, as
long as cache entries are stored in shared memory, decompression
would require copying the decompressed data to a new memory
area on each invocation, which makes it unlikely to result in large
performance improvements. A disk-based cache solution could
potentially benefit from compression to reduce cache entry sizes
and therefore disk access times.

8 CONCLUSION
As we have seen in Section 5.2, compiling WebAssembly modules
at runtime can lead to a delay of multiple seconds during an ap-
plication’s startup phase, and can require vast amounts of CPU
time and physical memory. While Liftoff is much faster than the
optimizing compiler TurboFan, its generated code is significantly
slower than the code produced by TurboFan, but still much faster
than interpreting WebAssembly code without compiling it first.

We reduced module load times by caching compiled and op-
timized code for the target architecture, and observed large per-
formance benefits for many WebAssembly modules. Finally, in
Section 6, we extended the idea to a scalable multi-process shared
code cache, which provides an efficient way to load WebAssembly
modules in Node.js applications, without having to compile and op-
timize each module in each process. The smaller CPU and memory
footprint can reduce interference on co-located cloud tenants, and,
therefore, improve scalability [22].

171

CASCON’20, November 10–13, 2020, Toronto, Canada Tobias Nießen, Michael Dawson, Panos Patros, and Kenneth B. Kent

2m
m
3m
m adi ata

x
bic
g

cho
les
ky

cor
rel
ati
on

cov
ari
an
ce

der
ich
e

do
itg
en
du
rbi
n
fdt
d-2
d

flo
yd
-w
ars
ha
ll
gem

m
gem

ver

ges
um
mv

gra
ms
chm

idt

he
at-
3d

jac
ob
i-1
d

jac
ob
i-2
d lu
lud
cm
p

mv
t

nu
ssi
no
v

sei
del
-2dsym

m
syr
2k syr

k
tris
olvtrm

m
0

0.25
0.5
0.75

1.25
1.5
1.75

1

PolyBench/C 4.2 benchmark

Re
la
tiv

e
ex
ec
ut
io
n
tim

e Cache miss
Cache hit

Figure 12: Shared cache performance impact on PolyBench/C benchmarks

While WebAssembly is still an emerging technology, we expect
growing adoption over the next few years. These performance
improvements and reduced startup times presented in this paper
might allow widespread use of WebAssembly in serverless comput-
ing and other cloud configurations, without sacrificing the speed,
portability, and security of WebAssembly.

9 ACKNOWLEDGMENTS
This research was conducted within the Centre for Advanced Stud-
ies — Atlantic, Faculty of Computer Science, University of New
Brunswick. The authors are grateful for the colleagues and facilities
of CAS Atlantic in supporting our research. The authors would
like to acknowledge the funding support of the Natural Sciences
and Engineering Research Council of Canada (NSERC), 501197-
16. Furthermore, we would also like to thank the New Brunswick
Innovation Foundation for contributing to this project.

REFERENCES
[1] 2018. Indexed Database API 2.0. https://www.w3.org/TR/IndexedDB/
[2] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche

Ishakian, NickMitchell, VinodMuthusamy, Rodric Rabbah, Aleksander Slominski,
and Philippe Suter. 2017. Serverless Computing: Current Trends and Open
Problems. In Research Advances in Cloud Computing, Sanjay Chaudhary, Gaurav
Somani, and Rajkumar Buyya (Eds.). Springer Singapore, Singapore, 1–20.

[3] Devarghya Bhattacharya, Kenneth B. Kent, Eric Aubanel, Daniel Heidinga, Pe-
ter Shipton, and Aleksandar Micic. 2017. Improving the performance of JVM
startup using the shared class cache. In 2017 IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing (PACRIM). IEEE, Victoria, BC.

[4] Bill Budge. 2019. Code caching for WebAssembly developers. https://v8.dev/
blog/wasm-code-caching

[5] Cliff Click and Keith D. Cooper. 1995. Combining analyses, combining optimiza-
tions. ACM Transactions on Programming Languages and Systems (TOPLAS) 17, 2
(March 1995), 181–196.

[6] Michael H. Dawson, Dayal D. Dilli, Kenneth B. Kent, Panagiotis Patros, and
Peter D. Shipton. 2019. Dynamically compiled artifact sharing on PaaS clouds.
Patent US 10,338,899 B2.

[7] Node.js Foundation. [n.d.]. C++ Addons. https://nodejs.org/api/addons.html
[8] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman,

Dan Gohman, Luke Wagner, Alon Zakai, and Jf Bastien. 2017. Bringing the
web up to speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation - PLDI 2017.
ACM Press, Barcelona, Spain, 185–200.

[9] Adam Hall and Umakishore Ramachandran. 2019. An execution model for
serverless functions at the edge. In Proceedings of the International Conference on

Internet of Things Design and Implementation - IoTDI ’19. ACM Press, Montreal,
Quebec, Canada, 225–236.

[10] Clemens Hammacher. 2018. Liftoff: a new baseline compiler for WebAssembly in
V8. https://v8.dev/blog/liftoff

[11] Daniel Heidinga, Peter D. Shipton, Aleksandar Micic, Devarghya Bhattacharya,
and Kenneth B. Kent. 2020. Enhancing Virtual Machine Performance Using
Autonomics. Patent US 10,606,629 B2.

[12] David Herman, Luke Wagner, and Alon Zakai. 2014. asm.js. http://asmjs.org/
[13] David Herrera, Hanfeng Chen, Erick Lavoie, and Laurie Hendren. 2018. Numerical

computing on the web: benchmarking for the future. In Proceedings of the 14th
ACM SIGPLAN International Symposium on Dynamic Languages - DLS 2018. ACM
Press, Boston, MA, USA, 88–100.

[14] David Herrera, Laurie Hendren, Hangfen Chen, and Erick Lavoie. 2018. Web-
Assembly and JavaScript Challenge: Numerical program performance using modern
browser technologies and devices. Technical Report SABLE-TR-2018-2. Sable Re-
search Group, School of Computer Science, McGill University, Montréal, Canada.

[15] Abhinav Jangda, Bobby Powers, Emery D. Berger, and Arjun Guha. 2019. Not
So Fast: Analyzing the Performance of WebAssembly vs. Native Code. In 2019
USENIX Annual Technical Conference (USENIX ATC 19). USENIX Association,
Renton, WA, 107–120.

[16] Faiz Khan, Vincent Foley-Bourgon, Sujay Kathrotia, and Erick Lavoie. 2014.
Ostrich Benchmark Suite. https://github.com/Sable/Ostrich

[17] Donald E. Knuth. 1981. The Art of Computer Programming, Volume II: Seminu-
merical Algorithms, 2nd Edition. Addison-Wesley.

[18] Bernd Malle, Nicola Giuliani, Peter Kieseberg, and Andreas Holzinger. 2018.
The Need for Speed of AI Applications: Performance Comparison of Native vs.
Browser-based Algorithm Implementations. arXiv:1802.03707 (Feb. 2018).

[19] Hiroyuki Matsuo, Shinsuke Matsumoto, Yoshiki Higo, and Shinji Kusumoto. 2019.
Madoop: Improving Browser-Based Volunteer Computing Based on Modern Web
Technologies. In 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, Hangzhou, China, 634–638.

[20] Hyukwoo Park, Sungkook Kim, Jung-Geun Park, and Soo-Mook Moon. 2018.
Reusing the Optimized Code for JavaScript Ahead-of-Time Compilation. ACM
Transactions on Architecture and Code Optimization 15, 4 (Dec. 2018), 1–20.

[21] Panagiotis Patros, Dayal Dilli, Kenneth B. Kent, and Michael Dawson. 2017.
Dynamically Compiled Artifact Sharing for Clouds. In 2017 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, Honolulu, HI, USA, 290–300.

[22] Panagiotis Patros, Stephen A. MacKay, Kenneth B. Kent, and Michael Dawson.
2016. Investigating Resource Interference and Scaling on Multitenant PaaS
Clouds. In Proceedings of the 26th Annual International Conference on Computer
Science and Software Engineering (CASCON ’16). IBM Corp., USA, 166–177.

[23] Louis-Noel Pouchet and Tomofumi Yuki. 2016. PolyBench/C. https://web.cse.
ohio-state.edu/~pouchet.2/software/polybench/

[24] Micha Reiser and Luc Bläser. 2017. Accelerate JavaScript applications by cross-
compiling to WebAssembly. In Proceedings of the 9th ACM SIGPLAN International
Workshop on Virtual Machines and Intermediate Languages - VMIL 2017. ACM
Press, Vancouver, BC, Canada, 10–17.

[25] V8 Team. 2017. Launching Ignition and TurboFan. https://v8.dev/blog/launching-
ignition-and-turbofan

[26] Seth Thompson. 2016. Experimental support for WebAssembly in V8. https:
//v8.dev/blog/webassembly-experimental

172

https://www.w3.org/TR/IndexedDB/
https://v8.dev/blog/wasm-code-caching
https://v8.dev/blog/wasm-code-caching
https://nodejs.org/api/addons.html
https://v8.dev/blog/liftoff
http://asmjs.org/
https://github.com/Sable/Ostrich
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://v8.dev/blog/launching-ignition-and-turbofan
https://v8.dev/blog/launching-ignition-and-turbofan
https://v8.dev/blog/webassembly-experimental
https://v8.dev/blog/webassembly-experimental

An ELF-based Storage Option for the Eclipse OMR
Ahead-of-Time Compiler

Damian Diago D’monte
ddmonte@unb.ca

University of New Brunswick
Fredericton, New Brunswick, Canada

Georgiy Krylov
georgiy.krylov@unb.ca

University of New Brunswick
Fredericton, New Brunswick, Canada

Daryl Maier
maier@ca.ibm.com
IBM Canada Ltd.

Markham, Ontario, Canada

Gerhard W. Dueck
gdueck@unb.ca

University of New Brunswick
Fredericton, New Brunswick, Canada

Kenneth B. Kent
ken@unb.ca

University of New Brunswick
Fredericton, New Brunswick, Canada

ABSTRACT
Ahead-of-time (AOT) compilation involves converting program
code into native code prior to dynamically linking and loading into
memory at runtime. Apart from code generation, code storage and
persistence are the major aspects of AOT compilation. Eclipse OMR,
a toolkit for construction of language runtimes, could benefit from
enhanced storage container support for AOT compiled code. Our
focus is on the code storage, sharing and reuse options available for
the AOT compiler module in Eclipse OMR. We propose to increase
the utilization of Executable and Linkable Format (ELF) shared
objects for storing the AOT compiled code and data in Eclipse
OMR. The paper continues by surveying state-of-the-art runtimes
to explore the opportunities for persisting AOT compiled code in
active projects. Moreover, the research uncovers the benefits of
the proposed approach and possible challenges such as symbol
resolution, patching the shared ELF object, dynamic linking and
loading.

CCS CONCEPTS
• Software and its engineering → Compilers; Runtime envi-
ronments; Code storage; Dynamic linking and loading.

KEYWORDS
Ahead-of-time compilation, runtime systems, shared libraries
ACM Reference Format:
Damian Diago D’monte, Georgiy Krylov, Daryl Maier, Gerhard W. Dueck,
and Kenneth B. Kent. 2020. An ELF-based Storage Option for the Eclipse
OMR Ahead-of-Time Compiler. In Proceedings of 30th Annual International
Conference on Computer Science and Software Engineering (CASCON’20).
ACM, New York, NY, USA, 6 pages.

1 INTRODUCTION
Modern programming languages such as Java, Python, and C#
require a managed runtime environment for program execution.
Runtime environments provide automatic memory management,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CASCON’20, November 10–13, 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

code compilation, execution and storage mechanisms. Language
runtime environments use interpreters to execute instructions one
by one directly, or a compiler is used to convert a source program
into native code.

Originally, Java runtimes only interpreted the bytecode line-by-
line and executed it at runtime [1]. The problem with using only
interpreters was the overhead of fetch-decode operations from the
interpreting process. For instance, a piece of code in a loop needs
to be retranslated every time, causing performance issues. To avoid
this, a Just-in-Time (JIT) compiler feature was introduced [1]. The
JIT compiler incurs the one-time cost of compiling the block of in-
terpreted code into native code and allowing for later reuse within
the same instance of a runtime environment, thereby saving the
execution overhead caused by an interpreter, since decoding is no
longer required. Moreover, the JIT compilation allows compile-time
optimizations [1]. JIT compilation has enabled Java virtual ma-
chines to dynamically convert bytecodes into native code. Another
traditional compilation method is Ahead-of-Time (AOT) compila-
tion, also known as static compilation. In AOT compilation, the
source code or an intermediate representation (IR) is converted
into native code before the execution, i.e., before the runtime is
invoked [20]. During execution, reusing AOT compiled code rather
than recompiling the same code again can enhance the startup
time of the VM. This AOT generated code needs to be stored in
a container format such as an object format or an equivalent. For
example, C generates an object file with a .𝑜 extension, whereas
Java generates a .𝑐𝑙𝑎𝑠𝑠 file (bytecode) post compilation.

Modern runtime environments allow for concurrent execution
of multiple instances as separate processes. Compiled code sharing
techniques and complex dynamic solutions help in enabling such
concurrency. One example of such a technique, is to store the com-
piled code in a shared library. A shared library is a collection of
pre-compiled pieces of code that can be reused by other programs.
These libraries store methods, routines, classes, data structures
and other information that can be shared. Our research highlights
Eclipse OMR, a set of open source modules that can be used to build
robust language runtimes [13].

The AOT compiler for Eclipse OMR is defined by a set of modules
performing related functions and their interaction. The four main
functions of an AOT compiler in Eclipse OMR are code generation,
code loading, code persisting and compilation control. Code gener-
ation is performed by the existing Eclipse OMR compiler module,

173

CASCON’20, November 10–13, 2020, Toronto, Canada D. D’monte, G. Krylov, D. Maier, G. Dueck, K. Kent

also known as the Testarossa compiler. The code loading part is
currently a work in progress for OMR [20], whereas a module for
dynamic linking and loading is an ongoing project. The compilation
control module is non-existent and the logic is left to the runtime
constructors for implementation. This research is focused on the
storage components that exist in OMR for storing the AOT com-
piled code. Currently, the Eclipse OMR supports the generation of
executable and relocatable Executable and Linkable Format (ELF)
object types. However, these object types do not allow code shar-
ing, modification or operations like dynamic linking and loading
at runtime in Eclipse OMR. A key component of this research is to
enhance ELF capabilities in Eclipse OMR by introducing the ELF
shared libraries in order to elevate shareability of AOT code and
support dynamic operations.

The paper provides motivation for the research, as well as out-
lines design ideas and is structured as follows: Section 2 introduces
ELF and outlines its characteristics, focusing on ELF shared libraries;
Section 3 reviews current state-of-the-art runtimes and their AOT
code storage containers; Section 4 describes the ELF infrastructure
in Eclipse OMR and states its limitations; Section 5 proposes a
technique for storing the AOT generated code and discusses the
potential challenges in its implementation; and Section 6 concludes
the paper.

2 ELF OBJECT OVERVIEW
Executable and Linking Format, also known as ELF, is a portable
object file format developed by UNIX System Laboratories. ELF
describes the structure of the object file in Unix and Linux sys-
tems [6]. Executable files, shared libraries (.so), object files (.o) and
core dumps are examples of files that comply with the ELF stan-
dard [21]. The executable object file contains an execution-ready
program code. The relocatable object file contains code that is used
for linking with other object files. Such object files need to be pro-
cessed by the linker before running them. Generation of an ELF
object file is either the consequence of compilation or the linking
activity. The resulting ELF object may contain program code, in-
formation related to methods, metadata, variables, relocations and
other data. Compilers, assemblers and linkers treat ELF file as a set
of sections described by a section header table, while loaders treat
the file as a set of segments described by a program header table.

2.1 Shared Libraries
Shared object files (.so), also referred to as shared libraries, are the
most significant kind of ELF files for this research. The linker can
either link the shared object to a relocatable object to create a new
object or can link it with an executable object file to generate a
process image i.e., an executable. Shared libraries can be modified,
extended and recompiled independently [21]. Shared libraries can
be loaded into the memory and linked dynamically at load time or
runtime. Unlike the relocatable (.o) ELF object files, they are not
embedded into the final executable, but are needed to be accessible
wherever the executable refers to them. The process of creating a
shared library directly from the C program using the GNUCompiler
Collection (GCC) is described below.

gcc -Wall -Werror -fPIC test.c
gcc -shared -o libtest.so test.o

The GCC provides built-in support to produce an ELF object file
as an outcome of the compilation activity. In the first command,
GCC compiles the program test.c and stores the compiled code
in the test.o file i.e., a relocatable object. The fPIC flag indicates
the position independent code (PIC), whereas the -shared flag in-
dicates that the library can be shared. The second command will
create a shared object file of the relocatable object file. This gener-
ated libtest.so shared library can be linked to other executables
or loaded at runtime.

2.2 Sections and Metadata
A shared library is viewed as a collection of sections, where each sec-
tion carries code and data concerning the object file. The four canon-
ical sections are .text, .data, .rodata and .bss. These sections hold
binary code, data, initialized and uninitialized variables associated
with the program. Other sections, .rel.text, .rel.data and .𝑟𝑒𝑙 .𝑟𝑜𝑑𝑎𝑡𝑎

hold tabular information associated to relocation patches for .text,
.data, .rodata respectively [21].

The ELF metadata comprises the ELF header, program header
table, section header table and other metadata sections. The ELF
header resides at the beginning of the ELF object file and holds
information related to the ELF identifier, file type, architecture, ver-
sion, section and program headers. The program header table holds
the details related to segments, whereas, the section header table
contains an entry for each section. Apart from these sections, the
shared libraries contain .symtab, .strtab and .hash sections. Although
the symbol table (.symtab section) stores all the global variables
and functions used by the program, all names corresponding to
the symbol table entries are stored in the string table (.𝑠𝑡𝑟𝑡𝑎𝑏 sec-
tion) [24]. The .hash section holds the hash table, which provides
fast access to symbol table entries without using a linear search.

Specialized sections like .dynsym, .dynstr, .got and .plt are used to
promote the dynamic linking process. The .dynsym section contains
the dynamic linker symbol table that stores all the imported and
exported symbols of the file. All string names corresponding to
dynamic symbol linker tables are stored in the dynamic string
table, which is located in the .dynstr section. The .got section holds
the global offset table (GOT), which stores pointers for each global
variable (static data) defined or referenced by the shared library. The
.plt section holds a procedure linkage table (PLT), which contains an
entry for each non-local routine called from the shared library [21].
The .dynamic section holds the address and size of the string table,
symbol table, hash table and relocation tables.

2.3 ELF Characteristics
The ELF specification encompasses several attributes that distin-
guishes it from other existing object file formats like COFF, a.out,
etc. Crucial traits of the ELF object include:

2.3.1 Broad Platform Support. The ELF standard provides a set of
binary interface definitions that support several operating systems.
These interfaces reduce the need for recording and recompiling to
smoothen the software development process [6]. Starting with GCC
compiler version 2.7, the ELF binarywas chosen as the default object
file format for Linux [2]. Compilers that run on Unix platforms
support ELF as the standard file format [3]. Furthermore, the Tool
Interface Standards committee (TIS) chose the ELF standard as a

174

An ELF-based Storage Option for the Eclipse OMR Ahead-of-Time Compiler CASCON’20, November 10–13, 2020, Toronto, Canada

portable object file format. The latest version of Microsoft Windows
i.e., Windows 10, includes a Windows subsystem for Linux that
enables ELF support [25].

2.3.2 Extensible and Flexible. ELF files are defined to be extensible
to larger architectures and are not bound to a specific processor or
instruction set [21]. Additionally, they do not rely on a specific word
length or data alignment, like the big endian or little endian, and
support both [24]. Except for the ELF header, every other section
and segment has no predetermined position or size and is extremely
adaptable. The ELF design provides sufficient flexibility to modify
the existing data and add arbitrary optional sections.

2.3.3 Code Sharing and Reuse. Unlike the relocatable and exe-
cutable ELF objects, ELF shared libraries are capable of sharing
code between multiple virtual machine instances at runtime. This
enhances code sharing and decreases the redundancy of code in
memory. For instance, identical methods in multiple programs will
have only one copy stored in the shared object. This copy can be
consumed by multiple processes at once. This saves memory and
does not require loading the same method twice.

2.3.4 Position Independent Code (PIC). PIC is the basis of ELF
shared libraries that enable them to be loaded at any address in
memory [31]. To achieve PIC, the GOT and PLT are introduced to
ELF. Each ELF executable and the shared object associated with it
contains a PLT. The PLT is a kind of jump table, which contains
entries that instructs an indirect jump to a symbol global offset table
entry. The GOT adds a level of indirection for static data (global
variables), whereas PLT adds a level of indirection for function
calls [21]. The PLT permits lazy evaluation, that is, it does not
resolve the procedure address until they are called for the first time.

2.3.5 Dynamic. ELF promotes dynamic linking and loading in
shared libraries. The three responsibilities of the dynamic link-
ing and loading are to perform relocations, resolve symbols and
load the code into main memory. The dynamic linker resolves
and relocates all the pointers of the global offset table [21]. To
perform automated linking and loading, linux provides two pro-
grams, 𝑙𝑑 .𝑠𝑜 and 𝑙𝑑-𝑙𝑖𝑛𝑢𝑥 .𝑠𝑜 [23]. They find and load the shared
libraries required by the program to execute. The dynamic linker is
also known as the program interpreter and can be accessed from
the .𝑖𝑛𝑡𝑒𝑟𝑝 section [23]. Dynamically linked shared libraries allow
programs to load and unload routines at runtime, which cannot
be achieved using the static ones. To gain access to a dynamic
shared library, the 𝑑𝑙𝑜𝑝𝑒𝑛(3) function is used. Along with 𝑑𝑙𝑜𝑝𝑒𝑛(),
𝑑𝑙𝑠𝑦𝑚(), 𝑑𝑙𝑐𝑙𝑜𝑠𝑒 (), 𝑑𝑙𝑒𝑟𝑟𝑜𝑟 () implement the interface to the dy-
namic linking loader [22]. The 𝑑𝑙𝑜𝑝𝑒𝑛() function returns a handle
that can be employed with other functions in the 𝑑𝑙𝑜𝑝𝑒𝑛 API, such
as 𝑑𝑙𝑠𝑦𝑚() and 𝑑𝑙𝑐𝑙𝑜𝑠𝑒 () [22]. One of the arguments to 𝑑𝑙𝑜𝑝𝑒𝑛()
is the mode, which controls the visibility of symbols and reloca-
tions. For instance, 𝑅𝑇𝐿𝐷_𝐿𝐴𝑍𝑌 mode performs lazy binding and
resolves symbols only when the code referencing it is executed.

2.3.6 Tooling Support. The ELF specification is supported by nu-
merous tools, libraries and utilities for manipulating objects and
libraries. The GNU binary utilities (𝐵𝑖𝑛𝑢𝑡𝑖𝑙𝑠) [5] introduce the
𝑟𝑒𝑎𝑑𝑒𝑙 𝑓 and 𝑜𝑏 𝑗𝑑𝑢𝑚𝑝 utilities, which can access sections data and

display the information about object files in a human readable for-
mat. 𝐵𝑖𝑛𝑢𝑡𝑖𝑙𝑠 provides the 𝑜𝑏 𝑗𝑐𝑜𝑝𝑦 utility, which can rename sec-
tions, update sections, add symbols, copy contents of one object file
to another and perform various other operations. The 𝑙𝑖𝑏𝑒𝑙 𝑓 library,
from the 𝑒𝑙 𝑓 𝑢𝑡𝑖𝑙𝑠 package [4], is capable of reading, modifying and
creating the ELF object files. For managing portable dynamic shared
libraries, a tool called 𝐺𝑁𝑈 𝐿𝑖𝑏𝑡𝑜𝑜𝑙 can be employed.

3 RELATEDWORK
The concept of storing and loading compiled code in the state-of-
the-art ELF shared library is an open-ended research topic. For
instance, members of the WebAssembly community advocate for
the usage of ELF objects as a container format [15]. The discussion
mainly focuses on the characteristics of the ELF format, the advan-
tages and the downsides of using it for the WebAssembly language
runtime. Likewise, a similar discussion was held about the possibil-
ity of using the ELF object for AOT compilation in Eclipse OMR [17].
Such an ongoing exchange of views indicates continued interest in
ELF object files. AOT compilation is adopted by several well-known
language runtimes such as the Java Virtual Machines (JVM), Mono,
the Android Runtime (ART), V8 and certain Python implementa-
tions like PyPy. In this section, we review a handful of runtimes
and their AOT compilation techniques. The primary emphasis will
be on the storage of AOT compiled code and data.

3.1 Eclipse OpenJ9
Eclipse OpenJ9 is an open-sourced JVM implementation based on
the IBM J9 JVM. It supports JIT compilation as well as AOT compi-
lation and stores the compiled code in a common container format
termed the Shared Class Cache (SCC) [8]. In addition to compiled
code, the SCC also stores metadata required for execution and link-
ing. Typically, the SCC is located in shared memory and exists
beyond the lifetime of the JVM. Also, it is a fixed size cache that
allows storing AOT code until there is no free space available.

In Eclipse OpenJ9, the AOT compiler is automatically activated
upon enabling the SCC [9]. The JVM splits and stores a class in
immutable (read-only) and mutable (writable) portions [8]. Caching
AOT method data reduces the effect of JIT compilation as all subse-
quent runs can utilize the cached data rather than JIT compiling
it again. The JVM decides the extent of AOT methods to be stored
in the shared cache. Typically, the AOT method data is around
10% of the total class shared data. There is no limitation on the
number of SCCs and no particular JVM owns any SCC. However,
a JVM can connect and read from only one SCC at a time. The
SCC locates a fixed-sized AOT relocation header in addition to the
AOT code. The relocation records along with validation records are
packed contiguously into fixed-size blocks in the AOT relocation
header [29]. Another benefit is that the persistent SCCs can be
moved between machines having the same operating systems and
hardware specification. The SCC improves the startup time of the
VM in its subsequent runs as the native code stored in the SCC is
loaded.

3.2 Mono Runtime
Mono Runtime is an open-sourced implementation of Microsoft’s
.NET framework [28]. The AOT compiler in Mono uses the object

175

CASCON’20, November 10–13, 2020, Toronto, Canada D. D’monte, G. Krylov, D. Maier, G. Dueck, K. Kent

format native to the target platform to store the AOT compiled
code [27]. On ELF supported platforms, it generates a shared object
file (.so) also called an AOT image. However, on other platforms it
generates an assembly (.s) file which in turn can be assembled and
linked into a shared object file.

For method compilation, Mono uses the JIT compiler, which
generates compiled code and relocation patches [27]. The global
offset table (GOT) and the procedure linkage table (PLT) used in
the Mono Runtime are similar to the ELF Specification [27]. The
AOT compiler considers all the function calls in the program as
one type of patch and stores it into the PLT. Everything, other than
function calls, is regarded as “other” types of patches, which are
stored in the GOT. The indirection in the GOT, required by the AOT
compiler, is deemed as a potential performance issue.

Other than storing the position independent code generated by
the AOT compiler, the AOT image also stores cached metadata. The
cached metadata is a variety of information like instance size, type
initializer, etc., that is useful for class loading at runtime. Comput-
ing the cached metadata is time consuming and requires creation
of runtime data structures. Hence, the required information is com-
puted during AOT compilation and stored in the AOT image, into
a 𝑐𝑙𝑎𝑠𝑠_𝑖𝑛𝑓 𝑜 array. In Mono AOT, a shared object containing only
the metadata can be produced using themetadata-only compilation
option.

3.3 Oracle HotSpot
Another prominent Java runtime is the HotSpot JVM by Oracle [16].
Static AOT compilation in the HotSpot JVM employs the Graal
framework for generating the AOT code [10]. The code container
utilized for storing AOT code in the HotSpot JVM is the ELF shared
library (.so) file. These ELF shared libraries are produced using the
libelf library from the 𝐺𝑁𝑈 𝑒𝑙 𝑓 𝑢𝑡𝑖𝑙𝑠 project [19]. Hotspot uses the
javac tool to compile a source file and generate a .class file. For AOT
compilation, the tool jaotc is used to generate the native code of the
processed class file. Commonly, the code generated in the HotSpot
AOT compilation is treated as an extension of the existing HotSpot
Code Cache. To AOT compile only specific methods, jaotc provides
a compileOnly flag, whereas to exclude methods from compilation
it offers an exclude flag.

Tiered Compilation (TC) mode in HotSpot is able to collect and
store profiling information along with the code. The HotSpot JVM
introduces an interesting notion of class fingerprinting [19]. This
technique stores the fingerprint of each class after AOT compilation
in the .𝑑𝑎𝑡𝑎 section of the ELF shared libary. The objective of this
technique is to determine if the class has been changed after AOT
compilation. This is done by matching the current fingerprint of
the class with the one stored in the shared library during loading.
The relocation data is stored similarly to Mono in its reliance on
the GOT and PLT tables [29]. The HotSpot JVM needs the same
runtime configuration for compilation and execution. In JDK 10 SE,
AOT compilation is an experimental feature and is supported only
on Linux-x64 [10].

4 AOT COMPILATION IN ECLIPSE OMR
The term 𝑎ℎ𝑒𝑎𝑑-𝑜 𝑓 -𝑡𝑖𝑚𝑒 𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑑 is mentioned in several related
works [7, 18], however Eclipse OMR does not provide full support

for it, the feature is in its early development state [18]. The current
AOT infrastructure provides an interface called AOTStorageInter-
face, to connect to a storage interface. 𝐴𝑂𝑇𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐼𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑒 de-
fines two methods, 𝑠𝑡𝑜𝑟𝑒𝐸𝑛𝑡𝑟𝑦 and 𝑙𝑜𝑎𝑑𝐸𝑛𝑡𝑟𝑦, keyed by method
name and containing the size of the data. These methods are re-
quired to be extended in order to provide an implementation for
storing and loading from a code container.

There are two in-development approaches for persisting code
and data in Eclipse OMR. The first one is the Shared Cache [30] mod-
ule, inspired by the Eclipse OpenJ9 Shared Class Cache, described
in Section 3.1. The second option is to extend ELF file support.

4.1 Eclipse OMR ELF Infrastructure
The Eclipse OMR Compiler Technology provides fundamental sup-
port for generation of ELF object files. In generating an ELF object in
OMR, there are two types of ELF objects supported, the executable
and the relocatable (.o) object [14]. The executable object file has
an extra/auxiliary program header, whereas the relocatable object
file includes an extra section to hold relocation related information.
Both implementations support 32-bit and 64-bit architectures. Com-
piled code stored in the Eclipse OMR object is retrieved directly
from the code cache segment of Eclipse OMR [14]. Hence, the size
of code cache segment is required before instantiating the object
file generation operation.

4.1.1 Limitations. In Eclipse OMR, relocatable object files con-
tain .𝑡𝑒𝑥𝑡 , .𝑑𝑎𝑡𝑎, .𝑟𝑒𝑙𝑎.𝑡𝑥𝑡 , .𝑠𝑦𝑚𝑡𝑎𝑏, .𝑑𝑦𝑛𝑠𝑡𝑟 and .𝑠ℎ𝑠𝑡𝑟𝑡𝑎𝑏 sections.
Whereas, the executable object file incorporates program header,
.𝑡𝑒𝑥𝑡 , .𝑑𝑎𝑡𝑎, .𝑠𝑦𝑚𝑡𝑎𝑏, .𝑑𝑦𝑛𝑠𝑡𝑟 and .𝑠ℎ𝑠𝑡𝑟𝑡𝑎𝑏 sections. These sections
are in accordance with the semantics of the ELF Specification. Cur-
rently, both variants are not comprehensive in Eclipse OMR, but
hold adequate information to serve the primary purpose of generat-
ing an object file. The primary issue with executable and relocatable
ELF objects in Eclipse OMR is its sharing abilities. The code stored
in these objects cannot be shared betweenmultiple virtual machines
at runtime. Due to the absence of .𝑔𝑜𝑡 and .𝑝𝑙𝑡 sections in relocat-
able ELF objects in Eclipse OMR, operations like dynamic linking
and dynamic loading cannot be performed. Additionally, lack of
a framework to modify or patch an existing ELF object makes it
difficult to consume the current ELF infrastructure as-is.

5 PROPOSED SOLUTION
To elevate ELF support in Eclipse OMR, the ELF shared object
file can be adapted. As described earlier, this enhancement can
provide various benefits like code reusability and sharing between
multiple runtime instances at the same time. In our approach, the
native code generated after AOT compilation will be stored in the
shared library as depicted in Figure 1. This shared library can be
dynamically loaded into memory by the executable referring to it
at runtime. For example, in a Java runtime, the .𝑐𝑙𝑎𝑠𝑠 bytecode can
be AOT compiled using the Eclipse OMR AOT compiler and stored
into a shared object. This shared object can be linked and loaded
when the JVM is invoked.

In the initial development, each program will generate a single
library file. This approach will have small-sized libraries that could
easily link to and be loaded inmemory. However, the code reuse will
not be possible in such a case. In later developments, the support

176

An ELF-based Storage Option for the Eclipse OMR Ahead-of-Time Compiler CASCON’20, November 10–13, 2020, Toronto, Canada

Figure 1: Schematic representation for proposed shared
libraries use case within runtime environments utilizing
Eclipse OMR AOT Compiler

will be extended to generate a single shared library file for a set of
programs. Such extensions will require continuous appending and
patching as described in Section 5.1.

The research proposes to allow the Eclipse OMRAOT compiler to
communicate with a storage controller class through the AOTStor-
ageInterface interface. Our design is preliminary and requires little
implementation effort to attach to the existing storage controller.
Alternatively, the proposed design allows for choosing between
storage options available in OMR to suit developer needs.

5.1 Challenges
In this section, potential challenges associated with implementation
intricacies are summarized.

5.1.1 Persisting the Code. The idea is to persist the code stored
in the ELF shared object. For instance, after compiling multiple
programs, the binary code and related data generated for each pro-
gram should be stored in a single shared object file. This demands
affixing the shared object file post-compilation for each program.
As per the ELF specification and the existing implementation in
the Eclipse OMR repository, the binary code is stored in the .𝑡𝑒𝑥𝑡
section. In this case, .𝑡𝑒𝑥𝑡 section needs to be updated along with
the offsets of following sections. Once the modification is complete,
the ELF shared object file needs to be re-emitted.

5.1.2 Patching. The process of patching is altering the stored code
and data of a modified program in the shared object files. Patching
is vital, in case of a class or method definition change after compil-
ing and storing for the first time. If not done, the alteration would
not be reflected in the shared object and in all subsequent runs
post-changing, the definition will use the incorrect code to execute,
leaving the application in an inconsistent state. A simple approach
for this problem is to replace the existing code and data with the
newly compiled code and data for each method encountered dur-
ing compilation. A complicated operation, like only replacing the
method code that was modified, can be performed. In order to per-
form such operations, the code that is to be modified should to be
identified from the section where it is stored, for example, the .𝑡𝑒𝑥𝑡
section. Replacing the existing code will require alteration of the

section size and offset. Therefore, it is necessary to rewrite and emit
the ELF shared library in both approaches.

5.1.3 Symbol Resolution. Symbol resolution is one of the two activ-
ities performed by the dynamic linker, the other is relocation [21].
In the symbol resolution step, each symbol reference is associated
with exactly one symbol definition. As mentioned earlier, the ta-
bles that hold dynamic symbol-related information are the global
offset table, procedure linkage table, dynamic symbol table, string
table and hash table. To aid the process of symbol resolution, it is
indispensible for these tables to store appropriate entries. To add a
symbol in the shared object file, first an entry needs to be inserted in
the dynamic symbol table (.𝑑𝑦𝑛𝑠𝑦𝑚 section). Then, a corresponding
entry of the null-terminated string (name) and hash index should be
created in the string and hash tables. Similarly, .𝑔𝑜𝑡 and .𝑝𝑙𝑡 sections
are required to be flooded with global variables and function calls
respectively. The symbols that have entries in all these sections
can be resolved and relocated effectively at the runtime. In Eclipse
OMR, the method names stored in the 𝐴𝑂𝑇𝑀𝑒𝑡ℎ𝑜𝑑𝐻𝑒𝑎𝑑𝑒𝑟 can be
treated as symbols and could be stored in the string table. Whereas,
the address of compiled code associated with each symbol is to be
included in the dynamic symbol table.

5.1.4 Relocation and Validation. The relocations step is performed
after the symbol resolution. The process of relocation is assigning a
runtime address to each symbol and adjusting the code and data in
the program to reflect the assigned addresses. Handling relocations
is complicated as it involves several types of relocations including
processor specific relocations. In Eclipse OpenJ9 and Eclipse OMR,
the compiler generates the external relocations [12, 20]. The AOT
relocations infrastructure creates iterated external relocations, se-
rializes the offsets in a buffer with the compiled code offset and
finally, writes them to a cache. Ideally, the generated relocation en-
tries should be inserted into the relocation tables, so while linking
they can be relocated. The dynamic linker relies on these relocation
entries to modify the symbol references in the bodies of the code
and data. A workaround to consume the serialized buffer entries
as it stands could be to insert the buffer entries directly to a brand
new arbitrary section in the ELF shared library. The downside of
such a technique is that, it would not be in compliance with the ELF
specification of handling relocations. Nevertheless, the underlying
principle of storing relocations can still be attained and can allow
sharing object files to be usable by Eclipse OMR.

5.1.5 Dynamic Overhead. While dynamic linking and loading of-
fers several benefits, it also has its limitations. The activities in-
volved in dynamic linking and loading can infuse performance
overhead [21]. In comparison with statically linked shared libraries,
dynamically linked shared libraries are easier to create and up-
date [21]. Load time relocation and symbol resolution can incur ex-
tra costs, making the shared libraries slow. The other leading cause
of performance degradation is the referencing introduced by the
PIC. In order to overcome these problems, Levine [21] introduces
pre-relocated libraries and caching. The concept of pre-relocating
and pre-linking is adapted in embedded systems [11] to improve
performance.

177

CASCON’20, November 10–13, 2020, Toronto, Canada D. D’monte, G. Krylov, D. Maier, G. Dueck, K. Kent

5.2 Portability
Portability is the usability of software or a program in different
environments without requiring major reworking. The ELF object
file’s modus operandi of storing program-related information is
similar for almost all architectures. ELF object files store control-
related data in a machine independent format, making it feasible
to identify and interpret the architecture-related contents in a con-
ventional manner. With enough information to identify the target
architecture, the ELF files qualify for cross-compilation and cross-
linking [21]. However, the remaining code/data follows the encod-
ing of the target processor, regardless of the machine on which the
ELF object file was created [6, 26]. The PIC allows the compiled ELF
shared library to be reused across multiple applications without
having different copies. At the time of dynamic loading and linking,
the PIC code can be relocated at any address in memory. Hence,
the PIC plays a role in enhancing portability in the shared libraries.
In short, the ELF file contents, like sections and metadata can be
accessed on any platform, regardless of the original targeted plat-
form. The binary code, however depends on the target instruction
set architecture (ISA). Hence, portability prospects between the
operating systems providing ELF support and sharing identical ISA
is another viable research question.

6 CONCLUSION
There are language runtimes that implement their own versions of
AOT compilation, which include a key component to store the
compiled code for later reuse. The ELF file format is a common
denominator for several containers used for persisting AOT
generated code. The approach proposed in this paper outlines the
possible extension of ELF shared libraries support in Eclipse OMR.
The usage of shared libraries is based on the related work and
benefits related to its dynamic and platform support. Measurement
and comparison in load/store times, memory utilization for
runtimes that utilize Eclipse OMR AOT module is one of the
possible future work directions. The results of comparative
analysis may provide additional insights into our approach and
guide further explorations.

ACKNOWLEDGMENTS
This research was conducted within the Centre for Advanced
Studies–Atlantic, Faculty of Computer Science, University of New
Brunswick. The authors are grateful for the colleagues and
facilities of CAS-Atlantic in supporting our research. The authors
would like to acknowledge the funding support provided by the
Atlantic Canada Opportunities Agency (ACOA) through the
Atlantic Innovation Fund (AIF) program. Furthermore, we would
also like to thank the New Brunswick Innovation Foundation for
contributing to this project. Thanks to Stephen MacKay for his
invaluable help with editing the paper.

REFERENCES
[1] John Aycock. 2003. A Brief History of Just-in-Time. ACM Comput. Surv. 35, 2

(June 2003), 97–113. https://doi.org/10.1145/857076.857077
[2] N. Barkakati. 2005. Red Hat Fedora Linux Secrets (1st ed.). John Wiley & Sons.
[3] Michael Barr and Anthony Massa. 2011. Programming Embedded Systems: With

C and GNU Development Tools. (01 2011).
[4] The GNU Compiler Collection and GNU Toolchain. [n.d.]. ELFUTILS. Retrieved

June 17, 2020 from https://sourceware.org/elfutils/

[5] The GNUCompiler Collection and GNUToolchain. 2008. GNU Binutils. Retrieved
June 17, 2020 from https://www.gnu.org/software/binutils/

[6] TIS Committee. 1995. Tool Interface Standard (TIS) Executable and Linking Format
(ELF) Specification. https://refspecs.linuxfoundation.org/

[7] Eclipse OMR Community. 2020. OMR Architecture Meeting 20200604. Retrieved
June 17, 2020 from https://www.youtube.com/watch?v=FMQ846-Ztg0

[8] IBM Corporation. 2020. Class Data sharing. Retrieved June 17, 2020
from https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.
java.vm.80.doc/docs/shrc.html#shrc

[9] IBM Corporation. 2020. Eclipse OpenJ9 virtual machine. Retrieved June 17, 2020
from https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.
java.80.doc/user/java_jvm.html

[10] JDK 10 Documentation. 2018. Ahead-of-Time Compilation, Java HotSpot
Virtual Machine Performance Enhancements. Retrieved June 17, 2020
from https://docs.oracle.com/javase/10/vm/java-hotspot-virtual-machine-
performance-enhancements.htm#JSJVM-GUID-F33D8BD0-5C4A-4CE8-8259-
FD9D73C7C7C6

[11] W. Dong, C. Chen, X. Liu, J. Bu, and Yunhao Liu. 2009. Dynamic linking and
loading in networked embedded systems. In 2009 IEEE 6th International Conference
on Mobile Adhoc and Sensor Systems. 554–562.

[12] Irwin D’Souza. 2018. Ahead Of Time Compilation: Relocation. Retrieved June
17, 2020 from https://blog.openj9.org/2018/10/26/ahead-of-time-compilation-
relocation/

[13] Eclipse foundation. 2016. OMR project proposal. Retrieved June 17, 2020 from
https://projects.eclipse.org/proposals/omr

[14] Eclipse foundation. 2018. ELFGenerator, Eclipse OMR. Retrieved June 17,
2020 from https://github.com/eclipse/omr/blob/master/doc/compiler/runtime/
ELFGenerator.md

[15] W3C Community Group. 2015. Should we use ELF as a container format?, Issue 74.
Retrieved June 17, 2020 from https://github.com/WebAssembly/design/issues/74

[16] Ludovic Henry. 2019. AOT Compilation in HotSpot: Introduction. Retrieved June
17, 2020 from https://devblogs.microsoft.com/java/aot-compilation-in-hotspot-
introduction/

[17] Eclipse OMR IBM Corporation. 2017. Produce an object file with
Compiler/JitBuilder, Issue 1170. Retrieved June 17, 2020 from https://github.
com/eclipse/omr/issues/1170

[18] IBM Corporation, Eclipse foundation. 2019. Eclipse OMR™ Cross platform
components for building reliable, high performance language runtimes.
https://github.com/eclipse/omr.

[19] Vladimir Kozlov. 2018. JEP 295: Ahead-of-Time Compilation, OpenJDK. Retrieved
June 17, 2020 from https://openjdk.java.net/jeps/295

[20] Georgiy Krylov, Gerhard W. Dueck, Kenneth B. Kent, Daryl Maier, and Irwin
D’Souza. 2019. Ahead-of-time compilation in OMR: overview and first steps. In
Proceedings of the 29th Annual International Conference on Computer Science and
Software Engineering, CASCON 2019, Markham, Ontario, Canada, November 4-6,
2019. ACM, 299–304. https://dl.acm.org/doi/abs/10.5555/3370272.3370305

[21] John R. Levine. 1999. Linkers and Loaders (1st ed.). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

[22] Linux Programmer’s Manual. 2017. dlopen(3). Retrieved June 17, 2020 from
https://man7.org/linux/man-pages/man3/dlopen.3.html

[23] Linux Programmer’s Manual. 2019. ld.so, ld-linux.so - dynamic linker/loader.
Retrieved June 17, 2020 from https://www.man7.org/linux/man-pages/man8/ld.
so.8.html

[24] Wolfgang Mauerer. 2008. Professional Linux Kernel Architecture (1st ed.). Wiley
Publishing, Inc.

[25] Microsoft. 2016. Windows Subsystem for Linux Overview. Retrieved August
10, 2020 from https://docs.microsoft.com/en-us/archive/blogs/wsl/windows-
subsystem-for-linux-overview

[26] Santa Cruz Operation. 2013. System V Application Binary Interface. Retrieved
June 17, 2020 from http://www.sco.com/developers/gabi/latest/contents.html

[27] Mono Project. 2016. Ahead of Time Compilation (AOT), The Mono Runtime.
Retrieved June 17, 2020 from https://www.mono-project.com/docs/advanced/
runtime/docs/aot/

[28] Mono Project. 2020. AOT. Retrieved June 17, 2020 from https://www.mono-
project.com/docs/advanced/aot/

[29] Mark Thom, Gerhard W. Dueck, Kenneth B. Kent, and Daryl Maier. 2018. A
survey of ahead-of-time technologies in dynamic language environments. In
Proceedings of the 28th Annual International Conference on Computer Science and
Software Engineering, CASCON 2018, Markham, Ontario, Canada, October 29-31,
2018. 275–281.

[30] Mark Thom, Kenneth B. Kent, Gerhard Dueck, and Daryl Maier. 2019. Pervasive
Sharing of Language Runtimes in Eclipse OMR. Internal technical report.

[31] T. Xinyu, Z. Changyou, L. Chen, K. Aourra, and L. YuanZhang. 2017. A Code Self-
Relocation Method for Embedded System. In 2017 IEEE International Conference
on Computational Science and Engineering (CSE) and IEEE International Conference
on Embedded and Ubiquitous Computing (EUC), Vol. 1. 688–691.

178

https://doi.org/10.1145/857076.857077
https://sourceware.org/elfutils/
https://www.gnu.org/software/binutils/
https://refspecs.linuxfoundation.org/
https://www.youtube.com/watch?v=FMQ846-Ztg0
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.vm.80.doc/docs/shrc.html#shrc
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.vm.80.doc/docs/shrc.html#shrc
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.80.doc/user/java_jvm.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.80.doc/user/java_jvm.html
https://docs.oracle.com/javase/10/vm/java-hotspot-virtual-machine-performance-enhancements.htm#JSJVM-GUID-F33D8BD0-5C4A-4CE8-8259-FD9D73C7C7C6
https://docs.oracle.com/javase/10/vm/java-hotspot-virtual-machine-performance-enhancements.htm#JSJVM-GUID-F33D8BD0-5C4A-4CE8-8259-FD9D73C7C7C6
https://docs.oracle.com/javase/10/vm/java-hotspot-virtual-machine-performance-enhancements.htm#JSJVM-GUID-F33D8BD0-5C4A-4CE8-8259-FD9D73C7C7C6
https://blog.openj9.org/2018/10/26/ahead-of-time-compilation-relocation/
https://blog.openj9.org/2018/10/26/ahead-of-time-compilation-relocation/
https://projects.eclipse.org/proposals/omr
https://github.com/eclipse/omr/blob/master/doc/compiler/runtime/ELFGenerator.md
https://github.com/eclipse/omr/blob/master/doc/compiler/runtime/ELFGenerator.md
https://github.com/WebAssembly/design/issues/74
https://devblogs.microsoft.com/java/aot-compilation-in-hotspot-introduction/
https://devblogs.microsoft.com/java/aot-compilation-in-hotspot-introduction/
https://github.com/eclipse/omr/issues/1170
https://github.com/eclipse/omr/issues/1170
https://openjdk.java.net/jeps/295
https://dl.acm.org/doi/abs/10.5555/3370272.3370305
https://man7.org/linux/man-pages/man3/dlopen.3.html
https://www.man7.org/linux/man-pages/man8/ld.so.8.html
https://www.man7.org/linux/man-pages/man8/ld.so.8.html
https://docs.microsoft.com/en-us/archive/blogs/wsl/windows-subsystem-for-linux-overview
https://docs.microsoft.com/en-us/archive/blogs/wsl/windows-subsystem-for-linux-overview
http://www.sco.com/developers/gabi/latest/contents.html
https://www.mono-project.com/docs/advanced/runtime/docs/aot/
https://www.mono-project.com/docs/advanced/runtime/docs/aot/
https://www.mono-project.com/docs/advanced/aot/
https://www.mono-project.com/docs/advanced/aot/

MicroJIT: A Case for Templated Just-in-Time Compilation in
Constrained Environments

Eric Coffin
Faculty of Computer Science
University of New Brunswick

Fredericton, NB, Canada
eric.coffin@unb.ca

Scott Young
Faculty of Computer Science
University of New Brunswick

Fredericton, NB, Canada
scott.young@unb.ca

Harpreet Kaur
Faculty of Computer Science
University of New Brunswick

Fredericton, NB, Canada
harpreet.bamrah@unb.ca

Julie Brown
Faculty of Computer Science
University of New Brunswick

Fredericton, NB, Canada
julie.brown@unb.ca

Marius Pirvu
Java JIT Compiler Development

IBM Canada
Toronto, ON, Canada
mpirvu@ca.ibm.com

Kenneth B. Kent
Faculty of Computer Science
University of New Brunswick

Fredericton, NB, Canada
ken@unb.ca

ABSTRACT
Modern software libraries and applications often need to be shared
across environments that do not always share common architec-
tures. The solution to this code sharing has often been to target
managed runtime environments, or High-Level Language Virtual
Machines, such as the Java Virtual Machine. These runtimes are of-
ten implemented using a process called interpretation. Interpreters
are significantly slower than natively executed code. One way that
runtimes have addressed this problem is by including a compiler
that compiles the input programs into native code at runtime. These
Just-in-Time compilers can be categorized into two classes, optimiz-
ing and templated. Optimizing compilers take longer to compile
and require many supporting data structures to allow for their op-
timizations, but usually produce (often significantly) faster code.
Templated compilers always generate the same code for a given
block of input. This template-generated code is faster than interpret-
ing, but usually (often significantly) slower than the code generated
by an optimizing compiler. However, these compilers do not require
the heavier data structures of optimizing compilers, and produce
code much more quickly. For constrained environments, such as
those found in containers and Internet of Things devices, where the
resources available to the managed runtime are limited, the ability
to perform lightweight JIT compilation may be desirable. In this
paper, we introduce a templated compiler called MicroJIT into the
Eclipse OpenJ9 JVM and compare it to an interpreter-only solution
in a resource constrained environment. Although our bytecode
coverage is not complete, we demonstrate significant performance
improvements over the interpreter for ourmicro-benchmarks, while
at the same time, compiling with less overhead than the default JIT
compiler in Eclipse OpenJ9.

CCS CONCEPTS
• Software and its engineering → Compilers.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CASCON’20, November 10–13, 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

KEYWORDS
bytecode, constrained environment, Internet of things, Java virtual
machine, Just-in-Time compilation, optimization

ACM Reference Format:
Eric Coffin, Scott Young, Harpreet Kaur, Julie Brown, Marius Pirvu, and Ken-
neth B. Kent. 2020. MicroJIT: A Case for Templated Just-in-Time Compi-
lation in Constrained Environments. In Proceedings of 30th Annual Inter-
national Conference on Computer Science and Software Engineering (CAS-
CON’20). ACM, New York, NY, USA, 10 pages.

1 INTRODUCTION
With rise of the Internet of Things (IoT), the number of embedded,
connected devices has seen a significant surge in growth over the
past decade [15]. For instance, farmers are now employing low-
powered sensor networks to help monitor crop health, while many
electrical utilities are installing smart meters to assist with manag-
ing peak demand. With the increase in IoT applications comes an
increased need for software development. According to a recent
survey, the most critical issues for IoT software developers are se-
curity and connectivity [24]. According to the same survey, while
C remains the most popular language for developers writing code
for the most constrained devices1, Java is the preeminent language
for both gateways, which connect networks of constrained devices,
and for server-based applications.

While software written in C may offer the best performance with
the lowest overhead, it has its drawbacks: one must manage mem-
ory explicitly, there is a lack of memory security, and portability is
limited to hosts that match the target architecture and provide the
necessary runtime dependencies such as a compatible C Standard
library. The value of operating software correctly within heteroge-
neous contexts should not be underestimated: the same code may
need to execute on a workstation and a server2, on x86 and ARM
platforms, and its lifetime may span decades, making it likely that
the underlying platform will change.

1In the survey, Java was ranked number four among most popular languages used for
constrained devices [24].
2The platform-spanning capabilities that the JVM provides can also aid in the architec-
ture of systems: the same code could be reused between clients and servers potentially
reducing development effort.

179

CASCON’20, November 10–13, 2020, Toronto, Canada Coffin et al.

Java, along with its underlying Java Virtual Machine (JVM), has
addressed these challenges: memory is automatically managed and
not directly accessible—increasing both safety and security, while
portability is available to any host with a compatible JVM. That
said, the memory safety, security and portability provided by the
JVM adds additional overhead cost to the application. Given that
Java is the programming language of choice for majority of the
industry [41], for many applications, it is evident that this overhead
is worth paying.

Given the importance placed on security for IoT applications, the
JVM could potentially provide benefits for constrained applications
too. Any constrained system executing JVM-based workloads will
be concerned with overhead due to many sources, such as dynamic
class loading, interpretation of the application, mapping of program
state to memory, initial overhead associated with the JIT compiler
to compile methods into native instructions [2, 10], safety checks
of certain memory access operations during runtime (such as null-
reference and index out-of-bounds checks) and automatic memory
management (which requires a garbage collector) [25].

In this work, we will consider environments that have the re-
sources to run a modern, Java SE compatible JVM, yet are con-
strained enough to pay careful attention to these sources of over-
head, particularly, to the JIT compilation. The JIT compiler in
Eclipse OpenJ9—Testarossa (TRJIT)—is a highly-tunable, method-
based, optimizing compiler. While TRJIT supports fast compilation,
generating non-optimized code, it requires an intermediary stage
where an intermediate language (IL) is generated. It is possible that
the IL generation phase may introduce too much overhead for con-
strained environments where low-optimized code is sufficient. One
approach to solve this issue could be to add a second, lighter-weight
JIT compiler to the virtual machine, which could be used in place of
TRJIT. Instead of generating an IL, this JIT compiler would translate
bytecodes using predefined machine code templates, which would
be stored and could be executed later. By eliminating the IL phase,
we expect that JIT compilation will have a smaller footprint and
will take less time to perform3.

We propose adding this lightweight JIT compiler to Eclipse
OpenJ9, which could be used instead of, or alongside the regu-
lar JIT compiler for constrained environments. In the spirit of the
original MicroJIT [42], this compiler will be template-based with
the goal of generating native methods as efficiently and quickly as
possible. It should be noted that while our previous work focused on
porting the original MicroJIT from IBM J9 to Eclipse OpenJ9 [4], we
have since realized that this would entail a near-complete rewrite to
achieve the required compatibility. With that said, we will continue
using the moniker MicroJIT for this new, template-based JIT com-
piler. To guide the order of bytecode-template implementation, we
will record the execution frequency of bytecodes in several standard
benchmarks and to establish a baseline, we will measure the over-
head of the interpreter operating without any JIT compiler. Then,
we will measure the overhead associated with TRJIT and MicroJIT
and compare the throughput of several applications while running
in interpreter-only mode against the interpreter with MicroJIT. Fi-
nally, we will analyze the results to identify the window where
3In terms of throughput or work performed during a period of time, we expect that
the code generated by the lightweight compiler will be faster than the interpreter, but
an order of magnitude slower than the code generated by TRJIT.

template-based JIT begins to outperform interpretation, but where
optimizing compilation overtakes template-based compilation.

This paper reads as follows. Section 2 provides an overview of
the background and Section 3 discusses the related work. In Section
4, we focus on the design of MicroJIT and how we integrated it into
Eclipse OpenJ9. Section 5 details our evaluation and results. Section
6 outlines the future work, and finally, Section 7 concludes the work,
summarizing our findings and offering recommendations.

2 BACKGROUND
In this section we discuss the following background topics: the
Java Virtual Machine, JIT compilation, Eclipse OpenJ9, and finally
constrained devices.

2.1 Java Virtual Machine
In the early 2000s, type-safe, runtime-based languages such as Java
and C#, rose to prominence in the realm of enterprise applications
[40, 41]. The designs of enterprise applications, often with com-
plex domain models, rules and requirements are aided by these
high-level, object-oriented languages and the virtual machines that
execute them. Rather than compiling directly to executable code,
applications written in these languages are designed to be portable,
compiling to intermediary formats designed to be interpreted on
any machine providing a compatible runtime environment. Typi-
cally, the programs written in the Java language compile to class
files4 and execute on Java Virtual Machines. For an in-depth dis-
cussion of the Java language, please refer to the Java Language
Specification [14].

This focus on portability popularized the phrase “write once, run
anywhere” [5]. To ensure cross-platform compatibility, the JVM
must adhere to the Java Virtual Machine Specification [29], which
describes the program layout, linking and loading, program verifi-
cation, stack machine descriptions, class file format and bytecode
listing. In addition to portability, Java prevents the application from
explicitly managing or interacting with the underlying memory.
While this limitation may preclude developers from choosing Java
to solve lower-level tasks, it works well for high-level applications.
By removing explicit memory management, something that takes
increased care as application complexity grows, developer produc-
tivity can improve and the chances of inadvertently introducing
memory errors decrease.

A runtime that implements the Java Virtual Machine Specifi-
cation and provides the required Application Program Interfaces
(APIs) should be able to run any compatible Java application. For
maximum performance, these virtual machines are typically writ-
ten using system-level languages, such as C, C++ and assembly. The
underlying host supports these virtual machines: process controls,
virtual memory, concurrency, exceptions and I/O must map from
the JVM to the underlying operating system (OS) and, in turn, to
the underlying Instruction Set Architecture (ISA) [39]. With this
view in mind, interactions are made from the application to the
underlying OS through the Java API libraries, such as when call-
ing System.out.println and having ASCII characters print to the
command-line. Alternatively, interactions between the JVM and
the underlying OS can be made through the Application Binary
4Java programs are compiled using the Java compiler or javac.

180

MicroJIT: A Case for Templated Just-in-Time Compilation in Constrained Environments CASCON’20, November 10–13, 2020, Toronto, Canada

Interface (ABI), such as when making a system call such as fork on
Linux to spawn a new thread.

Some examples of production-grade JVMs include Eclipse OpenJ9
[33], Oracle’s HotSpot [8] and Azul Zing [22]. It is worth noting that
the JVM has become an essential platform for languages beyond
Java. Languages such as Scala, Kotlin and Clojure are all popular
languages that compile to JVM compatible meta-data and bytecode.
Class files, the format of which is defined by the JVM specifica-
tion, contain the program structure, behaviour, data structures and
various metadata required by the JVM for the program to execute.
The executable code, contained in parameterized functional units
called methods, is defined by the series of bytecode instructions.
Each bytecode is one or more bytes in length, with the first byte
containing the instruction opcode and the following bytes contain-
ing the instruction arguments. Data types include primitives such
as integers, doubles and booleans, as well as object reference types.
The JVM provides a stack-based machine for the application to
operate within. Each application thread has a stack, which in turn
contains stack frames. Each stack frame contains an operand stack,
a program counter and a local storage array. The exact size or shape
of the stack frame is described in the meta-data contained in the
class file. Operations described by the bytecodes affect the operand
stack, which maintains the state of the method.

During execution, an application can store values in two places:
in the current stack frame, or on the heap. For values of known
sizes, such as primitives, the stack is an ideal location for allocation
as the memory will be automatically released when the stack frame
is popped. Any values that are dynamic in size, or non-local, will be
allocated on the program heap. As this memory cannot be explicitly
freed, over time, as the program continues to execute, the heap
will continue to fill. Garbage collection is the process by which the
objects in the heap that are no longer referenced are freed [25].
For a collector to be viable, it must satisfy the requirement that all
garbage will eventually be “collected”.

2.2 Just-in-Time Compilation
Although Java applications were at one time entirely interpreted,
advances in Just-in-Time (JIT) compilation have improved perfor-
mance by orders of magnitude, allowing them to be much closer
to that of their Ahead-of-Time (AOT) compiled counterparts writ-
ten in C or C++ [26]. In addition to portability and safety, the
high-performance garbage collectors and JIT compilers found in
production-grade JVMs have helped place Java at the top of lan-
guages used for server-based workloads [41].

According to Rau [36], application binaries can be divided into
three groups: those composed of directly executable machine in-
structions, those composed of higher-level instructions that must
be parsed and interpreted before execution and those composed of
directly interpretable instructions. While the latter two groups offer
opportunities for portability and memory safety, the performance
penalty incurred by interpretation may preclude them from specific
workloads. This work will focus on the final group, i.e., programs
composed of directly interpretable instructions.

While interpreters should be designed to be efficient—minimizing
the number of indirect branches [11, 39]—at their simplest, they

involve a cycle of fetching a single instruction, decoding that in-
struction, and then dispatching the instruction for execution using
native instructions [39]. Even when the same instruction is exe-
cuted repeatedly, this same cycle is performed. One way to improve
the performance of such workloads is to add a runtime compiler
to the execution framework. By compiling, or translating blocks of
instructions into native instructions, and then later executing those
generated blocks instead of interpreting them, significant perfor-
mance gains may be achieved. This process, known as Just-in-Time
compilation, is often combined with profiling and/or analysis to
optimize the generated code [2, 39].

Considering JIT compilation as an expensive activity, in order
to allow for the continued execution of the workload, Just-in-Time
compilation is often performed selectively on only the most fre-
quently executed blocks of code [28]. As described by Hansen in his
work on Adaptive Fortran [17], one way to perform selective com-
pilation is to associate with each code block a counter containing
an invocation threshold value. Each time the code block is executed,
the counter is decremented. When the counter reaches zero, the
block can be compiled. For a block to be JIT-compiled means that for
a source block X, there is a generated block of machine instructions,
Y, that lives in a code storage area called the code cache [18, 39].
During execution, when the execution engine encounters a call to
block X, it performs a check to see if Y exists in the code cache,
and if it does, the interpreter transitions to the native code instead.
This invocation threshold should be made tuneable for the user, as
setting a low threshold will result in more JIT compilation during
the startup of the application, which may be undesirable for some
workloads. Within the context of Java, we will use entire methods
as our code block or unit of compilation (see Figure 1).

JIT compilation can be viewed on a continuum: on one end, there
is unoptimized code that is fast to generate but slow to execute. In
contrast, on the other end, there is optimized code that is slow to
generate but fast to execute. To lessen the impact on the startup
time of an application, one could perform initial compilation with
little or no optimization, that is, generating slow code quickly. As a
code block continues to execute, higher thresholds may be reached,
potentially triggering more expensive, optimized recompilations
[20]. For JIT compilers with multiple optimization levels, it may
prove useful to allow a user to specify heuristics per optimization
level.

In order to aid in performing optimizations, it is typical for a JIT
compiler to build an intermediate representation of the code to ana-
lyze and transform. Some of the optimizations we see for JVM-based
optimizing JIT compilers are similar to those commonly found in
AOT compilers [7, 27, 39], such as dead-code elimination, constant
propagation, constant folding, strength reduction, code hoisting,
loop unrolling, inline substitution and peephole optimizations.

2.3 Eclipse OpenJ9
This work will expand upon the JVM implementation of Eclipse
OpenJ9 for Java 8 [33]. In particular, wewill focus on its implementa-
tion for Linux on the x86-64 architecture. This open-source project,
which implements the OpenJDK specification and is available under
the AdoptOpenJDK project [1], is designed for low overhead, quick
startup and high throughput. Also, OpenJ9, which originated from

181

CASCON’20, November 10–13, 2020, Toronto, Canada Coffin et al.

Figure 1: When a method is to be executed, the execution
engine first checks if the method has already been JIT-
compiled. In this example, compilation and, in turn, execu-
tion occurs synchronously, potentially occurring on the cur-
rently executing application thread.

IBM’s J9 JVM, is built upon the open-source runtime component
framework named Eclipse OMR. The OMR framework allows an ex-
isting runtime to integrate the production-grade components such
as garbage collection, JIT compiler, an API for quickly utilizing the
JIT compiler, named JitBuilder, cross-platform support for threads
and signals, as well as threading support [13, 30]. Much of the
infrastructure driving Eclipse OpenJ9 links to OMR components.

The JIT compiler found in this project, and thus in OpenJ9, is
named Testarossa (TR) [43]. In TR, the compilation is method-based
and triggered using invocation thresholds for regular methods as
well as methods containing loops. TR supports several levels of
optimization ranging from the initial optimization level cold, with
roughly 20 optimizations applied, through warm, then hot and very-
hot levels, all the way to the highest level—scorching, where as many
as 170 optimizations can be applied [34, 37]. There is another compi-
lation level named noOpt, which applies no optimizations and may
be used to improve application startup time in large applications
[34].

Command-line arguments for TR can be passed to the JVM with
the -Xjit option group [32]. Some options significant to this work
are listed as follows:

• count - The invocation threshold for standard methods. The
default value is 3000.

• bcLimit - The bytecode limit size for methods to compile in
bytes.

• codetotal - Available memory for generated code in KB.
• limit - A debugging option to list the methods that TR
should include and at what compilation level it should com-
pile them.

• exclude - A debugging option to list the methods that TR
should exclude.

• breakOnEntry - A debugging option generating a break-
point instruction (int3 on x86-64) at start of the generated
code.

During compilation, fewer resources are available on the platform
for executing workload. For certain constrained environments, the
overhead of the TR JIT compilation may be too high to be effective.
In this work, we will add a second, lighter-weight JIT compiler,
MicroJIT, to Eclipse OpenJ9.

2.4 Constrained Devices
In this work, we consider constrained devices to be any computing
device that has limited processing capability compared to other
devices performing work. We use the term constrained environment
to denote a context within which work is done on a constrained de-
vice. Thus, this term can encapsulate embedded systems, connected
IoT devices, and even containers that are running in the cloud. This
limited capability may be the result of several things: having limited
CPU cores and processing speed, having limited memory, main-
taining optimal power efficiency, having limited I/O bandwidth, or
having limited connectivity [19]. The type of workload performed
on the device may also be indicative of a constrained environment.

As the market for IoT continues to increase, the number of these
constrained devices is growing substantially. Indeed, IoT devices
are being installed for nearly every conceivable scenario where data
can help inform decisions. With this increase in devices, comes the
increased need for software and thus software developers. Meeting
this demand in a timely fashionwith secure and robust software will
be a significant challenge for the industry. Revisiting the Eclipse
IoT developer survey [24] from 2019, we see that although C is
the most popular language for most of the constrained devices,
Java is in the top five. Furthermore, developers use Java over any
other language for less constrained devices—gateways and servers.
With the benefits of Java and the JVM in mind, it is conceivable
that interest in using them for running workloads on constrained
devices will continue to increase. For many of these workloads,
performance will be a crucial factor, and as such, JIT compilation
will play an essential role.

3 RELATEDWORK
Different solutions have been proposed in the past in this direction.
One such work was the experimental support for WebAssembly—
a new runtime and compilation target for the web—in V8 [47].
This implementation used the TurboFan compiler—V8’s powerful

182

MicroJIT: A Case for Templated Just-in-Time Compilation in Constrained Environments CASCON’20, November 10–13, 2020, Toronto, Canada

optimizing compiler—and much of the existing JavaScript virtual
machine infrastructure. After roughly a year, the V8 team launched
a new JavaScript execution pipeline for V8 v5.9 [45], which led
to improvements in performance and memory consumption of
JavaScript applications. This pipeline used Ignition for interpreta-
tion and TurboFan for compilation. Liftoff is a baseline compiler
for WebAssembly, which is included in V8 v6.9 and now enabled
by default on desktop systems [16]. It reduces the startup times of
WebAssembly applications significantly by adding another com-
pilation tier. The new compilation pipeline with Liftoff is much
simpler compared to the existing compilation pipeline with Turbo-
Fan. Even if the existing compilation process is straightforward, it
still consumes considerable time and memory. So, Liftoff is able to
generate code much faster than TurboFan.

SpiderMonkey—Mozilla’s JavaScript runtime—uses IonMonkey
for JIT optimization [6]. It applies various strategies to optimize
operations, such as property accesses and function calls. Shudo
et al. [38] developed a Java Just-in-Time compiler involving low
compilation and development costs. The optimization methods
implemented in the compiler included instruction folding, exception
handling with signals and code patching. Another work by Iliasov
[21] demonstrated that dynamic code generation from templates
created using a C compiler can be employed to build a simple,
portable JIT compiler. At the same time, a template-based compiler
requires more memory than an interpreter and also, it implies
certain limitations on the instruction sets.

Sogaro et al. [42] investigated whether using two different JIT
compilers in the same JVM can improve startup times. They con-
cluded that integrating MicroJIT—a lightweight JIT system—with
the default J9 JIT, could improve startup times in some configura-
tions of the JVM. Later, another work was carried out by Coffin et al.
[4] by incorporating MicroJIT into OpenJ9 to offer similar improve-
ments to startup times, while offering applications in resource con-
strained environments a lightweight JIT alternative. Some changes
were proposed to the earlier implementation of MicroJIT to improve
its flexibility and performance, such as porting MicroJIT to the 64-
bit x86 architecture, extending bytecode support, added support for
asynchronous compilation and profiling to the generated code.

In our current work, an effort has been made to improve the
throughput of certain workloads in constrained environments run-
ning with MicroJIT versus running in interpreter-only mode. While
trying to port the project, we realized that it could involve more
effort and risk than rewriting the compiler from scratch mainly be-
cause the mechanism in the previous MicroJIT for returning to the
interpreter when an unsupported bytecode was encountered would
not work in Eclipse OpenJ9 and also, the shape of the stackframe
the original MicroJIT maintained was not compatible with Eclipse
OpenJ9. While these issues signalled that a rewrite of the previous
MicroJIT was necessary, we did borrow several aspects from its
design such as continuing to use methods as the unit of compilation
for MicroJIT, iterating or walking the bytecodes, copying a snippet
of machine code to the code cache for each bytecode it encountered
while generating machine code for the body of a method, and use
of extra2 field similar to the previous MicroJIT.

An alternative approach to reduce JVM overhead from JIT com-
pilation is to utilize AOT-compiled code. Considering that the Java
Virtual Machine specification states that linking and loading must

happen dynamically [14], the quality of AOT-compiled code will
be limited as the compiler must assume that all references are un-
resolved. The quality of AOT-compiled code can be improved by
storing dynamically generated code from the JIT compiler andmeta-
data in an offline store, or cache. This cache can improve startup
time and performance over the interpreter, potentially leading to
less reliance on the JIT compiler for some workloads. OpenJ9 of-
fers this improvement through the use of the shared class cache, a
memory-mapped file, enabled automatically through the use of the
-Xshareclasses command-line option. The cache can be config-
ured to be persistent and shared between multiple instances of the
JVM [9]. For long-lived environments capable of persisting runtime
generated code between executions of the Java application, this
approach provides a very efficient mechanism for reducing startup
time [35]. On the other hand, for short-lived environments, such as
those running ephemeral containers where applications will only
execute once, this approach may not easily offer a viable solution
[46], although options are available to pre-warm an image during
the building of a Docker Image [23].

4 DESIGN
MicroJIT is a template-based JIT compiler for Eclipse OpenJ9 de-
signed to generate code quickly with low overhead. Using methods
as its unit of compilation, MicroJIT translates the bytecodes of a
Java method-body into a block of generated binary instructions
stored for later execution in a code cache. The compilation is per-
formed selectively through the use of invocation counters. Once the
number of times a method has been interpreted reaches a specified
threshold, the method will be passed to MicroJIT for compilation.
If the method is able to be compiled by MicroJIT, later, when the
method is invoked again by the interpreter, execution will instead
transition to the JITed code.

4.1 Integrating MicroJIT and Eclipse OpenJ9
While MicroJIT may be viewed as an independent module, it is
closely integrated with Testarossa (TR). This coupling allows us to
take advantage of numerous facilities provided by TR, including:

• Code Cache Management: The code cache management
facility provides us with a convenient, cross-platform mecha-
nism for allocating and managing executable memory. While
we could have directly used the system call mmap to provide
our process with an executable memory space to copy our
templates, this would have limited us to the Linux platform.
By leveraging the Code Cache Manager API, MicroJIT can in-
teract indirectly with the memory systems of other operating
systems as well.

• Asynchronous Compilation: Rather than compiling di-
rectly in the same thread as the executing method, which
would delay the execution of the workload—especially for
large methods—a method is placed on a queue for later com-
pilation, allowing the interpreter to continue interpreting the
method. The compilation queue allows increased parallelism,
as we can now perform compilation on multiple threads and
also to prioritize some methods over others. By utilizing
the existing compilation process up to but not including the
IL-phase, we gain support for asynchronous compilation.

183

CASCON’20, November 10–13, 2020, Toronto, Canada Coffin et al.

• Debugging Utilities: TR provides command-line options
to limit compilation to particular methods. TR’s ability to
log the generated code in a human-readable format was also
valuable when designing the MicroJIT code-generator. By
sharing much of the pre-compilation and post-compilation
code paths with TR, MicroJIT benefits from these debugging
and tracing facilities.

• Bytecode Iterator: The Bytecode Iterator class, which im-
plements the iterator pattern [12], provides a convenient
mechanism for iterating through amethod’s bytecode stream.
The class saved us the effort of parsing Java bytecode instruc-
tions and operands while providing us with their associated
mnemonics for both programming and debugging5.

• Exceptions: Finally, the close integration of MicroJIT with
TR provides us with cross-platform support for interrupt han-
dling. Through the Port library, provided through Eclipse
OMR, signal handlers are registered for JITed code. In the
event our JITed instructions generate an exception, for ex-
ample, when attempting to divide by zero, the registered
handler will receive the signal, and then begin the process
of unwinding the stack from the JITed frame to find the
appropriate Java exception handler.

In order to enable and configureMicroJIT within Eclipse OpenJ9, we
added the following command-line options to the -Xjit top-level
option:

• mjitEnabled - Set to 1 to enable MicroJIT.
• mjitCount - The number of invocations a method requires
before triggering a compilation.

4.2 Architecture
In the following sections we discuss how we select and generate
code, as well as considerations for our target platform—Linux on
x86-64.

4.2.1 Selective Compilation. The pre-compilation phase begins
when the interpreter executes a method that has not been JIT-
compiled. The invocation counters are adjusted, thresholds are
checked and compilation is triggered when the counters have
reached zero. MicroJIT adds a second field, extra2, to each method
metadata structure J9Method. This field performs a role similar
to the extra field, which is used by TR to store the invocation
count, the address of the JIT-compiled method, or special values
indicating that compilation should not be attempted again. When
compilation is triggered, and asynchronous compilation is enabled,
the method is placed in the compilation queue. The compilation
thread then dequeues a pending method compilation and continues
the pre-compilation phase during which metadata structures are
populated, and various compiler options are initialized. Once the
pre-compilation completes, the compilation proceeds to MicroJIT.

4.2.2 Code Generation. WhenMicroJIT compilation begins, a 1024-
byte segment of memory is first allocated through the code cache
manager. Currently, if the number of generated bytes exceeds this,

5The iterator pattern is a design pattern for iterating over a collection of elements.
The methods provided are first(), to get the first element, next(), to get the next
element of the iterator, and hasNext(), returning a boolean value if there is another
element to iterate over.

the compilation will fail, and the segment will be freed through the
code cache manager. Next, we inspect the incoming parameters to
generate code for populating the stack frame and the local storage
area, and for ensuring later root-set compatibility with garbage
collection. While the slots in our operand stack are each eight
bytes, i.e., large enough to satisfy any primitive datatype we will
encounter, for certain wide operations involving floats and doubles,
we use two slots. Likewise, following the Java specification, for a
local array, we allocate two slots for both float and double types in
order to simplify compatibility.

The initial machine code generated by MicroJIT contains the
preprologue followed by the prologue. The preprologue contains
code to check for stack overflow as well as to potentially relinquish
control to the interpreter to perform any necessary JVM processes.
The prologue contains code to push the previous base pointer and
the preserved registers onto the stack and then sets up the new
base and stack pointers. Instructions are then generated to copy
the incoming parameters to the local array, after which the next
step is to generate the body of the method.

While iterating the method bytecodes, if an unsupported byte-
code is encountered, the compilation is aborted, the code cache
memory is freed, and a value is stored in the extra2 field to sig-
nal the method failed and should not be compiled by MicroJIT
again. On the other hand, if all the bytecodes of the method body
were supported, the code buffer will now contain the machine code
templates for each bytecode instruction. Branching is supported
through the use of two structures: a table mapping each bytecode
index to the generated code address, and a jump table containing an
entry for each branch instruction. Each jump table entry contains
the branch or jump’s target bytecode index and the address in the
generated code to target with a patch operation after the template
is copied. After the bytecodes have been iterated, we iterate each
jump table entry finding the generated address for the target byte-
code in the bytecode index table and then patching the generated
branch or jump address with it. After the body has been generated
and patched, the epilogue instructions are generated, which clean
up the stack and restore the preserved registers. Finally, the address
of the preprologue is written to the extra2 field within the method
metadata structure. Later, when the method is invoked by the in-
terpreter, this field is checked, and if it contains a valid program
counter address, execution then transitions to the JITed code.

4.2.3 Platform. Our first target platform for MicroJIT is Linux
running on the 64-bit x86 architecture. The choice of this platform
stems from our previous work attempting to port MicroJIT to Linux
fromWindows while extending its instructions from 32-bit to 64-bit.
With the choice to rewrite the compiler, we maintained the target
platform. Values are passed to and from the generated code via
registers according to the following calling convention defined by
Eclipse OpenJ9:

• RAX, RSI, RDX, RCX - Argument registers for the first
four integer method parameters where the first argument is
found in RAX. Other parameters will be found in the caller
stack frame.

• XMM0-XMM7 - Floating point method parameters.

184

MicroJIT: A Case for Templated Just-in-Time Compilation in Constrained Environments CASCON’20, November 10–13, 2020, Toronto, Canada

1 template_start iAddTemplate
2 mov r11, [r10] ; pop first value off java stack
3 add r10, 8 ; reduce stack size by 1 slot
4 mov r12, [r10] ; copy second value to the value reg
5 add r11, r12 ; add the values
6 mov [r10], r11 ; write the accumulator to the stack
7 template_end iAddTemplate

Listing 1: Bytecode x86-64 template for the iadd bytecode.

• EAX, RAX, XMM0 - Return value registers; EAX is used for
32-bit integers, RAX for 64-bit integers and XMM0 for float or
double values.

• The return address will be already on the stack. After the
epilogue executes, this value will be used by the action to
return to the previous frame.

Within the generated code, similar to the JVM specification, we
use a memory-based operand stack for state, and a local array for
storage. We also provide a side-table for internal mapping between
the bytecode and generated code, which is used for patching branch
and jump instructions. We use the following x86-64 registers within
the generated code:

• RSP: Base pointer for the Java stack frame
• R10: Stack pointer for the Java stack
• R11: Stores the accumulator or stores a pointer to an object
• R12: Stores any value which will act on the accumulator,
stores the value to be written to an object field or stores the
value read from an object field

• R13: Holds addresses for absolute addressing; used when
loading references or fields

• R14: Holds a pointer to the start of the local array
• R15: Stores values loaded from memory for storing on the
stack

4.3 Bytecodes
The majority of the bytecodes we implemented map to a unique
template written in NASM-style assembler, although several byte-
codes, notably load, store and ret were handled generically. List-
ing 1 shows the assembler for the iadd template. We use the
template_start and template_end macros to simplify calculat-
ing the size of the template. During code-generation, as we iterate
through a method’s bytecode stream, we simply copy these tem-
plates into the allocated code cache segment. For those bytecodes
that require index-based addressing, we write placeholder bytes and
patch them after the body has been completely generated. With the
assistance of side-tables, a similar mechanism is used for branching
as well as for the goto instruction. The operands of these byte-
codes specify signed offsets from the current bytecode, though we
translate them into indexes from 0.

4.3.1 Implementation Strategy. At the time of writing, MicroJIT
does not provide full bytecode coverage. As mentioned, when we
encounter an unsupported bytecode, we prevent further attempts at
compiling the method with MicroJIT. While we have enough byte-
codes implemented to compile the Fibonacci programs described in
the Results section,MicroJIT lacks support formany important byte-
codes including invokevirtual, new, invokespecial, newarray
and athrow. To guide our implementation, and to track our progress,

Bytecode Count % of Unsupported % of Total
JBinvokevirtual 2518 18.53 5.25
JBputfield 1647 12.12 3.44
JBinvokespecial 1530 11.26 3.19
JBifeq 773 5.69 1.61
JBnewdup 632 4.65 1.32
JBldc 575 4.23 1.20
JBaconstnull 366 2.69 0.76
JBathrow 351 2.58 0.73
JBifnull 338 2.48 0.70
JBnop 267 1.96 0.55
Total Bytecodes 47,877
Unsupported 13,585

Table 1: The bytecode frequency for DaCapo is used to help
guide implementation choices. Listed are the 10 most used
unsupported bytecodes for avrora with mjitCount=20.

we test our bytecode coverage, against the DaCapo benchmark suite
[3] (see Table 1 for results with avrora). Across all the benchmarks,
invokevirtual and invokespecial are the most common unsup-
ported bytecodes.

4.3.2 Testing. To aid in the development of MicroJIT, we designed
a regression test framework. This framework allows us to perform
assertions on the results of Java test methods while at the same time
confirming that they were compiled by MicroJIT. These tests are
then executed with the aid of the JUnit framework [44] on Eclipse
OpenJ9. We ensure our test methods are executed by providing
the same invocation threshold to both the test framework and to
the JVM. When the tests have completed, we have the expected
results from JUnit, and we scan the compiler log for special mes-
sages signalling that compilation was completed for each particular
method. A failure could thus be caused by one of two things: either
a method was not compiled by MicroJIT, which would indicate a
failure within the code generator, or the result was incorrect, in-
dicating an issue with a bytecode template. The test framework
is designed to execute automatically on a continuous integration
server before a branch is merged into the mainline, or trunk.

5 RESULTS
We tested the performance of MicroJIT with bespoke micro-
benchmarks that calculated the Fibonacci series iteratively and
recursively using static methods, for which we provided full byte-
code coverage. IterativeFib.fib(I)I, which compiles to 37 byte-
codes, computes the series in a single method call using a for loop
and a temporary variable, while RecursiveFib.fib(I)I compiles
to 21 bytecodes, and computes through repeated calls to itself. The
micro-benchmarks were run on an embedded board with an Intel
Atom 1.44 GHZ 4-core processor, 4GB of RAM, running Debian
5.6.7-1.

First we will look at the time spent compiling the methods with
MicroJIT, and with TR with the compilation levels of noOpt (TR-
noOpt) and cold (TR-cold) respectively. The times, shown in mi-
croseconds, are based on 200 fresh executions of the Java test pro-
grams for each of the three compiler settings, with the 20 lowest and

185

CASCON’20, November 10–13, 2020, Toronto, Canada Coffin et al.

20 highest results discarded to help eliminate outliers. Also, using
the limitFile option, each benchmark was limited to compiling
the single bespoke method. Table 2 shows that by eliminating the
IL phase, MicroJIT was able to compile the methods roughly 2.3
times faster than TR-noOpt, with RecursiveFib almost 5 times
faster than TR-cold level. Considering that we are copying machine
code templates instead of building and transforming an interme-
diate form, this is the expected result. Table 3 shows the memory
in KB used by JIT compilers to compile the methods in the same
experiment6. We see that MicroJIT uses a fraction of the memory
that either TR-noOpt or TR-cold use: it is able to compile the micro-
benchmark methods with just a single 64 KB segment. One result
that stands out is TR-noOpt requiring more memory than TR-cold
for IterativeFib, but less for RecursiveFib. Looking at the opti-
mization logs from TR, we see that the generated code size is 147
bytes for TR-noOpt and 141 bytes for TR-cold. We also see that in
the post-optimization IL-trees, TR-noOpt, which had only a single
tree-simplification optimization, has 44 nodes, while TR-cold, which
had several optimizations performed, has 38 nodes. Comparing this
to the RecursiveFib results, we see that the generated code size is
103 bytes for TR-noOpt and 265 bytes for TR-cold. Also, looking at
the post-optimization IL-trees, we see that TR-noOpt has 23 nodes,
while TR-cold, which had several optimizations performed, includ-
ing inlining, has 103 nodes. One possible explanation for the larger
footprint when compiling IterativeFib at the noOpt level is the
overhead associated with the larger IL-trees.

Figure 2a shows the execution time of calculating the 30th Fi-
bonacci number using IterativeFib from 100 fresh executions of
the Java program. With each compiler using 20 as its invocation
threshold, we see that MicroJIT completes its compilation first and
thus sees the earliest improvement in throughput. Figure 2b shows
similar results for the recursive method, however we note that the
invocation count is reached earlier due to recursion. In both figures,
we see that the baseline performance of interpreter remains fairly
static. The interpreter runs were executed in interpreter-only mode
without TR (-Xint), meaning that no profiling data was gathered.
On the other hand, for the TR-specific runs—TR-noOpt and TR-
cold—the interpreter did collect profile information, which is then
used later to inform the JIT compilations.

Finally, Tables 4 and 5 show the throughput of over 1 million
invocations for IterativeFib and RecursiveFib respectively. The
experiment was run 100 times. The % column shows the percentage
of time spent relative to the interpreter. In Table 4, we see that
MicroJIT is able to complete 1 million calculations in 1.38 seconds,
or 9.55% of the time it took for the interpreter. As expected both TR-
noOpt and TR-cold are able to perform the same task significantly
faster, with TR-noOpt completing 1 million calculations in 0.897
seconds. It may be worth noting that, despite its name, TR-noOpt
performs tree simplification and the code generation may include
low-level optimizations.

In Table 5, we see that more computational effort is required to
calculate the Fibonacci sequence recursively, with the interpreter re-
quiring 88.55 seconds to complete 1 million calculations of the 10th
number. We can also see that significant improvement in through-
put can be achieved through TR and its IL phase. While MicroJIT is

6The memory values did not change across the repeated executions.

(a) IterativeFib calculating 30th number in sequence, i.e., fib(30)

(b) RecursiveFib calculating 10th number in sequence, i.e., fib(10)

Figure 2: Comparison of Execution Times (in microseconds)
of first 50 iterations of IterativeFib and RecursiveFibwith
invocation threshold 20

able to complete the task in 8.69% of the time that was required by
the interpreter, TR-noOpt required 2.67% of the time and TR-cold
required just 2.10% of the time. This performance discrepancy can
be attributed to optimizations of invokestatic in TR’s generated

186

MicroJIT: A Case for Templated Just-in-Time Compilation in Constrained Environments CASCON’20, November 10–13, 2020, Toronto, Canada

MicroJIT TR-noOpt TR-cold
mean median std.dev mean median std.dev mean median std.dev

IterativeFib 1025.44 1253.00 356.84 2446.13 2498.00 258.99 3100.34 3132.50 239.79
RecursiveFib 1016.49 1266.00 368.59 2376.59 2432.00 247.69 4976.59 4980.00 271.50

Table 2: JIT Compilation Time (in microseconds)

MicroJIT TR-noOpt TR-cold
IterativeFib 64 1024 960
RecursiveFib 64 960 1280

Table 3: Memory (in kilobytes) for JIT Compilation

Time (in seconds) Operations per second
mean std.dev % mean std.dev

Interpreter 14.426 0.0324 100.00 69,315.85 153.76
MicroJIT 1.378 0.0047 9.55 725,672.55 2428.24
TR-noOpt 0.897 0.0039 6.22 1,114,194.82 4849.61
TR-cold 0.847 0.0045 5.87 1,180,377.12 6299.74

Table 4: Time to execute 1 million iterative invocations of
fib(30)

Time (in seconds) Operations per second
mean std.dev % mean std.dev

Interpreter 88.55 0.105 100.00 11,292.26 13.33
MicroJIT 7.70 0.320 8.69 129,925.61 4688.08
TR-noOpt 2.37 0.008 2.67 420,178.73 1534.97
TR-cold 1.86 0.014 2.10 536,712.94 4257.15

Table 5: Time to execute 1 million recursive invocations of
fib(10)

code: while the code generated by TR has the call instruction ad-
dresses patched directly to the JITed code, the call instructions in
MicroJIT first jump to an intermediary routine to check if the callee
has been JITed by TR, by MicroJIT, or not compiled at all (control
returns to the interpreter). This additional step is currently required
to maintain interoperability between MicroJIT and TR, though in
the future, a MicroJIT-only build may eliminate it. Looking at the
quality of the generated code, TR-noOpt has far fewer instructions
than MicroJIT (28 versus 115), and for IterativeFib, the numbers
are similar (36 versus 116)7. While we present a large improvement
over the interpreter, we will continue to look for inexpensive opera-
tions we can apply to reduce the number of instructions generated,
as well as to reduce the overhead when calling.

6 FUTURE WORK
MicroJIT is currently a limited solution, which is missing support
for several key bytecodes. Our top priority is improving bytecode
coverage, so we can support more micro-benchmarks, eventually

7The difference in code-size can be attributed to our reliance on an in-memory operand
stack, as well as to our operations for register preservation.

transitioning to majority method support in established bench-
marks, such as DaCapo. We have been making steady progress
towards this goal and expect to reach full, or near-full coverage
within the next several months.

TR compiles methods with varying levels of optimizations. Some
of these levels, particularly those at the highest level of optimization,
rely on profiling data gathered during interpretation. By compiling
code so early withMicroJIT, this data set becomes much smaller and
therefore less representative. One of our future research objectives
is to emit profiling instructions into MicroJITed code and see if a
templated JIT can create equivalent profiling data sets faster than
the interpreter, without negatively impacting the performance of
TR as an optimizing compiler. These penalties for optimizations
are a real cost in terms of development time, processing power and
memory usage; and not having them is one of the reasons why Mi-
croJIT compiles so fast. However, some compiler optimizations are
fairly inexpensive to implement. For example, a peephole optimiza-
tion can be used to eliminate unnecessary loads [31], drastically
improving performance, but can be done with a single look ahead
operation for every store instruction in the source. Some future
work can be focused on this field of optimizations, like what cheap
optimizations can be added to a templated code generator or can
we actually make those optimizations cheaper?

As a replacement for TR in resource constrained environments,
MicroJIT needs to support the architectures used most commonly in
that field. Today, those architectures are the AArch32 and AArch64
architectures. As a tool to facilitate faster warm-up times for TR,
MicroJIT needs to support the architectures that run server-based
Java applications. Those architectures include the x86-64 Architec-
ture, the 64-bit PowerPC Architecture and the z/Architecture. As
MicroJIT evolves, we want to extend its support to cover all these
architectures and make it a feature available for all Eclipse OpenJ9
platforms.

7 SUMMARY
For some constrained workloads limited by memory and/or pro-
cessor power, a lightweight JIT compiler may be the ideal mecha-
nism to achieve performance improvements at runtime. This paper
presents our work of adding a template-based JIT compiler, Mi-
croJIT, to Eclipse OpenJ9 towards that end. While our bytecode
coverage is thus far limited, the compilation results are promising;
for our micro-benchmarks, we demonstrate significant improve-
ments in performance over the interpreter, while at the same time,
compiling more quickly and with less memory overhead than the
default JIT compiler in Eclipse OpenJ9.

187

CASCON’20, November 10–13, 2020, Toronto, Canada Coffin et al.

ACKNOWLEDGMENTS
This research was conducted within the Centre for Advanced
Studies—Atlantic, Faculty of Computer Science, University of New
Brunswick. The authors are grateful for the colleagues and facilities
of CAS Atlantic in supporting our research. The authors would
like to acknowledge the funding support provided by the Atlantic
Canada Opportunities Agency (ACOA) through the Atlantic Inno-
vation Fund (AIF) program. Furthermore, we would also like to
thank the New Brunswick Innovation Foundation for contributing
to this project.

REFERENCES
[1] AdoptOpenJDK. 2020. Prebuilt OpenJDK Binaries for Free! Retrieved 2020-02-27

from https://adoptopenjdk.net/
[2] John Aycock. 2003. A Brief History of Just-in-Time. Comput. Surveys 35, 2 (June

2003), 97–113. https://doi.org/10.1145/857076.857077
[3] StephenM. Blackburn, Robin Garner, Chris Hoffmann, AsjadM. Khang, Kathryn S.

McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B.
Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von
Dincklage, and Ben Wiedermann. 2006. The DaCapo Benchmarks: Java Bench-
marking Development and Analysis. ACM SIGPLAN Notices 41, 10 (Oct. 2006),
169–190. https://doi.org/10.1145/1167515.1167488

[4] Eric Coffin, Scott Young, Kenneth B. Kent, and Marius Pirvu. 2019. A Roadmap
for Extending MicroJIT: a Lightweight Just-in-Time Compiler for Decreasing
Startup Time. In Proceedings of 29th Annual International Conference on Computer
Science and Software Engineering (CASCON ’19). IBM Corp., Riverton, NJ, USA,
293–298.

[5] ComputerWeekly.com. 2002. Write Once, Run Anywhere? Retrieved 2019-06-17
from https://www.computerweekly.com/feature/Write-once-run-anywhere/

[6] MDN Contributors. 2020. JIT Optimization Strategies. Retrieved 2020-06-12
from https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/
JIT_Optimization_Strategies

[7] Keith D. Cooper and Linda Torczon. 2011. Engineering a Compiler (2nd. ed.).
Elsevier.

[8] Oracle Corporation. 2020. Java SE HotSpot at a Glance. Retrieved 2020-03-30 from
https://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html

[9] Ben Corrie and Hang Shao. 2018. Class Sharing in Eclipse OpenJ9. Retrieved
2020-04-19 from https://developer.ibm.com/tutorials/j-class-sharing-openj9

[10] L. Peter Deutsch and Allan M. Schiffman. 1984. Efficient Implementation of the
Smalltalk-80 System. In Proceedings of the 11th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages (POPL ’84). Association for Computing
Machinery, New York, NY, USA, 297–302. https://doi.org/10.1145/800017.800542

[11] M. Anton Ertl and David Gregg. 2003. The Structure and Performance of Efficient
Interpreters. Journal of Instruction-Level Parallelism 5 (Nov. 2003), 1–25.

[12] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1994. Design
Patterns: Elements of Reusable Object-Oriented Software (1st. ed.). Addison-Wesley
Longman Publishing Co., Inc.

[13] Matthew Gaudet and Mark G. Stoodley. 2016. Rebuilding an Airliner in Flight: A
Retrospective on Refactoring IBM Testarossa Production Compiler for Eclipse
OMR. In Proceedings of the 8th International Workshop on Virtual Machines and
Intermediate Languages (VMIL ’16). Association for Computing Machinery, New
York, NY, USA, 24–27. https://doi.org/10.1145/2998415.2998419

[14] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. 2014. The Java
Language Specification, Java SE 8 Edition (1st. ed.). Addison-Wesley Professional.

[15] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. 2013. Internet of Things (IoT): A Vision, Architectural Elements,
and Future Directions. Future Generation Computer Systems 29, 7 (Sept. 2013),
1645–1660. https://doi.org/10.1016/j.future.2013.01.010

[16] Clemens Hammacher. 2018. Liftoff: A New Baseline Compiler for WebAssembly in
V8. Retrieved 2020-06-10 from https://v8.dev/blog/liftoff

[17] Gilbert Joseph Hansen. 1974. Adaptive Systems for the Dynamic Runtime Op-
timization of Programs. Ph.D. Dissertation. Department of Computer Science,
Carnegie-Mellon University, Pittsburgh, PA, USA.

[18] Kim Hazelwood and Michael D. Smith. 2002. Code Cache Management Schemes
for Dynamic Optimizers. In Proceedings of the Sixth Annual Workshop on In-
teraction between Compilers and Computer Architectures (INTERACT ’02). IEEE
Computer Society, Washington, DC, USA, 102–102.

[19] John L. Hennessy and David A. Patterson. 2011. Computer Architecture: A Quan-
titative Approach (5th. ed.). Elsevier.

[20] Urs Hölzle and David Ungar. 1996. Reconciling Responsiveness with Perfor-
mance in Pure Object-Oriented Languages. ACM Transactions on Programming
Languages and Systems 18, 4 (July 1996), 355–400. https://doi.org/10.1145/233561.

233562
[21] Alex Iliasov. 2003. Templates-based Portable Just-in-Time Compiler. ACM SIG-

PLAN Notices 38, 8 (Aug. 2003), 37–43. https://doi.org/10.1145/944579.944588
[22] Azul Systems Inc. 2020. Zing Runtime for Java. Retrieved 2020-03-30 from

https://www.azul.com/products/zing/
[23] Docker Inc. 2020. Docker Image Build. Retrieved 2020-06-22 from https://docs.

docker.com/engine/reference/commandline/image_build/
[24] Eclipse Foundation Inc. 2019. IoT Developer Survey 2019 Results. Retrieved 2020-

04-29 from https://iot.eclipse.org/community/resources/iot-surveys/assets/iot-
developer-survey-2019.pdf

[25] Richard Jones, Antony Hosking, and Eliot Moss. 2016. The Garbage Collection
Handbook: The Art of Automatic Memory Management (1st. ed.). CRC Press.

[26] Iffat H. Kazi, Howard H. Chen, Berdenia Stanley, and David J. Lilja. 2000. Tech-
niques for Obtaining High Performance in Java Programs. Comput. Surveys 32, 3
(Sept. 2000), 213–240. https://doi.org/10.1145/367701.367714

[27] Ken Kennedy and John R. Allen. 2001. Optimizing Compilers for Modern Archi-
tectures: A Dependence-based Approach (1st. ed.). Morgan Kaufmann Publishers
Inc.

[28] Prasad A. Kulkarni. 2011. JIT Compilation Policy for Modern Machines. In Pro-
ceedings of the 2011 ACM international conference on Object oriented programming
systems languages and applications (OOPSLA ’11). Association for Computing Ma-
chinery, New York, NY, USA, 773–788. https://doi.org/10.1145/2048066.2048126

[29] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. 2014. The Java
Virtual Machine Specification, Java SE 8 Edition (1st. ed.). Addison-Wesley Profes-
sional.

[30] Daryl Maier and Xiaoli Liang. 2017. Supercharge a Language Runtime!. In
Proceedings of the 27th Annual International Conference on Computer Science and
Software Engineering (CASCON ’17). IBM Corp., Riverton, NJ, USA, 314–314.

[31] William M. McKeeman. 1965. Peephole Optimization. Commun. ACM 8, 7 (July
1965), 443–444. https://dl.acm.org/doi/pdf/10.1145/364995.365000

[32] Eclipse OMR. 2020. OMRCommand-line Options. Retrieved 2020-04-19 from https:
//github.com/eclipse/omr/blob/master/compiler/control/OMROptions.cpp

[33] Eclipse OpenJ9. 2020. Eclipse OpenJ9 Repository. Retrieved 2020-02-27 from
https://github.com/eclipse/openj9

[34] Eclipse OpenJ9. 2020. The JIT Compiler. Retrieved 2020-04-20 from https:
//www.eclipse.org/openj9/docs/jit/

[35] Marius Pirvu. 2018. Optimize JVM Startup with Eclipse OpenJ9. Retrieved
2019-06-19 from https://developer.ibm.com/articles/optimize-jvm-startup-with-
eclipse-openjj9

[36] B. Ramakrishna Rau. 1978. Levels of Representation of Programs and the Archi-
tecture of Universal Host Machines. ACM SIGMICRO Newsletter 9, 4 (Nov. 1978),
67–79. https://doi.org/10.1145/1014198.804311

[37] Ricardo Nabinger Sanchez, José Nelson Amaral, Duane Szafron, Marius Pirvu,
and Mark Stoodley. 2011. Using Machines to Learn Method-Specific Compilation
Strategies. In International Symposium on Code Generation and Optimization (CGO
2011). IEEE, 257–266. https://doi.org/10.1109/CGO.2011.5764693

[38] Kazuyuki Shudo, Satoshi Sekiguchi, and Yoichi Muraoka. 2004. Cost-Effective
Compilation Techniques for Java Just-in-Time Compilers. Systems and Computers
in Japan 35, 12 (Nov. 2004), 10–24. https://doi.org/10.1002/scj.10564

[39] James E. Smith and Ravi Nair. 2005. Virtual Machines: Versatile Platforms for
Systems and Processes (1st. ed.). Elsevier.

[40] TIOBE The software quality company. 2019. The C# Programming Language.
Retrieved 2019-06-17 from https://www.tiobe.com/tiobe-index/csharp/

[41] TIOBE The software quality company. 2019. The Java Programming Language.
Retrieved 2019-06-17 from https://www.tiobe.com/tiobe-index/java/

[42] Federico Sogaro, Eric Aubanel, Kenneth B. Kent, Vijay Sundaresan, Marius Pirvu,
and Peter Shipton. 2017. MicroJIT: A Lightweight, Just-in-Time Compiler to
Improve Startup Times. In Proceedings of the 27th Annual International Conference
on Computer Science and Software Engineering (CASCON ’17). IBM Corp., Riverton,
NJ, USA, 140–150.

[43] Toshio Suganuma, Takeshi Ogasawara, Mikio Takeuchi, Toshiaki Yasue, Moto-
hiro Kawahito, Kazuaki Ishizaki, Hideaki Komatsu, and Toshio Nakatani. 2000.
Overview of the IBM Java Just-in-Time Compiler. IBM Systems Journal 39, 1 (Jan.
2000), 175–193. https://doi.org/10.1147/sj.391.0175

[44] The JUnit Team. 2020. JUnit. Retrieved 2020-05-12 from https://junit.org
[45] V8 Team. 2017. Launching Ignition and TurboFan. Retrieved 2020-06-10 from

https://v8.dev/blog/launching-ignition-and-turbofan
[46] Mark Thom, GerhardW. Dueck, Kenneth Kent, and DarylMaier. 2018. A Survey of

Ahead-of-Time Technologies in Dynamic Language Environments. In Proceedings
of the 28th Annual International Conference on Computer Science and Software
Engineering (CASCON ’18). IBM Corp., Markham, Ontario, Canada, 275–281.
http://dl.acm.org/citation.cfm?id=3291291.3291320

[47] Seth Thompson. 2016. Experimental Support for WebAssembly in V8. Retrieved
2020-06-10 from https://v8.dev/blog/webassembly-experimental

188

https://adoptopenjdk.net/
https://doi.org/10.1145/857076.857077
https://doi.org/10.1145/1167515.1167488
https://www.computerweekly.com/feature/Write-once-run-anywhere/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/JIT_Optimization_Strategies
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/JIT_Optimization_Strategies
https://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html
https://developer.ibm.com/tutorials/j-class-sharing-openj9
https://doi.org/10.1145/800017.800542
https://doi.org/10.1145/2998415.2998419
https://doi.org/10.1016/j.future.2013.01.010
https://v8.dev/blog/liftoff
https://doi.org/10.1145/233561.233562
https://doi.org/10.1145/233561.233562
https://doi.org/10.1145/944579.944588
https://www.azul.com/products/zing/
https://docs.docker.com/engine/reference/commandline/image_build/
https://docs.docker.com/engine/reference/commandline/image_build/
https://iot.eclipse.org/community/resources/iot-surveys/assets/iot-developer-survey-2019.pdf
https://iot.eclipse.org/community/resources/iot-surveys/assets/iot-developer-survey-2019.pdf
https://doi.org/10.1145/367701.367714
https://doi.org/10.1145/2048066.2048126
https://dl.acm.org/doi/pdf/10.1145/364995.365000
https://github.com/eclipse/omr/blob/master/compiler/control/OMROptions.cpp
https://github.com/eclipse/omr/blob/master/compiler/control/OMROptions.cpp
https://github.com/eclipse/openj9
https://www.eclipse.org/openj9/docs/jit/
https://www.eclipse.org/openj9/docs/jit/
https://developer.ibm.com/articles/optimize-jvm-startup-with-eclipse-openjj9
https://developer.ibm.com/articles/optimize-jvm-startup-with-eclipse-openjj9
https://doi.org/10.1145/1014198.804311
https://doi.org/10.1109/CGO.2011.5764693
https://doi.org/10.1002/scj.10564
https://www.tiobe.com/tiobe-index/csharp/
https://www.tiobe.com/tiobe-index/java/
https://doi.org/10.1147/sj.391.0175
https://junit.org
https://v8.dev/blog/launching-ignition-and-turbofan
http://dl.acm.org/citation.cfm?id=3291291.3291320
https://v8.dev/blog/webassembly-experimental

Designing and Evaluating New Instructions
that Accelerate Sigmoid-Based Machine Learning

Lucas M. Dutton
duttonl@mcmaster.ca
McMaster University

Hamilton, Ontario, Canada

Curtis d’Alves
dalvescb@mcmaster.ca
McMaster University

Hamilton, Ontario, Canada

Wolfram Kahl
kahl@mcmaster.ca
McMaster University

Hamilton, Ontario, Canada

Robert F. Enenkel
enenkel@ca.ibm.com
IBM Canada Ltd.

Markham, Ontario, Canada

Christopher K. Anand
anandc@mcmaster.ca
McMaster University

Hamilton, Ontario, Canada

ABSTRACT
Activation functions (such as sigmoid and tanh) are an expensive
operation in the neural network algorithms used in deep learning.
Previous work has investigated different ways of accelerating the
table lookup and exceptional-branch handling involved in such
functions, with simple Instruction Set Architecture extensions. In
this paper we report on the logic design for such new instructions,
capable of computing sigmoid, exponentials, reciprocal and division
in single precision. Such instructions could be accommodated as
inexpensive add-ons to current CPU and GPU designs. We explain
how to estimate the expected performance based on the resource
constraints for the processor. Under reasonable assumptions for the
addition of such instructions to the IBM POWER8 architecture, we
estimate that for well-scheduled loops containing single-precision
sigmoid functions, each sigmoid result would require 1.75 cycles
asymptotically, more than a 4X acceleration over a sigmoid function
implemented with primitives from an existing commercial math
library (IBM Mathematical Acceleration SubSystem).

CCS CONCEPTS
•Mathematics of computing→Continuous functions; •Hard-
ware→Arithmetic anddatapath circuits; •Computingmethod-
ologies → Machine learning algorithms.

KEYWORDS
sigmoid, activation function, special function, instruction set archi-
tecture, instruction scheduling, floating point

ACM Reference Format:
LucasM. Dutton, Curtis d’Alves,WolframKahl, Robert F. Enenkel, and Christo-
pher K. Anand. 2020. Designing and Evaluating New Instructions that Ac-
celerate Sigmoid-Based Machine Learning. In CASCON’20: Conference of the
Centre for Advanced Studies on Collaborative Research. ACM, New York, NY,
USA, 9 pages.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CASCON’20, November 10-13, 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

1 INTRODUCTION
Machine learning via Neural Networks hasmade remarkable progress
on classification problems [1], especially of images, and is increas-
ingly being applied to generation problems, like voice synthesis
[2] and forecasting population density [3]. Such rich applications
with millions of pixels or sound samples result in heavy processor
loads. This leads researchers and commercial processor designers
to look for ways of accelerating deep learning. Two aspects of deep
learning stand out for optimization: tensor algebra and activation
functions. Tensor algebra can be accelerated using multi-core CPUs
and GPUs[4], or going beyond that to the design of custom pro-
cessors or accelerators. The Tensor Processing Unit [5] is already
being used at scale. Activation functions are the next frontier in
optimization [6, 7].

Accelerating mathematical functions has a long history [8–14],
and previous work on accelerating exponential and reciprocal func-
tions is directly applicable to two important activation functions,
sigmoid and hyperbolic tangent,

sigmoid(x) =
1

1 + e−x
, and tanh(x) =

ex − e−x

ex + e−x
.

It is a matter of continuing research how accurate activation func-
tions need to be [15]. Pure hardware implementations can achieve
very high performance when giving up some accuracy [7, 16]. On
the other extreme, activation functions can be built using vector
libraries which obtain efficiency by pipelining the computation of
standard math functions applied to a whole array at a time. Some-
where in the middle are the options to implement those standard
math functions (particularly exponential and reciprocal) as new
hardware instructions [17] which then benefit all users of standard
libraries [18]; and the option of adding instructions which replace
multiple instructions in existing algorithms. This is the approach
we will pursue in this paper.

The original work was based on [19], which was done in the
context of the Cell/B.E. SPU, compute engines with double preci-
sion, without working out the details for other precisions or do-
ing actual scheduling. Sigmoid was not considered in the original
paper. This paper considers single-precision 1 sigmoid, giving a
specification for the novel instructions in the form of C code, in
Section 2. Given the superscalar capabilities of POWER8 versus
the SPU, and out-of-order execution, it was necessary to schedule
1Single precision and even lower are used in neural networks, as described in [20]

189

CASCON’20, November 10-13, 2020, Toronto, Canada Dutton, d’Alves, Kahl, Enenkel, Anand

and simulate execution (Section 3) of the scheduled code to have
confidence in the predicted speedup. This paper also compares
estimated areas for implementing different approaches, in Section
4.

2 IMPLEMENTATION
The goal of our approach, based on the work of [19], is to sim-
plify special function evaluation with the addition of two types of
new instructions: lookupfp, a support instruction which detects
exceptional cases and calculates reduction and restoration factors,
and fmax, a modified floating-point multiply-add instruction. Both
types of instructions are used to compute sigmoid in Figure 2. The
new instructions have double outlines, and the lookup instruc-

lxv vIn,0(rArrayIn)
vmaddfp vScaledOffset,vIn,vLog2Neg,vOffsetBump
xxland vIdxMaskedOut,vScaledOffset,vMask
vsubfp vFrac1,vIdxMaskedOut,vOffset
vmsubfp vFrac,vNegInvLog2,vIn,vFrac1
lookupfp c0,vScaledOffset,vScaledOffset,8,1 # 8=exp,1=reduce
lookupfp exp2c0,vScaledOffset,vScaledOffset,8,2
8=exp,2=restore
fmaxfp vFracMOffset,vOneX,vFrac,c0
vmaddfp poly0,vFrac,expCoeff1,expCoeff0
vmaddfp poly1,vFrac,expCoeff2,poly0
vmaddfp poly2,vFrac,expCoeff3,poly1
vmaddfp expNegxP1,poly2,exp2c0,vOne
lookupfp multReduc,expNegxP1,expNegxP1,9,1 # 9=recip,1=reduce
lookupfp approxRecip,expNegxP1,expNegxP1,9,2
9=recip,2=restore
fmaxfp recipFracMOffset,multReduc,expNegxP1,vNegOne
vmaddfp poly0r,recipFracMOffset,recipCoeff1,recipCoeff0
vmaddfp poly1r,recipFracMOffset,recipCoeff2,poly0r
vmaddfp poly2r,recipFracMOffset,recipCoeff3,poly1r
fmaxfp almost,multReduc,poly2r,vZero
vmaddfp vOut,almost,recipFracMOffset,approxRecip
stxv vOut,0(rArrayOut)
constants
vLog2Neg = splat -1.442695f
vOffsetBump = splat 33151.5f
vOffset = splat 33151f
vMask = splat 0 xffffff00

Figure 1: Scheduled assembly code corresponding to code-
graph of Fig. 2

tions have readable names. The equivalent computation in POWER
assembly code is in Figure 1.

The algorithm is assumed to be performed on an architecture
with Out-Of-Order execution and instruction prefetching (such as
POWER8 which performs branch prediction when prefetching and
flushes instructions from mispredicted paths [21]). We will explain
the algorithm in terms of the graph, by line number (latencies are
given per the POWER8 User Manual [21]):

(1) fma (Latency 6 cycles FPR, 9 cycles CR)calculates the index
of an accurate-table reduction factor and positions it in bits
8–14 (little endian), incorporating a sign change .

VR

fma

fms

VR

fmaX

VR VR

VR

and lookupExpReduce lookupExpRestore

VR

VR

fs

VR

VR

VR

VR

VR

fma

fma

fma

VR VR

VRVR

VRVR

fma

VR

VR

VR

lookupRecipReduce

fmaX

lookupRecipRestore

VR

fmaX

VR

VR

fma

fma

fma

fma

VR VR

VRVR

VR VR

VRVR

VR

VR

VR

1

1

const

const const

const

const

const const

const

const

const

const const

const

const

const

(16)

(15)

(14)

(13)

(12)

(11)

(10)

(9)

(8)

(7)

(6)

(5)

(4)

(3)

(2)

(1)

Figure 2: Branch-free codegraph for sigmoid computation.
Values stored in vector registers are indicated by VR, input
and output by triangles, constants by unreadably small rect-
angles, and machine instructions by large rectangles. New
instructions are doubly-boxed. The horizontal grey lines di-
vide groups for scheduling, with two floating-point opera-
tions per group.

190

New Instructions to Accelerate Machine Learning CASCON’20, November 10-13, 2020, Toronto, Canada

(2) and (Latency 1-2 cycles GPR, 6 cycles CR) masks out bits
0–7, which are needed for the fraction computation. Values
for range reduction and restoration, including exception
handling described below .

(3-4) fs and fms (Latency 6 cycles FPR 9 cycles CR) calculate the
fractional part, also incorporating a sign change.

(5-8) Calculate exponential of the residual value using a polyno-
mial.

(9) The fma restores the result to the original range and adds 1,
yielding e−x + 1.

(10) Range reduction and restoration values for reciprocal are
calculated.

(11) fmaX performs range reduction and exception handling.
(12-14) Calculate a polynomial approximation of reciprocal on the

reduced interval.
(15) fmaX performs a final multiply, but prevents NaN creation

in corner cases.
(16) Restores the result to the full range, yielding 1/(e−x + 1).

2.1 Extended-Range Fused Multiply-Add
One of the advantages of the new instructions is the method used to
handle exceptional floating point cases, especially at intermediate
stages of the floating point computation. Conventional methods
use branching and/or predicated execution, which may stall the
instruction pipeline and increase overall latency.

We make use of the proposed new instruction fmaX, which is an
extended-range fused multiply-add. This instruction differs from a
standard fma, as the first argument is an extended floating point
number, which is the return value of the range reduction lookup
instructions. However, the second multiplicand, the addend and
results are standard IEEE single floating point numbers. By inter-
nalizing the handling for exceptional cases, we avoid the use of
branching and predication. IEEE specifies signalling and quiet NaNs
and includes undefined bits which specific implementations can
use for signalling. We use those bits to signal special values.

Exceptions are handled by supplying a special quiet NaN (QNaN)
as the first multiplicand of the fmaX which is detected and causes a
specified constant to be substituted for the result. The behaviour of
fmaX is not specific to either the exponent or reciprocal function,
and detecting a small number of QNaNs is sufficient to support a
wide range of functions.

The extended-range, non-IEEE-754, 32-bit floating point number,
used in the first argument to fmaX, also has an extra exponent bit,
doubling the represented range, at the expense of one significand
bit2. By using an extended-range range reduction factor, computa-
tions which would over/underflow are made safe.

The fmaX is a small modification to existing fma hardware, re-
quiring an insignificant addition to the chip area. The main barrier
to implementation would be the availability of an opcode.

C specification of fmaX with uint_32 input and output compo-
nents being the binary representation of the floating-point values:

vector uint_32 fmaX(vector uint_32 a, vector uint_32 b,
vector uint_32 c) {

vector uint_32 result =
{fmaX_int32(UINT32(a[0]),UINT32(b[0]),UINT32(c[0])),

2Using the Accurate Table Method[8] compensates for this.

fmaX_int32(UINT32(a[1]),UINT32(b[1]),UINT32(c[1])),
fmaX_int32(UINT32(a[2]),UINT32(b[2]),UINT32(c[2])),
fmaX_int32(UINT32(a[3]),UINT32(b[3]),UINT32(c[3]))}

return result;
}

uint_32 fmaX_int32(uint_32 a, uint_32 b, uint_32 c) {
float_internal rmult = mult(fromEXT(a),fromIEEE(b));
float_internal raddition = add(rmult,fromIEEE(c)));
return specialCases(a,toIEEE(raddition));

}

uint_32 specialCases(uint_32 arg0, uint_32 value) {
switch (arg0) {
case 0x7fc00000: \\ +∞ext → +∞IEEE
return 0x7f800000;

case 0xffc00000: \\ −∞ext → −∞IEEE
return 0xff800000;

case 0x7fe00000: \\ |NaN0 |ext → |NaN |IEEE
return 0x7fc00000;

case 0x7fe00003: \\ |NaN3 |ext → 0IEEE
return 0;

default: return value;
}

}

2.2 Lookup Functions
The C code below details the lookup functions for exp. The input
to the function is a positive offset of the original input, with adjust-
ments based on the base of the exponent, but we are only concerned
with using Euler’s number as our base, as it feeds into the overall
computation of the sigmoid function.

//table constant is parameterized here.
int n = 5;

uint32_t ExpLookupReduce(uint32_t in){
// Get lookup key from input and execute the lookup
uint32_t lookupKey = bits32(8-n,8,in);
uint32_t c0 = exp2tableSP[lookupKey][0];

// Special cases
if (isNaN32(in)) {
return 0;

}

if (bits32 (31,32,in) == 1) {
return 0x7fc00000; // Inf

}

if (in < 0x4700ea80){
return 0x7fc00000; // Inf

}

if (in > 0x4701ff80){
return 0;

}

// Negation of the reduction value from the table
else return (uint32_t) (pow32(2,31) + c0);

}

uint32_t ExpLookupRestore(uint32_t in){
uint32_t lookupKey, expBits, exp_c0, exp2IpC0, lastBitExpC0,

mantissaExpC0;

191

CASCON’20, November 10-13, 2020, Toronto, Canada Dutton, d’Alves, Kahl, Enenkel, Anand

// Get input exponent bits and lookup key
expBits = bits32(8,17,in);
lookupKey = bits32 (8-n,8,in);

// Execute the table lookup
exp_c0 = exp2tableSP[lookupKey][1];

// From the restoration value, get the LSB
// of the exponent and the mantissa
lastBitExpC0 = bits32(23,24,exp_c0);
mantissaExpC0 = bits32(0,23,exp_c0);

// The two cases below adjusts the return value
// based on whether the input was subnormal or not
if (expBits > 0x101) {
exp2IpC0 = (bits32(0,8,expBits) - 1 + lastBitExpC0) *

pow32(2,23) + mantissaExpC0;
}

// If the input is less than −125.5, we need to
// construct the subnormal numbers for 2[x]+c0.
else {
exp2IpC0 = roundShiftR ((0x102 - expBits - lastBitExpC0),(

pow32(2,23) + mantissaExpC0));
}

// Return special outputs for invalid inputs
if (isNaN32(in)){
return 0x7fc00000; // Inf

}

if (bits32 (31,32,in) == 1) {
return 0;

}

// This, and the condition below, checks if
// input is out of representable range
if (in < 0x4700ea80){
return 0;

}

if (in > 0x4701ff80){
return 0x7f800000;

}
else return exp2IpC0;

}

The code below shows the computation for the recip lookup,
which is used in the last stage of the sigmoid computation. There
are two fmaX constants declared at the beginning of the code that
are used to handle exceptional cases.

int n = 6; // The table size is (2n) + 1 = 65

// fmaX constants
uint32_t nan3X = 0x7fe00003;
uint32_t infinityX = 0x7fc00000;

uint32_t RecipLookupReduce(uint32_t input) {
uint32_t sign, rest, exponent, mantissa, leading0s,

adjustedExponent, adjustedMantissa,
lookupKey, fullTableVal, lastBitRecipC,
mantissaRecipC, exponentComplemented,
exponentFstLookup, fstLookup,
fstBitMantissa, sndBitMantissa;

// Extract sign, exponent and mantissa bits from the
// input these operations extract the bits, so they
// do not require any gates
sign = input >> 31;
rest = input % pow32(2,31);
exponent = rest >> 23;
mantissa = rest % pow32(2,23);

// From mantissa, get the first two msbs - will be
// used as conditionals for final answer
fstBitMantissa = bits32(22,23,mantissa);
sndBitMantissa = bits32(21,22,mantissa);

// Count leading zeros in the mantissa
leading0s = countLeading0(23,23);

// Calculate an adjusted exponent and mantissa for
// subnormals. Otherwise, the exponent and mantissa
// remains unchanged from the input
if (exponent == 0) {

adjustedExponent = 23 - leading0s;
adjustedMantissa = (mantissa << (leading0s+1)) % pow32

(2,23);
}
else {

adjustedExponent = exponent;
adjustedMantissa = mantissa;

}

// We have the information needed to lookup into the
// table. From the table value which only contains a
// singleton, we can obtain two distinct values.
lookupKey = bits32(23-n,23,adjustedMantissa) + 1;
fullTableVal = recipTableSP[lookupKey];
lastBitRecipC = bits32(23,24, fullTableVal);
mantissaRecipC = bits32(23-n,23,fullTableVal);

// Construction of the extended range multiplicative
// reduction factor.
exponentComplemented = adjustedExponent ^ 0xff;
exponentFstLookup = exponentComplemented + 0x7e +

lastBitRecipC;

fstLookup = sign * pow32(2,31) + mantissaRecipC * pow32
(2,22-n);

if (exponent == 0)
fstLookup += (exponentFstLookup+23) * pow32(2,22)

else
fstLookup += exponentFstLookup * pow32(2,22);

// Return the final answer based on input parameters
if (exponent == 0 && fstBitMantissa == 1) return fstLookup;
if (exponent == 0 && fstBitMantissa == 0 && sndBitMantissa

== 1) return fstLookup;
if (exponent == 0 && fstBitMantissa == 0 && sndBitMantissa

== 0) return nan3X;
if (exponent == 0xfd || exponent == 0xfe) return fstLookup;
if (exponent == 0xff) {

if (mantissa == 0) return nan3X;
else return 0;

}
return fstLookup;

}

// The only difference between the two lookups is the
// final answer. We test the same conditionals, but
// return the range restoration value instead.
uint32_t RecipLookupRestore(uint32_t input) {

192

New Instructions to Accelerate Machine Learning CASCON’20, November 10-13, 2020, Toronto, Canada

uint32_t sign, rest, exponent, mantissa, leading0s,
adjustedExponent, adjustedMantissa, lookupKey, fullTableVal,
lastBitRecipC, mantissaRecipC, exponentComplemented,
exponentFstLookup, fstLookup, fstBitMantissa,

sndBitMantissa;

// Extract sign, exponent and mantissa bits from the
// input these operations extract the bits, so they do
// not require any gates.
sign = input >> 31;
rest = input % pow32(2,31);
exponent = rest >> 23;
mantissa = rest % pow32(2,23);

// First two bits used in conditionals.
fstBitMantissa = bits32(22,23,mantissa);
sndBitMantissa = bits32(21,22,mantissa);

// Count leading zeros in the mantissa.
leading0s = countLeading0(23,23);

// Calculate an adjusted exponent and mantissa for
// subnormals, other cases remain the same.
if (exponent == 0) {

adjustedExponent = 23 - leading0s;
adjustedMantissa = (mantissa << (leading0s+1)) % pow32

(2,23);
}
else {

adjustedExponent = exponent;
adjustedMantissa = mantissa;

}

// We have the information needed to lookup into the
// table. From the table value which only contains a

singleton
// we only need mantissaRecipC as opposed to

recipLeftLookup
lookupKey = bits32(23-n,23,adjustedMantissa) + 1;
fullTableVal = recipTableSP[lookupKey];
mantissaRecipC = bits32(23-n,23,fullTableVal);

// Construction of the extended range multiplicative
// reduction factor is the same way like all
// the logLookup instruction.
exponentComplemented = adjustedExponent ^ 0xff;

// Return the final answer based on input parameters
if (exponent == 0 && fstBitMantissa == 1)

return sign*pow32(2,31) + 0xfd*pow32(2,23) +
mantissaRecipC*pow32(2,23-n);

if (exponent == 0 && fstBitMantissa == 0 && sndBitMantissa
== 1)

return sign*pow32(2,31) + 0xfe*pow32(2,23) +
mantissaRecipC*pow32(2,23-n);

if (exponent == 0 && fstBitMantissa == 0 && sndBitMantissa
== 0)

return sign*pow32(2,31) + 0xff*pow32(2,23);
if (exponent == 0xfd)

return sign*pow32(2,31) + (((pow32(2,n) +
mantissaRecipC) * pow32(2,23-n)) >> 1);

if (exponent == 0xfe)
return sign*pow32(2,31) + (((pow32(2,n) +

mantissaRecipC) * pow32(2,23-n)) >> 2);
if (exponent == 0xff) {

if (mantissa == 0) return 0;
else return infinityX;

}

return sign*pow32(2,31) + (exponentComplemented - 2) *
pow32(2,23) + mantissaRecipC * pow32(2,23-n);

}

3 SIMULATION
We have simulated the instructions in software by compiling the C
specifications in Section 2 using native integer operations. The max-
imum error for sigmoid, when compared to the double-precision
result computed using libm exponential, on 10000 randomly gener-
ated values in the interval [−6, 6], was 1.502 ulps (The minimum
possible theoretical error is 0.5 ulps).

3.1 Performance
Since these instructions have not been implemented in a processor,
and do not depend on vendor-specific features, it is worth exploring
the impact of other processor design decisions on the performance
of the target sigmoid function. To keep the presentation compact,
we will report the ideal throughput in cycles/float for manually
scheduled loops with instructions in order, a software-pipelined
loop with seven stages, and an unrolled loop software-pipelined
with eight stages. As part of the manual schedule, we arrange the
instructions into dispatch groups. This is the ideal throughput, be-
cause it does not take into account limits on Out of Order (OoO)
resources and memory latency, only on floating-point issue band-
width. We will assume a machine which can dispatch two floating-
point 128-bit SIMD instructions, four load/store instructions and
two other instructions per cycle. Given that our loop body contains
14 floating-point instructions, our theoretical peak performance
would be 1.75 cycles per float input.

If the machine in question has efficient linear load prefetching,
and sufficient OoO resources, then the ideal throughput will be
approached. We report the OoO requirements as the number of
in-flight instructions, counting instructions in-flight from the end
of the last decode/dispatch cycle until the result is available. This
simplified model does not take into account restrictions on the re-
tirement order. We also assume that the instructions in Figure 2 are
dispatched in groups given by taking the instructions in order of
height, and continuing until two floating point instructions are con-
tained in each group. In the scheduled version as shown in Figure 3,
group divisions are shown as horizontal grey bars. The constants
can either be loaded as needed, or loaded in advance, or a com-
bination of the two, depending on register pressure, and whether
a single sigmoid or a vector of sigmoids is being computed. We
also assume that up to six instructions can be dispatched from the
instruction fetcher to the functional queues per cycle. To simulate
performance under software pipelining, we treat those 7 groups as
stages, and reverse their order within the body of the loop. This is a
valid software-pipelined schedule, not optimal, but our simulations
will show it to be close to the lower bound on execution time.

For simplicity, we assume that the load and store have a for-
warding latency of two cycles and the and a latency of one cycle,
meaning that the result is available to a dependent instruction on
the cycle after issue; and we will assume that all other instructions
have a latency of ℓ. Examining Figure 2, we notice that all instruc-
tions other than the lookup instructions are strictly ordered. The
lookup instructions have a natural order, given by their dependant

193

CASCON’20, November 10-13, 2020, Toronto, Canada Dutton, d’Alves, Kahl, Enenkel, Anand

fma

expLkupRed

fmaX

expLkRestload

fma

recipLkRed

recipLkRest

storefma

fma fma

fmafmaX fma

fma

and fs fms

fma fmaX

fmaexpLkupRed fmaX

expLkRest

load

fma recipLkRed recipLkRest

storefma

fma fma

fma

fmaX

fma

fma and fs fms

fma fmaX

Stage
Register
pressure

2

4

4

2

2

5

1

I

II

III

IV

V

VI

VII

VIII
?

di
sp
at
ch

cy
cl
es

Figure 3: Scheduled instructions for a CPU capable of dispatching two FP or SIMD-FP instructions per cycle, not showing
constant loads. The FP instructions are boxed, with the fma instructions involved in polynomial evaluations in slanted text.
The grey lines indicate dispatch group boundaries, and the number of registers values which are live across group boundaries
is indicated in the circle on the right, for a total of 19 registers required for other code. On a machine with 32 128-bit SIMD
registers and infinite OoO capabilities, this would result in a throughput of 1.75 cycles/float. On a machine with fewer OoO
resources, it would be necessary to use software pipelining and/or unrolling.

instructions, and to reduce register pressure, they should be sched-
uled after the and and fmaX respectively. Finally, there are two pinch
points in the code, which correspond to the fmas which compute
the intermediate exp(−x) + 1 and the final result. Scheduling these
instructions together with the immediately preceding fma or fmaX
also reduces register pressure. From these observations, there is a
natural grouping of instructions into dispatchable groups shown
in two versions in Figure 3. The entire Figure 3 gives a grouping
used for software pipelining for a twice-unrolled loop body. Ei-
ther connected component could be used for software pipelining
without unrolling. In this figure, rows correspond to dispatchable
groups, and are named I, II up to VIII. Dashed arrows represent
dependencies which cross multiple group boundaries, which must
be treated carefully when software pipelining, as explained below.
Solid arrows are dependencies requiring a logical register allocation,
and counting the number of sources for those arrows which cross
a group boundary tells us the register pressure at that point if the
groups were scheduled in order. These register pressures are indi-
cated in the grey circles, and since they sum to 20, register allocation
without spilling would succeed on both the in-order schedules, and
pipelined loop bodies, with the groups being scheduled in any order.

We will investigate three scheduling scenarios:

I-O In-order scheduling following Figure 2, which requires no
code duplication, but has the highest requirements for OoO
execution. Register pressure is very low in this case (a max-
imum of five registers are required at group boundaries, if
constants are loaded within the group in which they are

consumed). This indicates that it would be easy for com-
pilers to in-line single-vector computations, and interleave
computations with instructions from the caller.

P Software pipelining based on the left connected component
in Figure 3, with the instruction groups in reverse order.

Px2 Software pipelining of both components of Figure 3, corre-
sponding to an unroll factor of two.

In the second two cases, in addition to values which are assigned
registers for their lifetimes, there are dashed edges which are pro-
duced in one group and not consumed by the end of the next group.
If these dashed edges were stored in registers, after software pipelin-
ing, values from one iteration would be overwritten by the value
from the next iteration before the first value is ready to be consumed.
There are different ways of avoiding this, including hardware sup-
port for rotating registers and ferrying values through a series of
registers. Our implementation uses a fixed array with rotating read
and write pointers offset by the number of groups separating the
producer and consumer. It is possible to have multiple consumers
with different offsets. In architectures with segregated vector regis-
ters and general-purpose registers used for addresses and offsets,
this solution works well, because general-purpose registers and
load/store bandwidth are not bottlenecks. In our example, the num-
ber of rotating buffers is two or five, which imposes no constraints
on scheduling.

We simulated execution of the three scheduled loops over 200-
and 1000-element arrays. The performance is better for larger ar-
rays, and the unrolled and pipelined loop is very close to the lower
bound execution time over the full range of instruction latencies,
as shown in Figures 4 and 5, illustrating that the size of the arrays

194

New Instructions to Accelerate Machine Learning CASCON’20, November 10-13, 2020, Toronto, Canada

2 3 4 5 6 7 80

0.5

1

1.5

2

2.5
1.
93

1.
94 1.
98
5

2.
01 2.
02
5

1.
98 2.
04
5

1.
85 1.
87

1.
88 1.
9 1.
92 1.
94 1.
96
5

1.
81

1.
82 1.
83
5

1.
85 1.
86
5

1.
87
5

1.
89
5

Assigned FP and Lookup Latency

Ex
ec
ut
io
n
Ti
m
e
in

Cy
cl
es
/F
lo
at

(2
00

Fl
oa
ts
)

Simulated Execution Time versus Scheduling Strategy

Inorder Pipelined Unroll ×2 Pipelined

Figure 4: Average execution time per float, when computing
x 7→ 1/(exp(−x)+1) over a vector of length 200, simulated un-
der different scenarios, assuming latencies of 2 to 8 cycles
for both floating-point operations and the lookup instruc-
tions, and three different schedules: in-order using the or-
der given in Figure 2; pipelined with prologue, epilogue and
loop body given by assigning a different stage to each of the
groups in the left component of Figure 3, and ordering the
groups within the loop body in reverse order; and finally,
pipelined after unrolling once, as represented by the group-
s/stages in Figure 3.

does not significantly change the performance. But these results
depend on sufficient OoO execution resources. Figure 6 shows the
number of in-flight instructions which must be supported to reach
this performance. For the unrolled, pipelined loop, this requires
from 22 to a modest 44 instructions, and grows linearly with the
latency, but the unpipelined loop requires up to 112 in-flight in-
structions, and is not very predictable. Figure 7 shows how the
number of inflight instructions varies regularly over the course of
the loop in the unrolled, pipelined case.

4 ALTERNATIVES
As we have said, there are multiple alternatives for accelerating
activation functions. Compared to our expected throughput on a
POWER-like processor of 1.75 cycles per float for sigmoid, we have
benchmarked the actual performance for a vector sigmoid function
constructed from vsexp and vsrec, which are vector exponential
and reciprocal functions operating on a vector of single-precision

3Calculated using the number of transistors in IBM POWER5 (276 million) and the
area of the die (389 mm2) [22].

2 3 4 5 6 7 80

0.5

1

1.5

2

2.5

1.
78
6

1.
78
8

1.
79
7

1.
80
2

1.
80
8

1.
79
6

1.
81
5

1.
77

1.
77
4

1.
77
6

1.
78

1.
78
4

1.
78
8

1.
79

1.
76
2

1.
76
4

1.
76
7

1.
77

1.
77
3

1.
77
5

1.
77
9

Assigned FP and Lookup Latency

Ex
ec
ut
io
n
Ti
m
e
in

Cy
cl
es
/F
lo
at

(1
00
0
Fl
oa
ts
)

Simulated Execution Time versus Scheduling Strategy

Inorder Pipelined Unroll ×2 Pipelined

Figure 5: Average execution time per float, when computing
x 7→ 1/(exp(−x) + 1) over a vector of length 1000.

2 3 4 5 6 7 80

20

40

60

80

100

120

70 69

89
97 97

73

112

29
34

38 41
47

54
59

22 25 28 31
35

39
44

Assigned FP and Lookup Latency

M
ax

In
fli
gh

tI
ns
tru

ct
io
ns

Max Inflight Instructions versus Scheduling Strategy

Inorder Pipelined Unroll ×2 Pipelined

Figure 6: Peak number of inflight instructions for each strat-
egy. The amount of sigmoid calculations assigned for each
strategy remain the same as in Figure 4

195

CASCON’20, November 10-13, 2020, Toronto, Canada Dutton, d’Alves, Kahl, Enenkel, Anand

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

0

10

20

30

40

Cycle

In
fli
gh

tI
ns
tru

ct
io
ns

Number of Inflight Instructions at each CPU Cycle

Latency of 2 Latency of 4 Latency of 6 Latency of 8

Figure 7: Number of inflight instructions at each cycle for the unrolled and pipelined loop.

expRed expRest recipRed recipRest
gates 548 3562 465 382
height 16 39 22 21
table 32 × 24 32 × 24 65 × 23 65 × 23
estimated
area3in
µm2

772 5020 655 538

Table 1: Complexity of the proposed instructions in gates,
circuit height, and size of the lookup table in bits.

arguments. We found that performance approached 8 cycles per
float on POWER8[23]. Since we measured 8 cycles/float for MASS-
based sigmoid, and simulated 1.75 cycles/float for the new approach
(8/1.75=4.57), therefore we are confident of achieving a 4X through-
put increase.

divReduce divRestore divTotal KD[24]
gates 450 452 902 n/a
height 22 22 22 n/a
table 65 × 23 65 × 23 65 × 46 128×21
estimated
area in
µm2

634 637 1271 25016

Table 2: Comparison of our division implementation, which
is similar to recip, to an existing solution.

Table 1 shows actual circuit size, height and embedded table
size, as well as an estimate of circuit area for a POWER5-era 90nm
process. By using this process, we can compare our estimated circuit

size to the single-precision divisor [24]. In Table 2, we compare
a combined recip/div lookups to the design in [24]. We consider
these costs reasonable because the bigger tables already exist in
processors including translation look-aside buffers, and dedicated
memory is used in GPUs and digital signal processors capable of
storing these tables and the number of transistors required is tiny
compared to the 4.2 billion transistors in the POWER8 architecture
[25].

The reported circuits have maximum fan-in and fan-out of 4. Our
implementations make use of AND, OR, NOR and NOT gates as
basic building blocks, andmore complicated circuit designs leverage
these gates as part of their design, such as multiplexors, custom
shifters and counting leading zeros. We do not count the lookup
table and lookup instruction as part of the design, as this will be
implementation or processor specific, but we show the sizes of the
table in the number of bits, which designers can use to estimate the
costs of implementing the lookup tables.

5 CONCLUSION
We have demonstrated that a light-weight ISA extension which
accelerates special functions, can achieve significant accelerations
for sigmoid, and would achieve similar accelerations for other ac-
tivation functions. The number of gates, and the table sizes are
very modest, while the resulting code is easily scheduled and ripe
for in-lining. We recommend a similar design for special-function
acceleration on RISC-like architectures, and think it represents a
good example of the type of architecture extension recommended
by Hennessy [26] to overcome physical barriers to performance
scaling.

ACKNOWLEDGMENTS
We thank the IBM Centre for Advanced Studies and NSERC for
financial support.

196

New Instructions to Accelerate Machine Learning CASCON’20, November 10-13, 2020, Toronto, Canada

REFERENCES
[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, p.

436, 2015.
[2] S. O. Arik, M. Chrzanowski, A. Coates, G. Diamos, A. Gibiansky, Y. Kang, X. Li,

J. Miller, A. Ng, J. Raiman et al., “Deep voice: Real-time neural text-to-speech,”
arXiv preprint arXiv:1702.07825, 2017.

[3] A. Wanto, A. P. Windarto, D. Hartama, and I. Parlina, “Use of binary sigmoid func-
tion and linear identity in artificial neural networks for forecasting population
density,” IJISTECH (International Journal of Information System & Technology),
vol. 1, no. 1, pp. 43–54, 2017.

[4] D. I. Lyakh, “An efficient tensor transpose algorithm for multicore CPU, Intel
Xeon Phi, and NVidia Tesla GPU,” Computer Physics Communications, vol. 189,
pp. 84–91, 2015.

[5] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter performance analysis of
a tensor processing unit,” in Computer Architecture (ISCA), 2017 ACM/IEEE 44th
Annual International Symposium on. IEEE, 2017, pp. 1–12.

[6] B. Zamanlooy and M. Mirhassani, “Efficient vlsi implementation of neural net-
works with hyperbolic tangent activation function,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 22, no. 1, pp. 39–48, 2013.

[7] A. H. Namin, K. Leboeuf, R. Muscedere, H. Wu, and M. Ahmadi, “Efficient hard-
ware implementation of the hyperbolic tangent sigmoid function,” in Circuits
and Systems, 2009. ISCAS 2009. IEEE International Symposium on. IEEE, 2009, pp.
2117–2120.

[8] S. Gal, “Computing elementary functions: A new approach for achieving high
accuracy and good performance,” in Proceedings of the Symposium on Accurate
Scientific Computations. London, UK: LNCS 235, Springer-Verlag, 1986, pp. 1–16.

[9] M. Püschel, J. M. F. Moura, B. Singer, J. Xiong, J. Johnson, D. Padua, M. Veloso,
and R. W. Johnson, “Spiral: A generator for platform-adapted libraries of signal
processing algorithms,” Int. J. High Perform. Comput. Appl., vol. 18, no. 1, pp.
21–45, Feb. 2004. [Online]. Available: http://dx.doi.org/10.1177/1094342004041291

[10] M. Puschel, J. M. Moura, J. R. Johnson, D. Padua, M. M. Veloso, B. W. Singer,
J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko et al., “Spiral: Code generation for
dsp transforms,” Proceedings of the IEEE, vol. 93, no. 2, pp. 232–275, 2005.

[11] C. K. Anand andW. Kahl, “An optimized Cell BE special function library generated
by Coconut,” IEEE Transactions on Computers, 2009.

[12] S. Chevillard, M. Joldeş, and C. Lauter, “Sollya: An environment for the develop-
ment of numerical codes,” in International Congress on Mathematical Software.
Springer, 2010, pp. 28–31.

[13] N. Brunie, F. d. Dinechin, O. Kupriianova, and C. Lauter, “Code generators for
mathematical functions,” in 2015 IEEE 22nd Symposium on Computer Arithmetic,
June 2015, pp. 66–73.

[14] N. Brunie, “Modified fused multiply and add for exact low precision product
accumulation,” in Computer Arithmetic (ARITH), 2017 IEEE 24th Symposium on.
IEEE, 2017, pp. 106–113.

[15] S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-weighted linear units for neural
network function approximation in reinforcement learning,” Neural Networks,
2018 (on-line first). [Online]. Available: https://doi.org/10.1016/j.neunet.2017.12.
012

[16] C.-W. Lin and J.-S. Wang, “A digital circuit design of hyperbolic tangent sigmoid
function for neural networks,” in Circuits and Systems, 2008. ISCAS 2008. IEEE
International Symposium on. IEEE, 2008, pp. 856–859.

[17] A. Sodani, “Knights landing (knl): 2nd generation Intel® Xeon Phi processor,” in
Hot Chips 27 Symposium (HCS), 2015 IEEE. IEEE, 2015, pp. 1–24.

[18] “Intel® MKL 2019 vector mathematics performance and accuracy data.”
[19] A. Sharma and C. K. Anand, “A domain-specific architecture for elementary

function evaluation,” International Journal of Mathematics and Mathematical
Sciences, vol. 2015, 2015.

[20] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan, “Training deep
neural networks with 8-bit floating point numbers,” in Advances in neural infor-
mation processing systems, 2018, pp. 7675–7684.

[21] POWER8 Processor User’s Manual for the Single-Chip Module, IBM.
[22] J. G. Clabes, J. Friedrich, M. Sweet, J. DiLullo, S. Chu, D. W. Plass, J. Dawson,

P. Muench, L. Powell, M. Floyd, B. Sinharoy, M. Lee, M. Goulet, J. Wagoner,
N. S. Schwartz, S. L. Runyon, G. Gorman, P. Restle, R. N. Kalla, and J. Steve Dodson,
“Design and implementation of the POWER5™microprocessor,” 01 2004, pp. 670–
672.

[23] B. Sinharoy, J. Van Norstrand, R. J. Eickemeyer, H. Q. Le, J. Leenstra, D. Q. Nguyen,
B. Konigsburg, K. Ward, M. Brown, J. E. Moreira et al., “IBM POWER8 processor
core microarchitecture,” IBM Journal of Research and Development, vol. 59, no. 1,
pp. 2–1, 2015.

[24] T.-J. Kwon and J. Draper, “Floating-point division and square root implementation
using a taylor-series expansion algorithmwith reduced look-up tables,” in Circuits
and Systems, 2008. MWSCAS 2008. 51st Midwest Symposium on. IEEE, 2008, pp.
954–957.

[25] E. J. Fluhr, J. Friedrich, D. Dreps, V. Zyuban, G. Still, C. Gonzalez, A. Hall, D. Hogen-
miller, F. Malgioglio, R. Nett et al., “5.1 power8 tm: A 12-core server-class processor

in 22nm soi with 7.6 tb/s off-chip bandwidth,” in 2014 IEEE International Solid-
State Circuits Conference Digest of Technical Papers (ISSCC). IEEE, 2014, pp.
96–97.

[26] D. Patterson, “An interview with Stanford University president John Hennessy,”
Commun. ACM, vol. 59, no. 3, pp. 40–45, Feb. 2016.

197

http://dx.doi.org/10.1177/1094342004041291
https://doi.org/10.1016/j.neunet.2017.12.012
https://doi.org/10.1016/j.neunet.2017.12.012

Evaluating the Effectiveness of

Static Word Embeddings on the

Classification of IT Support Tickets

Yasmen Wahba
Dept. Of Comp. Sc.

 Western University

 London, ON, Canada

 ywahba2@uwo.ca

Nazim H. Madhavji
 Dept. Of Comp. Sc.

 Western University

 London, ON, Canada

 madhavji@gmail.com

John Steinbacher

 IBM Canada Lab.

 Toronto, ON, Canada

 jstein@ca.ibm.com

ABSTRACT

Support tickets are service requests, initiated by a system’s end-

users when they encounter issues with their system. With a wide

user-base and system issues, there will be an ongoing influx of

generated support tickets. Manual classification and prioritization

is effortful and error-prone, that can lead to incorrect routing and

delays in the resolution of the issues.

Recently, various state-of-the-art machine learning and deep

learning methods have been applied to automate the process of

text classification. Because the quality of these methods highly

depends on the quality of the associated “features”, in this paper

we focus on the “feature engineering” step in the classification

process. In particular, we evaluate the effectiveness of using

different static word embeddings on the accuracy of classifying IT

support tickets.

In collaboration with an industrial partner, we were able to train

and evaluate our machine learning model on 1.6 million support

tickets and 32 ticket categories.

The experimental results show that the traditional Term

Frequency Inverse Document Frequency (TFIDF) bag-of-

words along with Support Vector Machines (SVM) provides

competitive results and sometimes outperforms static word

embedding models such as word2vec while maintaining low

computational cost.

CCS CONCEPTS

•Computing methodologies~Artificial intelligence~Natural

language processing~Lexical semantics•Computing

methodologies~Machine learning

KEYWORDS

Customer support tickets, Machine learning, Word embedding,

Feature engineering, Natural language processing

ACM Reference format:

Yasmen Wahba, Nazim H. Madhavji and John Steinbacher. 2020.

Evaluating the Effectiveness of Static Word Embeddings on the

Classification of IT Support Tickets. In Proceedings of ACM CASCON

conference (CASCON’20). Toronto, Ontario, Canada, 9 pages.

1 Introduction

Service agents spend a large amount of time on manually

classifying the incoming tickets. Unfortunately, this process is

complicated, and the support agents have no reference to best

practices based on historical data. With the massive growth of

data, the need to automate ticket classification becomes crucial.

Based on the ticket description, the support agents determine the

category of the problem and triage the ticket to the appropriate

team for resolving the issue.

A typical ticket description is unstructured and hence this makes it

challenging for natural language processing. Also, the ticket may

contain typos as well as abbreviations which adds to the

complexity. Ticket classification is an important process that

ensures that tickets get routed to the right support agent.

Otherwise, there can be delays, customer dissatisfaction,

escalation to management, and reactionary fixes at high cost [1].

Recently, neural networks and deep learning models have

surpassed traditional machine learning approaches by delivering

state-of-the-art results in several text classification tasks,

including spam filtering, sentiment analysis and question

answering. Hence, these models have become a favorable choice

for any text classification or clustering task. However, this comes

with the cost of increased computational complexity and therefore

increased model training time [2].

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this

work must be honored. For all other uses, contact the owner/author(s).

CASCON’20, Nov 10-13, 2020, Toronto, Canada

© 2020 Copyright held by the owner/author(s).

198

mailto:ywahba2@uwo.ca
mailto:madhavji@gmail.com

CASCON'20, November 10 – 13, 2020, Toronto, Canada Y. Wahba, N. Madhavji, J. Steinbacher F. Surname et al.

Word embeddings are one of the popular uses of neural networks

for handling natural language text. These embeddings are able to

place words in a vector space that contains semantic information

about the words. Thus, similar words will be placed close to each

other. Capturing word semantics in different contexts is what

differentiates between a static and a dynamic word embedding.

This paper evaluates static word embedding models which have

been shown to be very effective in addressing various NLP tasks

including document classification [3] [4] [5]. However, to our

knowledge, no work has compared the performance of these word

embeddings against old methods like bag-of-words. Thus, the key

question being addressed in this paper is: How effective is using

static word embeddings in the task of IT ticket classification?

Overall, the findings of our study suggest that the problem of

classifying IT support tickets can be addressed efficiently using

old traditional methods such as TFIDF bag-of-words that does not

involve the complexity found in neural network models.

The rest of the paper is organized as follows. Section 2 describes

background. Section 3 describes related work. Section 4 describes

our project context. Section 5 describes the methodology and

Section 6 presents research results. Section 7 concludes the paper.

2 Background

The quality of machine learning/deep learning model comes from

extensive feature engineering than from the learning technique

itself, as the quality of these methods highly depends on the

quality of available features [6]. To apply machine learning

algorithms, human text must be converted to numeric form

through what is known as vector representation [7].

Handling vector representations is of the challenges of natural text

processing. This is because the same set of words can convey

different meanings in different contexts or if given in a different

order. This is known as polysemy, which is the association of

one word with two or more distinct meanings [8]. This level of

sophistication in understanding text and coming up with the best

vector representation for words is why word embeddings emerged

in this research direction as an alternative to the bag-of-words

(BOW) vector model [9].

The core idea behind word embeddings is that words that are used

in similar contexts will be given similar representations, thus

capturing word semantics. Two of the popular word embeddings

that attracted many researchers are Word2Vec [10] trained on

Google News and Glove [11] which is trained on Wikipedia.

These methods generate word vectors by training the word

embedding algorithm against a huge corpus of text. However,

these embeddings are referred to as ‘static’, in the sense that each

word is represented by only one vector regardless of the context.

Thus, the word bank in “I went to the bank to withdraw money

before going fishing at the river bank “will have the same

embedding. To mitigate this problem, dynamic representations or

so-called contextualized embeddings emerged as a replacement

for static word embeddings and improved many NLP tasks

[12][13][14]. These embeddings aim to capture word semantics in

different contexts to address the issue of context-dependent nature

of words.

3 Related Work

Since our work aims to investigate the effectiveness of using word

embeddings to classify IT support tickets, we first give an

overview of the existing literature studies on the problem of ticket

classification, and then we examine some of the studies on the

effectiveness of domain-specific word embeddings.

Diao [15] leveraged large expert communities with domain

knowledge to develop a rule-based approach, where experts

author the classification rules to classify problem tickets.

Paramesh’s [16] followed the ensemble approach to improve the

accuracy of their ticket classifier system, by combining the

predictions of Bagging, Boosting and Voting ensemble on four

base classifiers. Similarly, the work in [17] tackled the problem

using an ensemble of SVM classifiers and re-sampling techniques

to handle the problem of data imbalance.

Authors in [18] investigated different classification algorithms to

classify incident tickets, SVM was reported to perform well on all

data samples. However, [19] reported Multinomial Naive Bayes

(MNB) to outperform Softmax Regression Neural Network

(SNN) for classifying help desk tickets.

In contrast to ‘Flat’ text classification, hierarchal classification has

also been addressed. Authors in [20] proposed a novel architecture

for hierarchical classification that extends the strengths of SVM

classifiers to leverage prior knowledge about class relationships.

While authors in [21] investigated hierarchal multi-label

classification of incident tickets by leveraging the known

hierarchical relationship between categories using a novel greedy

algorithm ‘GLabel’ to label the predicting ticket. Adding to the

previous work, authors in [22] proposed an algorithm to utilize

the knowledge from domain experts. Note that all these papers

focus on the final stage of text classification pipeline, which is

model building and machine learning algorithms.

With the introduction of static word embeddings in 2013 by

Mikolov [23] that leveraged neural networks, Natural Language

Processing (NLP) tasks have changed dramatically. Accordingly,

text classification methods were classified into those which use

neural networks and the ones that do not. Authors in [24] reported

that recurrent neural networks (RNNs) using word embeddings

data outperform the classic solutions for the task of classifying

data from customer service systems and task trackers. Similarly,

the work in [25] leveraged deep networks, where convolutional

neural network (CNN) was reported to achieve the best

performance for the task of classifying IT tickets without much

feature engineering. While [26] achieved an improved

classification accuracy using a linear support vector machine

199

https://www.thoughtco.com/word-english-language-1692612
https://www.thoughtco.com/meaning-semantics-term-1691373

 CASCON'20, November 10 – 13, 2020, Toronto, Canada WOODSTOCK’18, June, 2018, El Paso, Texas USA

(SVM) along with term weighted Word2Vec model. In contrast to

using pre-trained word vectors, authors in [27] provided

additional semantic information by enriching the vectors by Part-

of-Speech (POS) tags.

Despite the success of the general domain word embeddings like

Word2Vec in many NLP tasks, domain specific terms always

represent a challenge, since these embeddings are trained over

general corpora like books or Wikipedia. Some researchers

suggested fusing domain-specific data with general data for a

better performance [28] [29]. While the work in [30] introduced

‘SO_Word2Vec’, a domain specific word embedding that is

trained over 15GB of textual data from Stack Overflow posts.

Similarly, authors in [31] presented Annotation Word Embedding

(AWE) which incorporates different kinds of domain knowledge.

The model’s performance outperformed state-of-the-art baselines

on two cybersecurity applications. The work in [32] reported an

increase by 17 percent in accuracy compared to state-of-the-art

methods when using domain specific word embedding to classify

patent applications.

Upon critical analysis of the literature, we note that it is not clear

at all how effective static word embeddings are in solving the task

of IT support ticket classification. This problem has a caveat that

it contains IT-related terminologies (e.g., mongoDB, kubernetes,

and logdna) and unique fragments of text (e.g., HTML code, IP

addresses, XML code) and specific abbreviations (e.g., paas, vlan,

and iam). We note the current trend of using neural and deep

learning architectures for solving text classification problems.

This imposes us to think whether it is worth to use sophisticated

and computationally expensive neural or deep learning

architectures for the task of classifying support tickets.

This was thus a motivation for us to investigate the usefulness of

word embeddings over the simple TFIDF in solving the IT

support ticket classification problem.

4 Project Context

This section describes the nature of our dataset. This is followed

by an analysis of the problem context in Section 4.2

4.1 Dataset

Our dataset is considered a large-scale dataset containing over 1.6

million support tickets classified into 32 different ticket

categories. For customers to submit a new ticket, they have to

give a short and a full description of their issue. We noted that

predominantly only the short description field is used (as shown in

Table 1). This problem is handled in the pre-processing stage by

concatenating both fields into a new one. Also, the description

entered by the customer is unstructured containing non-English

characters, dates and typos.

 Table 1: Example snapshot of the dataset

4.2 Problem Analysis

In a typical IT organization, customers raise an issue (i.e., open a

ticket), through the IT service desk. IT service management

(ITSM) is responsible for dealing with the resolution of these

tickets. Figure 1 depicts the standard process of incident

management that starts with ticket generation, which is followed

by prioritization, categorization and then resolution of the ticket

by an IT specialist. If the customer is satisfied, then the ticket is

closed.

 Legend: Elipse – entity; Rectangle – task; Arrow – flow.

Figure 1: Process flow of IT service management

As can be seen from the processing pipeline, classification plays a

substantial role. Wrong manual ticket classification will prevent

the tickets from being triaged to the appropriate support team. In

turn, this can lead to the problem of time delays in ticket

resolution, violation of service-level agreements, and customer

dissatisfaction.

Customers

200

CASCON'20, November 10 – 13, 2020, Toronto, Canada Y. Wahba, N. Madhavji, J. Steinbacher F. Surname et al.

Thus, machine learning based methods for automation is

considered crucial for the overall incident management efficiency.

Millions of support tickets can be sorted in a fraction of the time

spent manually for this task, thus freeing the agents to focus on

more important or other tasks. In addition to reducing the number

of escalations triggered by unhappy customers.

Ticket classification is one of the use cases of document

classification where ticket’s description submitted by customers

represent a document and the ticket category is the document

label. Therefore, the steps for classifying a support/issue ticket are

the same steps followed in a typical document classification

problem. The following figure (Figure 2) shows the main steps for

a text classification model.

Figure 2: Text classification steps

There are a few types of text classification based on the number of

classes/categories to predict:

▪ Binary classification: When the total number of classes

is two, any prediction can contain either one of those

classes.

▪ Multi-class classification: Involves classifying instances

into more than two classes, where each instance can be

classified into one of those classes.

▪ Multi-label classification: Involves classifying instances

into more than two classes, where each instance can be

classified into one or more categories at the same time.

Our work is considered as a Multi-class classification task, where

the support tickets are classified into 32 different ticket categories

(e.g. Infrastructure, Project Office, Sales, Databases, etc. – please

see later in Figure 3 for more).

5 Methodology

 This section gives an overview of the dataset we used in our

study and the pre-processing steps performed to clean the data.

This is followed by the experimental steps and the word

embeddings used in this study.

5.1 Dataset Preparation

The first stage in building a text classification model is cleaning

the data (pre-processing stage). This stage aims to reduce the

vocabulary size and remove noise found in the input documents.

This is anticipated to help in maximizing the classifier’s

performance [33] [34].

For a natural language text, noise can be spelling errors,

abbreviations, character repetitions, missing punctuations, non-

standard words, etc. In our work, we applied the regularly used

operations in text mining in addition to domain-specific

operations that we perform based on the ticket descriptions and

domain experience from the support agents of our industrial

partner. Given the ticket structure in Table 2, we are only

interested in ticket description and its corresponding category; all

other fields are thus ignored.

Table 2: Typical support ticket data

The following are the common pre-processing tasks that we

carried out in this order:

1. Removing missing data.

2. Removing numbers and special characters.

3. Converting text to lowercase.

4. Word tokenization.

5. Removing stop words.

6. Lemmatization.

7. Removing non-English words.

While we applied such operations, we also found the need to

employ some domain-specific steps. For example, upon careful

examination of our ticket descriptions, we noticed the presence of

Chinese characters. Hence, we performed the regular step of non-

English words removal. A side-effect was that some important

domain-specific words were removed in the process. Thus, we

created a list of words that could have an impact on ticket

classification and called it ‘to_keep’ list. For this purpose, we

incorporated domain knowledge from our support agents along

with some common knowledge of some IT terminologies.

Ticket

number

Ticket

category

Ticket

priority

Ticket

state

Ticket

description

CS177 Services Medium In Progress IP Billing

address

missing

CS190 Infrastructure High Open Payment

late

Tokenization

Removing

Stop-words

Stemming and

Lemmatization

Bag of words

TFIDF

Word

Embedding

Model

Building

Model

Evaluation

Pre-

Processing

Text

Feature

Engineering

201

 CASCON'20, November 10 – 13, 2020, Toronto, Canada WOODSTOCK’18, June, 2018, El Paso, Texas USA

For example, words such as “watson” and “vmware” are kept and

not removed during the pre-processing step.

Since the focus of this research is more on feature engineering and

pre-processing steps. We carefully examined the list of discarded

words during the step of non-English words removal, and, to our

surprise, we found a huge list of common English words. For

example, words such as groups, questions, requests, and chatbot

were removed.

There are two reasons behind this. First, the “Words” Corpus from

NLTK [35] that we used is a delimited list of dictionary words

[36], hence, words are stored in their singular form. Second, this

Corpus is not an exhaustive list of all English words, so some

words might be missing [37] (e.g. blog, chatbot). To mitigate the

first problem, we performed lemmatization which ensures that

words are kept in their dictionary or base form, known as

“lemma”. This step is done prior to removing non-English words.

While for the second problem, we added the missing words to our

“to_keep” list and used another lexical database for English called

“WordNet” that is published by Princeton University [38].

Our dataset described in Section 4.1 suffers from a severe

imbalance, where the distribution of class samples is uneven by a

large amount in the training dataset (e.g. 1:100 or more) as shown

in Figure 3. This imbalance makes the classification algorithm

biased towards the major categories and ignore the minor ones,

leading to poor classification for these classes [39] [40].

Figure 3: Distribution of classes and the severe imbalance

There are several approaches for handling this imbalance, and

they can be grouped into four categories [41]: (i) algorithm-level,

(ii) data-level, (iii) cost-sensitive and (iv) ensemble learning.

Since our work is focused on the pre-processing stage, ‘data-level’

approaches such as oversampling techniques [42] [43] and

undersampling [44] are more relevant for our purpose. However,

these methods have major drawbacks [41] and sometimes reported

to be ineffective and may often cause negative effect on multiclass

tasks [45]. Hence, we decided to keep the original distribution

while in the future we intend to gather more data for the minor

classes.

5.2 Empirical Study

In this section, we describe the empirical study that we conducted.

In particular, we describe data characteristics, infrastructure used,

word vectorization models used and the performance measures.

We collected over 1.6 million tickets from a large cloud-based

ticketing system, classified into 32 different categories. Our

experimental algorithms are written in Python 3.8.3. The testing

machine is Windows 10 with Intel Core i7 CPU 2.71 GHz and

32GB of RAM.

The following are the different word vectorization models used in

this study:

1. GN_Word2Vec [46]: This is a neural network–based

implementation that is provided by Google and is trained on a part

of the Google News dataset (about 100 billion words). The model

contains 300-dimensional vectors for 3 million words and phrases.

2. SO_Word2Vec [47]: This is a domain-specific Word2Vec

model that is trained on Stack Overflow posts which is a generic

model of Software Engineering knowledge containing 200-

dimensional vectors.

3. CO_Word2Vec: This is the Word2Vec algorithm trained on our

corpus of support tickets using a size of 100 dimensional vectors.

Thus, we call it Corpus Word2Vec (CO_Word2Vec).

4. TFIDF 1 bag-of-words: This is the simplest yet a powerful

technique for vectorizing text documents [48].

An important parameter that we considered when applying the

TFIDF vectorizer is N-grams. An ‘N-gram’ is simply a sequence

of N words that predicts the occurrence of a word based on the

occurrence of its (N – 1) previous words. Uni-grams or single

words are the default setting. In our study, we set ngram_range to

(1,3) which means that we included feature vectors consisting of

all unigrams, bigrams, and trigrams.

For the machine learning models we chose two popular and

simple classification algorithms:

1. Support Vector Machines (SVM): reported as one of the best

algorithms for text classification [49] [50].

We chose the LinearSVC algorithm in Scikit-learn library [51].

Reason is that this algorithm implements “one-vs-the-rest” or

what is known as one-versus-all (OVA) multi-class strategy,

which is suitable for high dimensional data and, has a very low

running time [52].

2. Logistic Regression (LR): a simple linear classifier that uses

maximum likelihood for estimation method [53].

1 TFIDF stands for Term Frequency-Inverse Document Frequency, which is a

combination of two metrics:

1. Term frequency (tf): a measure of how frequently a term, t, appears in a

document, d.

2. Inverse document frequency(idf): a measure of how important a term is. It is

computed by dividing the total number of documents in our corpus by the document

frequency for each term and then applying logarithmic scaling on the result.

202

CASCON'20, November 10 – 13, 2020, Toronto, Canada Y. Wahba, N. Madhavji, J. Steinbacher F. Surname et al.

0.86
0.87
0.88
0.89

0.9
0.91
0.92
0.93

F1
 S

co
re

s

LR SVM

To evaluate the performance of the above mentioned two

classification algorithms, we used the standard information

retrieval (IR) measures, Precision2, Recall3 and F-measure4 or F-

score. As mentioned before, our task is a multi-classification one,

and our data is hugely imbalanced, so, we used the F-score metric

that is the harmonic mean value of precision and recall. This

measure is suitable for multi-classification tasks.

6 Results

The experimental results obtained after experimenting with

different static word embeddings are presented in the following

chart.

Figure 4: Performance of different Word2Vec embeddings

versus TFIDF bag-of-words

Figure 4 shows the weighted-averaged F1 score of each word

embedding model evaluated using two base classifiers: Linear

SVM and Logistic Regression. Surprisingly, the traditional TFIDF

bag-of-words model achieved a competitive accuracy of 92%

using SVM classifier and 91% using Logistic Regression. While

the three static word2vec models achieved a close classification

accuracy of 89% trained using the Logistic Regression classifier,

however, with a high computational cost.

Also, since our dataset is highly skewed, it was expected that the

classification algorithm will be biased towards the major classes,

leading to a high classification accuracy for the two major ticket

categories (Infrastructure & Project Office), while showing poor

accuracies towards the minor ones. This is shown clearly in the

classification report presented in Figure 5. For the precision and

2 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)

3 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)

4 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙

recall values, note that some classes show zero or very low F-

scores. This is because the number of instances collected for these

categories were below 50 records; hence, the classification

algorithm failed to classify them.

It must be noted that, when using TFIDF bag-of-words model,

trying different n-grams is important. In our study, we

experimented different n-grams and recorded the performance for

all 32 classes. Results showed that using tri-grams (1,3) enhanced

the F-score of almost all minor classes.

Figure 5: Classification report of TFIDF showing precision

and recall of linear SVM for all 32 classes

In Figure 6, we describe the performance of the four vectorization

models used in the study to classify each of the classes. It is clear

that the imbalance problem is affecting the classifier’s

performance to recognize the minor classes. However, the

performance of the traditional TFIDF bag-of-words to classify the

minor classes outperformed that of the three static word

embeddings. This is demonstrated in Figure 6(d). The

performance of the static word embeddings (Figures 6(a), 6(b) and

6(c)) to classify the minor classes is almost the same with

neglectable differences.

203

 CASCON'20, November 10 – 13, 2020, Toronto, Canada WOODSTOCK’18, June, 2018, El Paso, Texas USA

Figure 6: Classification accuracy of SVM using different embedding models for all 32 classes

Both classification algorithms (SVM & LR) showed very similar

results, for the sake of space, we included only the results for

SVM classifier.

However, in an effort to examine the representational power of

the domain-specific word embedding SO_Word2Vec versus the

general word embedding GN_Word2Vec in capturing some of

ticket-specific keywords, we retrieved the top 5 similar words for

some of the four frequently appearing keywords that we noticed

while pre-processing our support tickets. These results are shown

in Table 2.

Table 2: Examples of top 5 related words in SO Word2Vec

and Google News model

As can be seen from the table, the domain-specific word

embedding trained on a software engineering domain (Stack

Overflow), was able to capture semantically related words better

than the general pre-trained model on Google news. It’s also clear

that they are very effective in identifying domain specific

ambiguities.

One important observation to note here is that the task of

classification of support tickets can be automated using simple

traditional methods such as TFIDF with a high classification

accuracy and a very low computational power compared to

complex algorithms that are often hard to interpret. While the

problem of poor accuracies for minor classes can be mitigated

efficiently by collecting more data for the minor categories, or by

using a closed feedback loop between the support agents and the

ML algorithm, which continuously improves the model by adding

new ticket information for minor classes.

7 Conclusion and Future Work

Classifying support tickets plays an important role in any help

disk system. Automation of the tickets’ classification should

improve the resolution time significantly and minimise errors in

the escalation process. In this paper, we describe the effectiveness

of different static word embeddings including a domain-specific

word embedding for the software engineering domain

(SO_Word2Vec) on the task of classifying IT support tickets of a

real-world dataset.

Results showed that unlike general document classification, IT

support tickets do not benefit much from using static word

embeddings. This is due to the domain-specific words that are

Keyword Most similar in SO
Word2Vec

Most similar in GN
Word2Vec

cloud clound, cloud-based,

azure,

gcp, iaas

clouds, cloud,

cloud_computing

Abu_Risha_assassination

, Carefully_cautiously

fetch retrieve, fetching, fetched,

fetches, retrieved

fetchesd, fetches,

fetching,

Sotheby_auction,

presale_estimate

watson nlc, nlu, stt, speech-to-

text, luis

thompson, walsh,

bennett, armstrong,

crawford

abort aborts, aborting, aborted,

interrupted, terminate

aborting, aborted, aborts,

abort, abort_fetus

204

CASCON'20, November 10 – 13, 2020, Toronto, Canada Y. Wahba, N. Madhavji, J. Steinbacher F. Surname et al.

considered as Out of Vocab (OOV) words for pre-trained

embeddings. Also, the level of polysemy (i.e., the coexistence of

many possible meanings for a word or phrase) in IT technical text

is very low which is the reason why the traditional TFIDF bag-of-

words provided comparable performance and sometimes

outperformed static word embeddings with a low computational

cost and fast training time. For future work, we plan to apply

contextual word embeddings (e.g. BERT, ELMO) and investigate

its effectiveness in improving the accuracy of our minor classes.

Also, we intend to address the hierarchical classification problem

of support tickets and we intend to include other datasets to our

experiments to strengthen our results.

ACKNOWLEDGMENTS

We thank our collaborator Chris Jeffs sincerely for his help with

the dataset and for sharing domain knowledge. Also, our sincere

appreciation to Timothy Tan for his generous time and expertise

in addressing many of our questions. Also, we are grateful for the

helpful comments from the reviewers which helped to improve

this paper. We are very grateful to NSERC of Canada and IBM

Canada Ltd. for their generous support to carry out this research.

REFERENCES
[1] V. S. Sheng, B. Gu, W. Fang, and J. Wu, “Cost-sensitive learning for defect

escalation,” Knowledge-Based Systems, vol. 66, pp. 146–155, 2014, doi:

10.1016/j.knosys.2014.04.033.

[2] W. Fu and T. Menzies, “Easy over hard: A case study on deep learning,” in

Proceedings of the ACM SIGSOFT Symposium on the Foundations of

Software Engineering, Aug. 2017, vol. Part F130154, pp. 49–60, doi:

10.1145/3106237.3106256.

[3] S. Kadam, A. Gala, P. Gehlot, A. Kurup, and K. Ghag, “Word Embedding

Based Multinomial Naive Bayes Algorithm for Spam Filtering,” in

Proceedings - 2018 4th International Conference on Computing,

Communication Control and Automation, ICCUBEA 2018, Jul. 2018, doi:

10.1109/ICCUBEA.2018.8697601.

[4] M. Shi, K. Wang, and C. Li, “A C-LSTM with word embedding model for

news text classification,” in Proceedings - 18th IEEE/ACIS International

Conference on Computer and Information Science, ICIS 2019, Jun. 2019,

pp. 253–257, doi: 10.1109/ICIS46139.2019.8940289.

[5] O. B. Deho, W. A. Agangiba, F. L. Aryeh, and J. A. Ansah, “Sentiment

analysis with word embedding,” in IEEE International Conference on

Adaptive Science and Technology, ICAST, Oct. 2018, vol. 2018-August,

doi: 10.1109/ICASTECH.2018.8506717.

[6] H. Liu, Feature Engineering for Machine Learning and Data Analytics. CRC

Press, 2018.

[7] C. Orsenigo, C. Vercellis, and C. Volpetti, “Concatenating or Averaging?

Hybrid Sentences Representations for Sentiment Analysis,” in Lecture

Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), Nov. 2018,

vol. 11314 LNCS, pp. 567–575, doi: 10.1007/978-3-030-03493-1_59.

[8] A. Sennet, “Polysemy,” Aug. 2016, doi:

10.1093/OXFORDHB/9780199935314.013.32.

[9] Z. S. Harris, “Distributional Structure,” WORD, vol. 10, no. 2–3, pp. 146–

162, Aug. 1954, doi: 10.1080/00437956.1954.11659520.

[10] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed

representations ofwords and phrases and their compositionality,” in

Advances in Neural Information Processing Systems, Oct. 2013,

Accessed: May 27, 2020. [Online].

[11] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global Vectors for

Word Representation.” Accessed: May 27, 2020. [Online]. Available:

http://nlp.

[12] Y. Liu et al., “Deep Contextualized Word Embeddings for Universal

Dependency Parsing,” ACM Trans. Asian Low-Resour. Lang. Inf.

Process, vol. 19, no. 9, 2019, doi: 10.1145/3326497.

[13] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of

Deep Bidirectional Transformers for Language Understanding,” Oct.

2018, Accessed: May 14, 2020. [Online]. Available:

http://arxiv.org/abs/1810.04805.

[14] Z. Yao, Y. Sun, W. Ding, N. Rao, and H. Xiong, “Dynamic word

embeddings for evolving semantic discovery,” in WSDM 2018 -

Proceedings of the 11th ACM International Conference on Web Search

and Data Mining, Feb. 2018, vol. 2018-Febuary, pp. 673–681, doi:

10.1145/3159652.3159703.

[15] Y. Diao, H. Jamjoom, and D. Loewenstern, “Rule-based problem

classification in IT service management,” in CLOUD 2009 - 2009 IEEE

International Conference on Cloud Computing, 2009, pp. 221–228, doi:

10.1109/CLOUD.2009.80.

[16] S. P. Paramesh, C. Ramya, and K. S. Shreedhara, “Classifying the

Unstructured IT Service Desk Tickets Using Ensemble of Classifiers,” in

Proceedings 2018 3rd International Conference on Computational

Systems and Information Technology for Sustainable Solutions, CSITSS

2018, Dec. 2018, pp. 221–227, doi: 10.1109/CSITSS.2018.8768734.

[17] J. Xu, L. Tang, and T. Li, “System situation ticket identification using SVMs

ensemble,” Expert Systems with Applications, vol. 60, pp. 130–140, Oct.

2016, doi: 10.1016/j.eswa.2016.04.017.

[18] S. P. Paramesh and K. S. Shreedhara, “Automated IT service desk systems

using machine learning techniques,” in Lecture Notes in Networks and

Systems, vol. 43, Springer, 2019, pp. 331–346.

[19] G. Son, V. Hazlewood, and G. D. Peterson, “On automating XSEDE user

ticket classification,” in ACM International Conference Proceeding

Series, 2014, pp. 1–7, doi: 10.1145/2616498.2616549.

[20] L. Cai and T. Hofmann, “Hierarchical document categorization with Support

Vector Machines,” in International Conference on Information and

Knowledge Management, Proceedings, 2004, pp. 78–87, doi:

10.1145/1031171.1031186.

[21] C. Zeng, W. Zhou, T. Li, L. Shwartz, and G. Y. Grabarnik, “Knowledge

Guided Hierarchical Multi-Label Classification over Ticket Data,” IEEE

Transactions on Network and Service Management, vol. 14, no. 2, pp.

246–260, Jun. 2017, doi: 10.1109/TNSM.2017.2668363.

[22] C. Zeng, T. Li, L. Shwartz, and G. Y. Grabarnik, “Hierarchical multi-label

classification over ticket data using contextual loss,” in IEEE/IFIP NOMS

2014 - IEEE/IFIP Network Operations and Management Symposium:

Management in a Software Defined World, 2014, doi:

10.1109/NOMS.2014.6838267.

[23] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of

Word Representations in Vector Space,” Jan. 2013, [Online]. Available:

http://arxiv.org/abs/1301.3781.

[24] V. Lyubinets, T. Boiko, and D. Nicholas, “Automated Labeling of Bugs and

Tickets Using Attention-Based Mechanisms in Recurrent Neural

Networks,” in Proceedings of the 2018 IEEE 2nd International

Conference on Data Stream Mining and Processing, DSMP 2018, Oct.

2018, pp. 271–275, doi: 10.1109/DSMP.2018.8478511.

[25] J. Han and M. Akbari, “Vertical Domain Text Classification: Towards

Understanding IT Tickets Using Deep Neural Networks,” Thirty-Second

AAAI Conference on Articial Intelligence, 2018, Accessed: Aug. 12,

2020. [Online].

[26] J. Lilleberg, “Support Vector Machines and Word2vec for Text

Classification with Semantic Features.”

[27] B. A. Rabut, A. C. Fajardo, and R. P. Medina, “Multi-class document

classification using improved word embeddings,” in ACM International

Conference Proceeding Series, Oct. 2019, pp. 42–46, doi:

10.1145/3366650.3366661.

[28] A. Z. Yen, H. H. Huang, and H. H. Chen, “Fusing domain-specific data with

general data for in-domain applications,” in Proceedings - 2017

IEEE/WIC/ACM International Conference on Web Intelligence, WI 2017,

Aug. 2017, pp. 566–572, doi: 10.1145/3106426.3106473.

[29] F. Wu, Y. Huang, and Z. Yuan, “Domain-specific sentiment classification

via fusing sentiment knowledge from multiple sources,” Information

Fusion, vol. 35, pp. 26–37, May 2017, doi: 10.1016/j.inffus.2016.09.001.

[30] V. Efstathiou, C. Chatzilenas, and D. Spinellis, “Word embeddings for the

software engineering domain,” in Proceedings - International Conference

205

 CASCON'20, November 10 – 13, 2020, Toronto, Canada WOODSTOCK’18, June, 2018, El Paso, Texas USA

on Software Engineering, May 2018, pp. 38–41, doi:

10.1145/3196398.3196448.

[31] A. Roy, Y. Park, and S. Pan, “Incorporating domain knowledge in learning

word embedding,” in Proceedings - International Conference on Tools

with Artificial Intelligence, ICTAI, Nov. 2019, vol. 2019-November, pp.

1568–1573, doi: 10.1109/ICTAI.2019.00226.

[32] J. Risch and R. Krestel, “Learning patent speak: Investigating domain-

specific word embeddings,” in 2018 13th International Conference on

Digital Information Management, ICDIM 2018, Sep. 2018, pp. 63–68,

doi: 10.1109/ICDIM.2018.8846972.

[33] A. Krouska, C. Troussas, and M. Virvou, “The effect of preprocessing

techniques on Twitter sentiment analysis,” in IISA 2016 - 7th

International Conference on Information, Intelligence, Systems and

Applications, Dec. 2016, doi: 10.1109/IISA.2016.7785373.

[34] A. Barushka and P. Hajek, “The Effect of Text Preprocessing Strategies on

Detecting Fake Consumer Reviews,” 2019, doi:

10.1145/3383902.3383908.

[35] “NLTK Data.” http://www.nltk.org/nltk_data/ (accessed Jun. 16, 2020).

[36] “words (Unix) - Wikipedia.” https://en.wikipedia.org/wiki/Words_(Unix)

(accessed Jun. 16, 2020).

[37] “Natural Language Processing with Python: Analyzing Text with the Natural

... - Steven Bird, Ewan Klein, Edward Loper - Google Books.”

https://books.google.com.eg/books?hl=en&lr=&id=KGIbfiiP1i4C&oi=fn

d&pg=PR5&dq=Natural+Language+Proces&redir_esc=y#v=onepage&q

=missing%20words&f=false (accessed Jun. 16, 2020).

[38] G. A. Miller, “WordNet: A Lexical Database for English,” Communications

of the ACM, vol. 38, no. 11, pp. 39–41, Nov. 1995, doi:

10.1145/219717.219748.

[39] S. Akkaradamrongrat, P. Kachamas, and S. Sinthupinyo, “Text Generation

for Imbalanced Text Classification,” in JCSSE 2019 - 16th International

Joint Conference on Computer Science and Software Engineering:

Knowledge Evolution Towards Singularity of Man-Machine Intelligence,

Jul. 2019, pp. 181–186, doi: 10.1109/JCSSE.2019.8864181.

[40] J. Wang and M. L. Zhang, “Towards mitigating the class-imbalance problem

for partial label learning,” in Proceedings of the ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, Jul.

2018, pp. 2427–2436, doi: 10.1145/3219819.3220008.

[41] “Imbalanced Learning: Foundations, Algorithms, and Applications - Google

Books.” https://books.google.com.eg/books?id=CVHx-

Gp9jzUC&pg=PT37&lpg=PT37&dq=%22oversampling%22+%22drawb

acks%22&source=bl&ots=2hTjHpIsag&sig=ACfU3U1pbRbPST37VCAJ

AyC7M-

1wzVwSXQ&hl=en&sa=X&ved=2ahUKEwiBjsLFxYvqAhVJ8uAKHR

ozBVQQ6AEwC3oECA0QAQ#v=onepage&q=%22oversampling%22%

20%22drawbacks%22&f=false (accessed Jun. 17, 2020).

[42] C. Chiamanusorn and K. Sinapiromsaran, “Extreme anomalous

oversampling technique for class imbalance,” in ACM International

Conference Proceeding Series, Dec. 2017, pp. 341–345, doi:

10.1145/3176653.3176671.

[43] T. Zhu, Y. Lin, and Y. Liu, “Synthetic minority oversampling technique for

multiclass imbalance problems,” Pattern Recognition, vol. 72, pp. 327–

340, Dec. 2017, doi: 10.1016/j.patcog.2017.07.024.

[44] B. W. Yap, K. A. Rani, H. A. Abd Rahman, S. Fong, Z. Khairudin, and N.

N. Abdullah, “An application of oversampling, undersampling, bagging

and boosting in handling imbalanced datasets,” in Lecture Notes in

Electrical Engineering, 2014, vol. 285 LNEE, pp. 13–22, doi:

10.1007/978-981-4585-18-7_2.

[45] Z. H. Zhou and X. Y. Liu, “Training cost-sensitive neural networks with

methods addressing the class imbalance problem,” IEEE Transactions on

Knowledge and Data Engineering, vol. 18, no. 1, pp. 63–77, Jan. 2006,

doi: 10.1109/TKDE.2006.17.

[46] “GitHub - mmihaltz/word2vec-GoogleNews-vectors: word2vec Google

News model.” https://github.com/mmihaltz/word2vec-GoogleNews-

vectors (accessed Jun. 15, 2020).

[47] “GitHub - vefstathiou/SO_word2vec: A word2vec model trained over Stack

Overflow.” https://github.com/vefstathiou/SO_word2vec (accessed Jun.

15, 2020).

[48] D. Sarkar and D. Sarkar, “Text Classification,” in Text Analytics with

Python, Apress, 2016, pp. 167–215.

[49] T. Joachims, “Text categorization with Support Vector Machines: Learning

with many relevant features,” Springer, Berlin, Heidelberg, 1998, pp.

137–142.

[50] P. A. Telnoni, R. Budiawan, and M. Qana’a, “Comparison of Machine

Learning Classification Method on Text-based Case in Twitter,” in

Proceeding - 2019 International Conference on ICT for Smart Society:

Innovation and Transformation Toward Smart Region, ICISS 2019, Nov.

2019, doi: 10.1109/ICISS48059.2019.8969850.

[51] “1.4. Support Vector Machines — scikit-learn 0.23.1 documentation.”

https://scikit-learn.org/stable/modules/svm.html (accessed Jun. 04, 2020).

[52] V. K. Chauhan, K. Dahiya, and A. Sharma, “Problem formulations and

solvers in linear SVM: a review,” Artificial Intelligence Review, vol. 52,

no. 2. Springer Netherlands, pp. 803–855, Aug. 15, 2019, doi:

10.1007/s10462-018-9614-6.

[53] “sklearn.linear_model.LogisticRegression — scikit-learn 0.23.1

documentation.” https://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegressi

on.html (accessed Jun. 17, 2020).

206

Deep learning approaches to classify the relevance and
sentiment of news articles to the economy

Jingli Wang, Ashok Bhowmick, Mucahit Cevik, Ayse Basar
jingli.wang@ryerson.ca,ashok.bhowmick@ryerson.ca,mcevik@ryerson.ca,ayse.bener@ryerson.ca

Raymond Chang School and Data Science Laboratory, Ryerson University
Toronto, Ontario

ABSTRACT
We consider a text classification task over an open source dataset
involving news snippets and their relevance to the US economy.
Text classification and sentiment analysis have been performed
using nine different classifiers among which three are the tradi-
tional machine learning models, namely, support vector machine,
extreme gradient boosting and logistic regression, and six neural
network-based methods. The neural net frameworks include long
short-term memory (LSTM), bidirectional long short-term mem-
ory (BiLSTM) and an ensemble of one dimensional convolution
network (1D CNN) with LSTM/BiLSTM. Both word-to-vector and
term-frequency inverse-document-frequency vectors are used in
our analysis with text and sentiment classification tasks. A detailed
comparative study is provided to assess the relative performance of
different classification approaches. It is observed that the ensemble
with 1D CNN performs better in both binary and multiclass classifi-
cations. Specifically, in the multinomial sentiment classification, 1D
CNNwith BiLSTM has the best performance as opposed to 1D CNN
with LSTM in the binary text classification. BiLSTM architecture
which incorporates the backward dependencies turns out as supe-
rior to LSTM by a margin of 30% in multiclass classification even
though the considered dataset is small and inherently challenging.
Further analysis to evaluate the impact of successive increases in
percentage of augmented data reveals that such augmentation has
a limit up to 180% in this dataset beyond which the performance
starts decreasing.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks → Network reliability.

KEYWORDS
BiLSTM, LSTM, 1D CNN, tf-idf, NLP, Text classification, Sentiment
analysis, News snippet, US economy

ACM Reference Format:
Jingli Wang, Ashok Bhowmick, Mucahit Cevik, Ayse Basar. 2018. Deep
learning approaches to classify the relevance and sentiment of news arti-
cles to the economy. In Proceedings of CASCON’20, November 10 - 13 2020,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honoured. For all other uses, contact the owner/author(s).
CASCON’20, November 10-13 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

Toronto, Canada. IBM Corp., Riverton, NJ, USA, 10 pages.

1 INTRODUCTION
Text classification problems are often challenging as it is nontrivial
to differentiate the real meaning of a text just from the common
interpretation of each word because of extensive use of rhetoric
which is by and large common in every language and an integral
part of linguistic communication. For instance, a typical English
phrase such as “how to play rising rates” in a news article seemingly
dealing with economic issues, is using a question to express an
unpleasant information. Thereby, it is plausible to apprehend that
if a piece of text is difficult to read and understand by human, the
same maybe true for a machine learning algorithm to interpret as
well [12]. In addition, predictive modelling to classify the underlying
tone as sentiment hidden in text data by the evaluation context of
human understanding e.g. star rating of a review in a scale of 1 - 5
etc. are more involved task in natural language processing (NLP)
compared to classifying the review texts as to whether it is positive
or negative under a predefined common standard [13, 24, 55, 57].
The difficulty in such multinomial classification typically stems
from the fact that for example, the texts reviewed as three stars often
share many features to that scoring as four stars [11]. As the number
of such classes that shares the same features in a dataset increases,
so does the potential of confusion to predict the classes, and by
that, the dataset becomes complex to work with [19]. In this regard,
the machine learning tasks dealing with such complexities have
become more and more dependent on sophisticated architectures
of which the precision level of the outcome relies on fine tuning the
hyperparameters when training on such data. Further, along with
such data complexity [33], there may be the inherent issue of class
diversity [50] and class balance [8] in a dataset having multiple
classes.

In today’s data driven world of business decisions, sentiment
analysis has gained important role in the bulk of NLP tasks through
wide range of applications in analyzing product reviews and social
network postings to analytically understand social demands [37]. In
recent years, economists and business people began to analyze sen-
timents in economic or financial news to comprehend consumer’s
confidence level that contributed to a sharpened prediction in the
financial markets [16]. Machine readable news service powered
by Reuters use raw news with metadata for intra-day trading and
market surveillance [2]. On the other hand, financial news still
receives limited attention compared to other social media informa-
tion [1, 27]. A closer look on the development of various facets of
NLP since 1940s shows four major phases with emphasis on areas
including syntax and semantics. Before the 1980s, most approaches

207

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

CASCON’20, November 10 - 13 2020, Toronto, Canada, Toronto, ON,
Jingli Wang, Ashok Bhowmick, Mucahit Cevik, Ayse Basar

were established on predetermined rules whereas the statistical
approach that emphasises summarizing rules from texts has been
widely considered since late 1980s [23].

The current techniques in predictive text classification may be
grouped under two main streams: rule-based and machine learning-
based techniques. Recently, the focus has been on sophisticated
architectures of deep neural networks to deal with the level of com-
plexities as outlined above. Recurrent Neural Networks (RNNs) [29]
achieved high performance for the text classification because they
take into account the relationships between words, unlike tradi-
tional machine learning approaches or more primitive neural net-
works. Long short-term memory networks (LSTM) [21], as an ad-
vanced recurrent neural network, reduced the impact of vanishing
and exploding gradients in typical RNNs [37, 56]. Though signifi-
cant improvements have been achieved in implementing LSTM in
natural language processing, it still has amajor drawback that it fails
to consider the existence of backward dependencies. To overcome
this weakness, bidirectional long short-term memory networks
(BiLSTM) [48] has been developed which has an architecture to
count both forward and backward dependencies [30, 37].

The degree of difficulty of a text dataset through its structure of
having many classes requires sophisticated architectures of predic-
tive algorithms [12]. Our aim in this work is to explore this issue
by executing many text classification tasks with a news snippet
dataset. The objective in this work is to undertake

(1) binary text classification aiming to predict the relevance of
news snippets towards economy, and

(2) analyze the sentiment labelled in the tone of the relevant
news snippets by executing multinomial classification over
several classes.

We employ various statistical tests to validate the performance of
nine different algorithms to assess how the degree of sophistication
in the architecture of the algorithms might play a role in prediction
performance.

We start our analysis by executing all the basic data cleaningmea-
sures and then examining the class imbalance issue in the dataset.
Specifically, we balance the dataset by standard data augmentation
approaches and then examine the class diversity after executing
the binary classification task. Next, we execute the multinomial
sentiment classification based on the labeling of the same dataset
using news tonal quality. We consider the data augmentation for
the multinomial classification as well, however, we keep the data
diversity unaltered. Note that the data augmentation is prevalent in
NLP, yet such introduction of artificiality into the dataset for hav-
ing a better training of the classifier leading to superior prediction
capability does not have a well defined general prescription on the
suitability and extent of such practice. We empirically investigate
following questions in our study. Does the data augmentation de-
pend on the complexity or inherent structure of the dataset or on
the algorithm being used for specific task? What is the critical limit
in percentage augmentation in this dataset that should provide best
sentiment prediction as quantified in terms of performance metrics
such as accuracy and F1 score?

We consider nine different classification models in our analysis
where, three are the base machine learning models, and remain-
ing six are deep neural networks models. The three base models

are: Support vector classifier (SVC), Extreme gradient boosting (XG-
Boost) and Logistic regression (LR). Three other models are variants
of LSTM networks: LSTM, LSTM concatenated to term-frequency
inverse-document-frequency (tf-idf) vectors [44] and the ensemble
of one dimensional convolution net (1D CNN) with LSTM likewise
concatenated to (tf-idf). Similarly, last three models are variants
of bidirectional LSTM networks: BiLSTM, BiLSTM concatenated
to (tf-idf) and the ensemble of 1D CNN with BiLSTM [31] likewise
concatenated to (tf-idf).

2 RELATEDWORKS
Given the rapid growth in volume of data, text classification and sen-
timent analysis have been receiving surged attention [11, 54]. The
approaches to these studies currently have three streams: lexicon-
based methods, machine-Learning based methods, and hybrid meth-
ods. The lexicon-based approaches utilize existing lexicons to calcu-
late the polarity of each word or phrase [53]. In contrast, machine
learning techniques often involve statistical models to learn and
improve from training set automatically [25]. Traditional machine
learning techniques, such as Naïve Bayes Classifier, Support Vector
Machine, and Logistic Regression, were extensively used in past
years. Notably, various studies have shown that the hybrid method
of lexicon and machine learning shows synergies. Neural networks
and specifically, deep learning has progressively gained importance
in this respect over the traditional machine learning approaches
due to the capability of more accurate prediction over large volume
of information [29].

Recent machine learning applications in NLP shows interesting
results which in fact, has all been inputs to gain momentum to this
proposed work. Monika et al. [35] explored the application of LSTM
with GloVe word embedding in sentiment analysis on US airlines
tweets from Twitter. The results show a high accuracy of over 80%
and 75% for the training and validation sets, respectively. Shamal
et al. [49] explored LSTM with the word, emoji and social acronym
embedding (Token2vec) in sentiment analysis on Amazon product
reviews which achieved an accuracy of 88.2% that is greater than
80% achieved using conventional techniques. Lu et al. [32] discussed
sentiment analysis using LSTM incorporated with the lexicon and
attention mechanism on two different data sets, namely, movie
reviews and Stanford Treebank reviews. Their analysis included
CNN, LSTM, and BiLSTM in which CNN achieved the highest
accuracy of 81.5% for movie reviews, and LSTM combined with
lexicon and attention outperformed other techniques in Stanford
Treebank reviews.

Several recent machine learning applications in NLP involve
attention-based models. Bai [4] explored the LSTM model with
attention and convolution layer in text classification on Chinese
Opinion Analysis Evaluation Microblog data set using RNN, CNN,
and LSTM. The results show that proposed architecture of LSTM
with additional attention layer, outperforms the other three algo-
rithms as measured by precision, recall, and F1 scores. Liu and Guo
[31] presented attention-based BiLSTM with a convolution layer
(AC-BiLSTM) on seven different data sets. The experiments showed
better performance in the proposed models compared to the base-
line algorithms such as SVM, Naïve Bayes, CNN, and simple RNN.
Even though there is an abundance of studies on text classification,

208

Deep learning approaches to classify the relevance and sentiment of news articles to the economy
CASCON’20, November 10 - 13 2020, Toronto, Canada, Toronto, ON,

so far the applications of LSTM/BiLSTM is still lacking in sentiment
analysis in large extent as compared to various traditional machine
learning approaches.

There are various NLP applications of machine learning in fi-
nance. Khedr et al. [26] predicted whether stock prices would in-
crease or decrease, using K-nearest Neighbor algorithm (KNN) on
data sets that consolidated the movement (positive/ negative/ equal)
in historical stock closing prices. A binary sentiment classification
(positive/ negative) has been computed using Naïve Bayes approach
and it is concluded that the performance of Naïve Bayes as classi-
fier is superior to that of KNN and SVM which claimed that there
is positive correlation between news sentiment and stock prices.
Sohangir et al. [52] discussed how deep learning could improve the
performance of financial sentiment analysis in the StockTwits data
set. This paper focused on LSTM and CNN, while keeping logistic
regression as the benchmark. The results in this work show 90.93%
accuracy applying CNN which gives best performance among the
three algorithms. Specific studies on news sentiment analysis to-
wards economy, such as the ones we are reporting here is still by
and large lacking. Pröllochs et al. [43] studied sentiment analysis of
financial news by negation scope detection; Ranco et al. [45, 46] re-
ported sentiment analysis in tweets and web browsed data towards
stock price and intra-day price dynamics in trading.

Collins et al. [12] showed that not only the sophistication of the
model architectures but also the difficulty level of the dataset is an
important factor in the statistical performance of text classification.
The difficulty level of a dataset maybe measured as a weight factor
of the total number of words and labels in particular dataset. They
studied text classification at various levels over 27 different open
datasets, many of which are studied by different researchers. Their
work apparently includes the current dataset that we are reporting
here, however obtained from a different source (FigureEight 2018)1.
They did a binary classification study in their dataset in terms of
relevance of the news snippets towards economy using a number
of classifiers along with all the other 26 datasets and then reported
the macro-F1 score [42] with respect to the level of difficulty in
the datasets. The macro-F1 score is designed to take into account
the class imbalance issue in the dataset and hence more general in
case the classes in the datasets are not balanced by adopting some
measure. They used 128-dimensional FastText embedding [6] for
their neural net models which are, MLP, LSTM-RNN, GRU-RNN,
BiLSTM RNN, BiGRU-RNN. As for traditional classifiers, they ap-
plied KNN, Gaussian Naive Bayes, LR, Adaboost, Random Forest
and SVC on tf-idf as the base vectors. In addition, they also reported
a character based three layer CNN. Nonetheless, the classifiers’ per-
formance on various levels of n-grams were assessed to benchmark
the difficulty in the datasets for text classification task. Note that
Collins et al. [12] did not consider the multinomial classification
task over the economic news snippet dataset, and to the best of our
knowledge, no other previous study considered this dataset for text
classification and sentiment analysis purposes.

1FigureEight is a human-in-the-loop machine learning and artificial intelligence com-
pany based in San Francisco, Los Angeles USA. Crowedflower has turned into Fig-
ureEight: https://appen.com/resources/datasets/

3 METHODOLOGY
3.1 Dataset
We perform our analysis with publicly available economic news
relevance dataset [15]. The content in this dataset may be described
as contributors reading snippets of news articles and then noting if
the article has relevance to United States economy. Dataset contains
these judgments as well as the dates, source titles, and text. This
raw data set consists of 8,000 news articles from 1951 to 2014. Each
observation, if found relevant to economy, is further judged on tone
on a 9-point scale, where 9 represents the most positive relevance
and 1 portrays the most negative one. In this work, the following
description is adopted for convenience and references into coding:
feature termed as “relevance” is used in text classification work
while feature termed as “positivity” from the judgement on tone is
identified as the ‘sentiment’ which is employed in our sentiment
analysis study.

Figure 1 describes the details of the distribution of “relevance”
and “positivity”. As the first pie chart (a) shows, the data set is
imbalanced where 82.1% does not have any relevance to economy
amounting to a total of 6571 cases while 1420 cases are identified as
having relevance to economy making it to be only 17.8%. There are
only 9 cases of ambivalent “not sure” response. Collins et al. [12]
proposed a quantitative measure of class imbalance as

imbalance =
𝐶∑
1

���� 1𝐶 − 𝑛𝑐

𝑇𝑑𝑎𝑡𝑎

���� (1)

where 𝐶 is the total number of classes, nc is the count of instances
in class c, Tdata is the total count of instances in the dataset. By this
class imbalance statistics, zero signifies that all the classes have
precisely equal number of instances i.e. perfectly balanced data and
the upper bound value of 1 means that only one class has all the
instances, i.e. 100% imbalanced data. In our dataset, if we consider
the ambivalent “not sure” entries forming a class, then, for the
3 classes, the value of imbalance turns out to be 0.974 signifying
a very highly imbalanced scenario which is unmanageable even
by standard class balancing methodologies. As this class does not
have enough statistical significance and is very small to consider,
we preferred to remove it in subsequent work. Thereby, the text
classification set is keeping only two classes thereafter as “yes” and
“no” in terms of relevance to economy. Even on that consideration,
imbalance turns out to be 0.644, which is a high measure in im-
balance statistics. Such imbalance in class is obviously not quite
appreciated for a reasonable predictive classification of unknown
new inputs as test dataset.

Figure 1(c) and 1(d) shows the distribution histograms of the
characters and words respectively in the original data set. The
theoretical normal distribution (in black) overlay exhibits that these
distributions can be considered as approximately normal with little
deviation of the mean from standard normal. Among the 1420
relevant or “yes” cases, Figure 1(g) shows the sentiment labels on
the scale of 2 to 9 where the actual number of corresponding records
are imprinted therein. According to this pie chart of distribution
within the “positive class”, there is no news graded as 1, i.e. none
are counted as the most negative one. Thereby, this part of the
data which labels the tone as ‘positivity’ is quite diverse among
eight different classes which are treated as the sentiments. Shannon

209

CASCON’20, November 10 - 13 2020, Toronto, Canada, Toronto, ON,
Jingli Wang, Ashok Bhowmick, Mucahit Cevik, Ayse Basar

Figure 1: Class distribution in original and augmented data
sets: (a) original financial news articles data [12, 15]; (b) Over-
sampling of theminority class to balance the classes for clas-
sification (described in text); (c and d) Distribution of charac-
ters and words in original data where the black line shows
the theoretical normal curve; (e) The 10 most common bi-
grams and (f) 10 most common trigrams in the data set; (g)
The sentiment Pie of the positive class in (a), including the
number of samples in each class from 2 through 9; (h) Sam-
ple Pie with maximum augmentation of (g) while maintain-
ing the class diversity intact.

[50] devised a statistical measure of class diversity in datasets in
terms of entropy or the degree of randomness known as “Shannon
diversity index” as follows:

𝐻 = −
𝑅∑
𝑖=1

𝑝𝑖 ln 𝑝𝑖 and 𝐸𝐻 =
𝐻

ln 𝑅
(2)

where 𝑅 defines the “richness” of the data that corresponds to the
number of classes, 𝑝𝑖 is the probability of the 𝑖th class, 𝐻 is the
entropy as the measure of disorder or randomness in the data and
𝐸𝐻 is the diversity index. The relationship indicates that the higher
the chaos (or randomness) in the data values, higher is the diversity
index. For the “yes” class data considered as the base for sentiment
classification task in this work, the index turns out to be 0.86, which

indicates that the sentiment set is highly diverse, implying that the
dataset is highly challenging for the prediction task [12].

Table 1 shows a sample of the data used in text classification.
The relevance to economy are indicated by various related terms
such as ‘certificate’, ‘deposits’, ‘money markets’ etc. coupled to
the names of different places in United States. The relevance is
however indicated here only by the headlines avoiding the actual
lengthy texts. Complete data set can be found online 2 along with
the implementations. The negative relevance are indicated by the
verbs such as ‘fall’ and ‘decline’. As discussed earlier, these examples
imply the inherent complexity in text classification problem that
might turn out nontrivial with respect to differentiating by real
meaning just from the common interpretation of each word. Table 2
gives a sample in terms of headlines of the sentiment within the
relevant class of the classification dataset which, as mentioned
earlier, has been labelled in a point scale of 2 to 9. The semantic
analysis on how the grading has been done, is however beyond the
scope of this work as the data is obtained as already labelled.

Table 1: Classification data sample

Relevance Headline

yes A Peek at Trucking Data, and Then the
Stock Surged; Glimpses of Key Figures Can
Aid Investors in Truck Stocks, Soybeans,
Bed Makers and Others

no In Europe, Job Protections for Older Gen-
eration Are Barriers for Younger Workers;
Earnings Gap Looms for Younger Genera-
tion Dependent on Short-Term Contracts

There is no missing entry in the dataset for any feature. In ad-
dition to removing the ambivalent “not sure” class instances, fol-
lowing data cleaning steps are carried out: 1) url and html tags,
special characters that carries no meaning, and the stop words are
removed, 2) all the words are transformed to lower cases and 3)
lemmatization is performed [22, 36, 38]. Stemming has also been
performed, however it is observed that it reduces the percentage of
words that can be explained by GloVe embedding, and therefore is
not included under the pretext that GloVe embedding is already pre-
stemmed. The vocabulary and text coverage are subsequently tested
using two different pre-trained word vectors, namely, GloVe [41]
and Fasttext [24]. The results show embedding coverage by both
vectors to an extent of 98% texts, wherein GloVe vectors covered
over 86% of unique words in the dataset which is almost 15% higher
than what Fasttext could cover. Therefore, it is decided to use GloVe
embedding for the purpose of model training, unlike Collins et al.
[12], who used Fasttext in their work.

3.2 Models
In our analysis, we mainly focus on neural network-based methods
for both text and sentiment classification tasks. As the baseline tech-
niques however, SVC, XGBoost and Logistic regression [9, 14, 28, 40]
2https://github.com/jianning1

210

Deep learning approaches to classify the relevance and sentiment of news articles to the economy
CASCON’20, November 10 - 13 2020, Toronto, Canada, Toronto, ON,

Table 2: Sentiment data sample

Positivity Headline

2 How To Play Rising Rates; The Bond
Boom Has Left Many Investors Vulner-
able to a Surprise Jump in Interest Rates.
Here’s How to Protect Yourself–and
Profit

3 Currency Trading: Dollar Remains in
Tight Ranges Amid Wait for U.S. Jobs
Data

4 U.S. Dollar Falls Against Most Curren-
cies; Decline Is Softened as Bond Rally
Stalls

5 A Season of Doubt Grips Wall Street;
With Economy Soft, Insiders See No Set
Direction This Fall

6 Fed’s Greenspan Refuses to Accept
Blame for Recession; Upturn’s Pace Is
’Glacial’

7 Tech Sector in Hiring Drive; Google,
Intel AddWorkers as Profits Snap Back;
Start-Ups Also Fight for Talent

8 New home sales rose 7.1% in May; Per-
sonal income and spending up 0.3%

9 Wanted: Employees in Michigan and
Ohio — States Compete to Lure Skilled
Workers Amid Shortage

note: 1: most negative; 9: most positive

are considered as well. In addition to these traditional methods,
LSTM, BiLSTM and an ensemble of 1D CNN with LSTM/BiLSTM
has been employed wherein, the text classification is binary and
the sentiment classification is multinomial.

Basic neural networks such as feed forward neural networks (e.g.
multilayer perceptron (MLP)) consists of input and output layers
organized by interconnected nodes. Every node in output layers
formulates outputs using inputs from nodes in the previous lay-
ers, together with some new inputs. The weights are optimized at
output layers for the purpose of obtaining the best results. Besides
input and output layers, neural networks consisting of multiple hid-
den layers are often referred as deep neural networks [37, 47]. Two
of the most well acclaimed examples in deep neural networks are
CNNs and RNNs. Their main difference is that CNNs share weights
within the same layer, while RNNs use the same weights between
layers, resulting in faster training speeds [37, 51]. The speciality in
RNNs is the use of memory cells which receive the output from the
previous layer as an input, thus causing effective reduction in loss
of information. However, as the transitive memory is diluted after
every iteration, RNN is efficient to learn from words that are within
close proximity. For the purpose of having a semantic understand-
ing of the whole sentence, the system often requires information

from much distant words (i.e. earlier layers) in which RNNs are
not efficient. A special network built upon RNN is LSTM which are
constructed to resolve such issues. It retards the dilution of impor-
tant information under the impact of forget gate-layers [37, 56] as
opposed to regular RNN unit which has single layer. Significant
improvements are accomplished through LSTM in the predictive
analytic of various types of textual data in which word sequence
is important. However, LSTM has the drawback that it does not
consider the existence of backward dependencies [37]. BiLSTM net-
works architecture has been developed to include both forward and
backward dependencies [48]. The architectural distinction between
LSTM and BiLSTM is shown in schematics in Figure 2.

Figure 2: Schematic of LSTM and Bi-SLTM layer struc-
tures [31].

In this work, we explore both LSTMs and BiLSTMs as well as
using these methods in tandem with 1D-CNN to explore the effect
of sophistication in algorithmic architecture in text and sentiment
classifications. Figure 3 shows the neural network architecture of
1D CNN concatenated with LSTMs.

3.3 Performance evaluation
In our experiments, we used 10-fold cross validation, as it is one
of the most commonly used techniques that allows for computing
predictions in an accurate way and helps in reducing the biased
estimations [18]. Afterward, the performance of the multinomial
and binary classifiers has been measured using recall and precision
as follows [40]:

𝑅𝑒𝑐𝑎𝑙𝑙 =
True Positives

True Positives + False Negatives
(3)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
True Positives

True Positives + False Positives
(4)

211

CASCON’20, November 10 - 13 2020, Toronto, Canada, Toronto, ON,
Jingli Wang, Ashok Bhowmick, Mucahit Cevik, Ayse Basar

Figure 3: The (1D CNN + BiLSTM) neural network scheme
concatenated to tf-idf

where True Positives are the instances that have been correctly
retrieved by the employed classifiers, False Positives are the in-
stances that have been incorrectly classified which in reality are
the negatives, and False Negatives are the actual positives that the
classifier has mistakenly predicted as the negatives. In order to have
a sum-up and represent the precision and recall in terms of one
value, we also present the harmonic mean of recall and precision
as the 𝐹1 score given by [40]:

𝐹1 =
2

1
𝑅𝑒𝑐𝑎𝑙𝑙

+ 1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(5)

In addition, the area under curve (AUC) from typical Receiving
Operator Characteristics (ROC) as defined by the ratio of true pos-
itive rate (TPR) to false positive rate (FPR) is also reported. The
Cohen Kappa score [34, 40] defining the strength of agreement is
calculated in binary text classification as well.

4 RESULTS
We performed a detailed numerical study to evaluate the perfor-
mance of various machine learning models for the text and sen-
timent classification tasks. We then explored the impact of data
augmentation on model performances. The analysis with standard
supervised learning methods and deep learning methods were con-
ducted using scikit-learn and tensorflow packages in python, re-
spectively, and the GPU support in Google Colab platform is utilized
for the deep learning models [3, 7, 10, 39].

4.1 Exploratory analysis and augmentation
Total texts have a minimum of 83 to a maximum of 3379 unique
characters as rendered by a minimum of 10 to a maximum of 432
unique words. Most of the articles have 500 to 1500 characters
against 60 to 200 words. Figure 1(e) and 1(f) exhibit the 10 most
common bigram and trigram (𝑛-gram) in the data set. Note that
dataset is highly class imbalanced having an imbalance statistic of
0.644 with two classes (see equation (1)). To deal with this issue,
we decided to oversample the minority “yes” class by the use of
synonyms importing “wordnet” from Natural Language ToolKit
(NLTK) library [5]. Such oversampling by two times results in
a reasonably balanced class distribution as shown in Figure 1(b)
where 39.3% of the dataset represents 4260 positive (or ‘yes’) class
records. By doing this data augmentation, imbalance statistic given
by imbalance turns out to be 0.355 which is a reasonable figure to
perform the text classification. The pie chart in Figure 1(b) shows the
minority oversampled balanced two class data that is subsequently
used in this task.

The pie chart in Figure 1(g) shows the sample proportion of
sentiment by ‘positivity’ ranking on the point scale of 2 to 9 within
the original 17.8% “yes” class shown in Figure 1(a). This constitutes
the baseline data for the sentiment classification study. However,
here the total number of instances 1420 diversified over eight dif-
ferent sentiment labels, and accordingly, it is very small to train a
well performing classification model. Therefore, we adopt the same
strategy of data augmentation by using synonyms similarly but
keeping the “diversity index” unaltered as measured by equation (2).
This is because this index (0.86) is a measure of the difficulty level
in the sentiment data which is treated as a pre-factor to judge the
performance in terms of sophistication of the algorithms applied.
Thereby, the starting dataset in the sentiment classification is 20%
augmented over what is shown in Figure 1(g). We then exercise
successive augmentation from 20% to a maximum of 200% in eight
steps in order to study the critical limit in such augmentation, mea-
sured in terms of performance scores. The pie chart in Figure 1(h)
on that score shows the 200% (maximum) such oversampled data
over what is shown in Figure 1(g), with the proportion of data in-
stances inscribed therein as distributed in eight different classes. In
addition, Figure 1(h) represents the ‘positivity’ instance divisions
of the 39.3% “yes” data shown in Figure 1(b). It might quite plausi-
bly be asked on the legitimacy of such introduction of artificiality.
Nevertheless, for text data, as long as the contextual semantic of
the specific text is not disturbed, such proportional augmentation
does not overrule the objective of the task as far as the lexicon
boundaries of English language is concerned.

4.2 Text classification
SVC [14], XGBoost [9] and Logistic regression [28] are chosen as
the baseline models in text classification study with tf-idf vectors
where relevance to economy is the class; 0 stands for non relevant
and 1 for relevant. The minority (class) oversampled data presented
in Figure 1(b) is the input to all text classification experiments.
All calculations are done using 10 fold cross validation. The per-
formance of the base models measured in terms of four metrics,
namely, accuracy, F1, AUC, and Cohen Kappa, are given as bar
graph in Figure 4 which shows approximately competitive scores

212

Deep learning approaches to classify the relevance and sentiment of news articles to the economy
CASCON’20, November 10 - 13 2020, Toronto, Canada, Toronto, ON,

wherein logistic regression slightly edges over the others at 87%
accuracy in prediction.

Having these baseline performances, to further improve the text
classification, we apply LSTM and BiLSTM. GloVe embedding is
used in all LSTM and BiLSTM layers, initially. Following that, (1)
tf-idf is concatenated to LSTM and then (2) to BiLSTM. Word em-
bedding weights are adopted from GloVe embedding vector [41].
The final network layering structure is as follows: LSTM and BiL-
STM layers are first employed on top of GloVe embedding layer
with one 1D Global Average Pooling layer, followed by one dense
layer with rectified linear unit (ReLU) as the activation function. In
the dense output layer, Sigmoid activation function is applied for
text classification as we consider a binary classification task [20].

Figure 4 shows that, when compared to the performance of the
baseline models, LSTM and LSTM+TF_IDF do not provide a signifi-
cant performance improvement. Concatenating the LSTM/BiLSTM
layer on GloVe embedding with normalized tf-idf vectors shows
advantage in the case of BiLSTM model where F1 score is improved
by a margin of 3%. It is then explored to determine any advan-
tage by using an ensemble of convolution net (CNN) with LSTM
and BiLSTM. Specifically, 1D CNN layer is added preceding the
LSTM/BiLSTM structure. The results showed that this approach in-
deed enhances the overall performance score raising F1 by another
margin of 0.5%.

The hybrid approach with LSTM is in fact considered as provid-
ing the best performance in text classification of which the charac-
teristic training and validation curves are shown in Figure 5. The
learning rate has been optimized through a wide range from 10-8
to 10-3 as shown in Figure 5(i). The optimum learning rate in train-
ing here is 5x10-5. The training has been undertaken employing
early stopping method to ward off overfitting issues which is rather
prevalent in these calculations when the data size is relatively small.
Accuracy and validation accuracy over the early stopped epochs
are shown in Figure 5(ii) while the levelling off of validation loss
and mean absolute error (MAE) are shown in Figure 5(iii). Even
though, the numeric validation scores of 1D CNN with BiLSTM is
about 2-3% more than 1D CNN with LSTM (see Figure 4), there is
training overfitting in the former as compared to that in the latter.
Thereby, in this binary classification, it is rather considered that
counting on backward dependency by employing BiLSTM does not
truly provide substantial improvements over LSTM network which
could be a disadvantage in having a relatively smaller data set in
neural network applications.

4.3 Sentiment classification
Due to significant data imbalance, the sentiment classification task
requires data augmentation. The starting data for sentiment analy-
sis is the 20% augmented data over what is shown in Figure 1(g).
All nine algorithms as in text classification are then applied at each
of the eight steps of data augmentation to answer our research
question of determining the critical limit in such augmentation
by measuring in terms of performance scores. Such detailed mea-
surements over the exhaustive repetitive runs are performed after
similar learning rate optimization as before and the optimized learn-
ing rate of training in this case is 2x10-4, as shown in Figure 6(1).

The basic layering structure here remains the same, however Soft-
max is used as the activation function in output dense layer because
it is a multinomial classification task [20]. The same approach of
using normalized tf-idf concatenated to LSTM/BiLSTM shows here
an improvement in F1 score by a margin of 13% when used in BiL-
STM (i.e. BiLSTM + tf-idf) as compared to when used in LSTM.

The performance scores measured in terms of accuracy, F1 and
AUC are shown with respect to eight stages of percentage aug-
mentation in Figure 7. These results show that, for this multiclass
classification task, BiLSTM renders a substantial edge over LSTM
and the best performance here is given by the ensemble of 1D
CNN with BiLSTM which is winning over a margin of 30% in both
accuracy and F1 scores than 1D CNN with LSTM. The AUC cover-
age is also the highest at 82%. The architecture of layering of the
ensemble method is the same as shown in the common Figure 3
with the use of Softmax as the activation function for the output
layer (labelled on the right side). Clearly, the backward dependency
taken into account in BiLSTM provides quite substantial advantage
even for a relatively smaller dataset when it is a more complex task
of classification over the dataset with higher level of difficulty as
attributed by the Shannon diversity index [50]. The results also
reveal on the other hand that, there is indeed a critical limit in
data augmentation. We stretched augmentation to an extreme of
200%, however 180% seems to be the maximum limit whereupon
the performance starts decreasing suggesting the critical limit for
this data set. It is obvious that any better performance in such task
even with texts certainly depends on having more actual amount
of data in the corpus. Nonetheless, this exercise tries to portray one
side of the reality with certain obvious shortcomings in terms of
marginal overfitting issues as maybe observed in Figure 6(2) and (3)
in accuracy and MAE of the validation set. An optimum seven fold
cross validation is done each time across all algorithms in this case
and the scores shown in Figure 7 are the averages over all cross
validations carried out using the optimized learning rate. Further
tuning of the hyperparameters actually did not render any better
promise in performance that a richer data volume could have. It
might be projecting that the exercise in text and sentiment pre-
dictive classification in this dataset has resulted the scores to its
eventual limits.

5 THREATS TO VALIDITY
Internal Validity. Webelieve themeasures in our study are accept-

able as we employed well acclaimed Python libraries, Tensorflow
and Keras as available on free Anaconda distributions as well as
Google Colab (colab.research.google.com).

External Validity. The dataset used in this study is freely avail-
able as open source at the website of 𝑑𝑎𝑡𝑎.𝑤𝑜𝑟𝑙𝑑 resourced from
𝐶𝑟𝑜𝑤𝑑𝑓 𝑙𝑜𝑤𝑒𝑟 .𝑐𝑜𝑚 under ‘economic-news-article-tone’.

Construct Validity. The methodologies used are not developed
in this study. Their wide acclaimed use in machine learning and
statistical studies by many researchers reduce the subjective bias on
judgment. Data augmentation follows the standard practice adopted
in machine learning research on NLP.

213

CASCON’20, November 10 - 13 2020, Toronto, Canada, Toronto, ON,
Jingli Wang, Ashok Bhowmick, Mucahit Cevik, Ayse Basar

Figure 4: Four different performance measures across all models for text classification. The best performance is obtained by
the ensemble method of (1D CNN + LSTM) with tf-idf

Figure 5: Hyperparameter tuned best model for text classi-
fication. (i) Learning rate optimization with Loss function;
(ii) Accuracy and validation accuracy best performance by
the ensemble method of (1D CNN + LSTM) with tf-idf ; (iii)
Validation loss and Mean absolute error (MAE) for the same
model.

6 CONCLUSION
We commenced this machine learning work in text classification
and sentiment analysis with the objectives:

• Predicting the relevance of news snippets towards economy
by a binary text classification and,

Figure 6: Hyperparameter tuned best model for multino-
mial sentiment classification. (1) Learning rate optimization
with Loss function; (2) Accuracy and validation accuracy
best performance by the ensemblemethod of (1DCNN+BiL-
STM) concatenated to tf-idf ; (3) Validation loss and Mean
absolute error (MAE) for the same model.

• Predicting the sentiment within the economy relevant news
snippets labelled on a “positivity” scale over eight different
classes based on their tones.

In the course of these studies, we also asked a question in view
of the standard practice of data augmentation in textual data: is
there a critical limit of augmentation as measured by statistical

214

Deep learning approaches to classify the relevance and sentiment of news articles to the economy
CASCON’20, November 10 - 13 2020, Toronto, Canada, Toronto, ON,

Figure 7: Detailed performance measures (Accuracy, F1 score and AUC) for multinomial sentiment classification across all
models. The best performance is obtained by the ensemble method of (1D CNN + BiLSTM) concatenated to tf-idf.

performances of the classifier? In addition, on a secondary objective,
we also tried to reflect on the role of sophistication of the algorithm
in text classification in data with higher level of difficulty.

We applied nine different classifiers where three are the tra-
ditional machine learning and rest six are neural network based
algorithms. As this open source dataset is relatively small in size
and dimension, we adopted data augmentation by oversampling
with synonyms from well acclaimed NLTK library and then stud-
ied the effect of such augmentation in terms of various statistical
performances. With respect to this dataset, it would be pertinent to
summarize our findings as follows:

(1) The ensemble neural network method of 1D CNN with
LSTM/BiLSTM provides the best performances. In binary
text classification, it is 1D CNN with LSTM concatenated to
tf-idf and in multinomial sentiment classification, 1D CNN
with BiLSTM concatenated to tf-idf turns out to be the best
for this dataset.

(2) Even though data augmentation is quite legitimate in prac-
tice in textual data, there maybe a limit to the extent in
such augmentation which might depend on the particular
dataset and the task it is employed to. In our case, the critical

limit turns out to be 180% whereupon, performance starts
decreasing.

(3) The higher level of sophistication in BiLSTM architecture
which counts on backward dependency, does provide an edge
over LSTM when the dataset has higher level of difficulty
(as measured by Shannon diversity index) implying that the
task is more complex.

There are several future research directions from this study.
We plan to test out the presented methods using other economic
news related datasets. In addition, other recent deep learning ar-
chitectures and word embeddings such as BERT can be explored
for text classification and sentiment analysis over economic news
datasets [17].

REFERENCES
[1] [n.d.]. Introduction to news analytics. https://www.eventstudytools.com/

introduction-news-analytics. Accessed: 2020-06-22.
[2] [n.d.]. News feeds, analytics, and indices. https://www.refinitiv.com/en/products/

world-news-data. Accessed: 2020-06-22.
[3] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, and et al. 2015.

TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. http:
//tensorflow.org/ Software available from tensorflow.org.

[4] Xuemei Bai. 2018. Text classification based on LSTM and attention. In 2018
Thirteenth International Conference on Digital Information Management (ICDIM).

215

https://www.eventstudytools.com/introduction-news-analytics
https://www.eventstudytools.com/introduction-news-analytics
https://www.refinitiv.com/en/products/world-news-data
https://www.refinitiv.com/en/products/world-news-data
http://tensorflow.org/
http://tensorflow.org/

CASCON’20, November 10 - 13 2020, Toronto, Canada, Toronto, ON,
Jingli Wang, Ashok Bhowmick, Mucahit Cevik, Ayse Basar

IEEE, 29–32.
[5] Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural language processing

with Python: analyzing text with the natural language toolkit. " O’Reilly Media,
Inc.".

[6] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016.
Enriching word vectors with subword information. arXiv (2016), preprint
arXiv:1607.04606.

[7] Tiago Carneiro, Raul Victor Medeiros Da Nóbrega, Thiago Nepomuceno, Gui-
Bin Bian, Victor Hugo C De Albuquerque, and Pedro Pedrosa Reboucas Filho.
2018. Performance analysis of google colaboratory as a tool for accelerating deep
learning applications. IEEE Access 6 (2018), 61677–61685.

[8] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
2002. Smote: synthetic minority over-sampling technique. Journal of artificial
intelligence research 16 (2002), 321–357.

[9] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 785–794.

[10] François Chollet et al. 2015. Keras. https://keras.io.
[11] Poonam Choudhari and S Veena Dhari. 2017. Sentiment Analysis and Machine

Learning Based Sentiment Classification: A Review. International Journal of
Advanced Research in Computer Science 8, 3 (2017).

[12] Edward Collins, Nikolai Rozanov, and Bingbing Zhang. 2018. Evolutionary
Data Measures: Understanding the Difficulty of Text Classification Tasks. arXiv
preprint arXiv:1811.01910 (2018).

[13] Alexis Conneau, Holger Schwenk, Loıc Barrault, and Yann Lecun. 2017. Very
deep convolutional networks for text classification. In Proceedings of the 15th
Conference of the European Chapter of the Association for Computational Linguistics
1 (2017), 1107–1116.

[14] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine
learning 20, 3 (1995), 273–297.

[15] CrowdFlower. 2015. Economic News Article Tone,
https://data.world/crowdflower/economic-news-article-tone. (Dec 2015). Dec
2015.

[16] Sanjiv R Das. 2011. News analytics: Framework, techniques and metrics. The
Handbook of News Analytics in Finance 2 (2011).

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv:cs.CL/1810.04805

[18] Tadayoshi Fushiki. 2011. Estimation of prediction error by using K-fold cross-
validation. Statistics and Computing 21, 2 (2011), 137–146.

[19] Maya R Gupta, Samy Bengio, and Jason Weston. 2014. Training highly multiclass
classifiers. The Journal of Machine Learning Research 15, 1 (2014), 1461–1492.

[20] Geoffrey E Hinton and Russ R Salakhutdinov. 2009. Replicated softmax: an
undirected topic model. In Advances in neural information processing systems.
1607–1614.

[21] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[22] Matthew Honnibal and Ines Montani. 2017. spaCy 2: Natural language under-
standing with Bloom embeddings, convolutional neural networks and incremen-
tal parsing. (2017). To appear.

[23] K Sparck Jones. 2001. Natural language processing: a historical review. University
of Cambridge (2001), 2–10.

[24] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2016. Bag
of Tricks for Efficient Text Classification. arXiv preprint arXiv:1607.01759 (2016).

[25] Tarek Kanan, Odai Sadaqa, Amal Aldajeh, Hanadi Alshwabka, Shadi AlZu’bi,
Mohammed Elbes, Bilal Hawashin, Mohammad A Alia, et al. 2019. A review of
natural language processing and machine learning tools used to analyze arabic
social media. In 2019 IEEE Jordan International Joint Conference on Electrical
Engineering and Information Technology (JEEIT). IEEE, 622–628.

[26] Ayman E Khedr, Nagwa Yaseen, et al. 2017. Predicting stock market behavior
using data mining technique and news sentiment analysis. International Journal
of Intelligent Systems and Applications 9, 7 (2017), 22.

[27] Max R Kimbrough, Steven O Kimbrough, and Priscilla Murphy. 2011. On using
text analytics for event studies. In Proceedings of the 13th International Conference
on Artificial Intelligence and Law. 209–218.

[28] David G Kleinbaum, K Dietz, M Gail, Mitchel Klein, and Mitchell Klein. 2002.
Logistic regression. Springer.

[29] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
521, 7553 (2015), 436–444.

[30] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. 1989. Backpropagation applied
to handwritten zip code recognition. Neural Computation 1, 4 (1989), 541–551.

[31] Gang Liu and Jiabao Guo. 2019. Bidirectional LSTM with attention mechanism
and convolutional layer for text classification. Neurocomputing 337 (2019), 325–
338.

[32] Yifei Lu, Yanghui Rao, Jun Yang, and Jian Yin. 2018. Incorporating Lexicons into
LSTM for sentiment classification. In 2018 International joint conference on neural
networks (IJCNN). IEEE, 1–7.

[33] G Harry Mc Laughlin. 1969. Smog grading-a new readability formula. Journal of
reading 12 (1969), 639–646.

[34] Mary L McHugh. 2012. Interrater reliability: the kappa statistic. Biochemia
medica: Biochemia medica 22, 3 (2012), 276–282.

[35] R Monika, S Deivalakshmi, and B Janet. 2019. Sentiment Analysis of US Airlines
Tweets Using LSTM/RNN. In 2019 IEEE 9th International Conference on Advanced
Computing (IACC). IEEE, 92–95.

[36] Travis E Oliphant. 2006. A guide to NumPy. Vol. 1. Trelgol Publishing USA.
[37] Daniel W Otter, Julian R Medina, and Jugal K Kalita. 2020. A Survey of the Usages

of Deep Learning for Natural Language Processing. IEEE Transactions on Neural
Networks and Learning Systems (2020).

[38] The pandas development team. 2020. pandas-dev/pandas: Pandas. https://doi.
org/10.5281/zenodo.3509134

[39] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[40] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[41] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:
Global Vectors for Word Representation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP). 1532–1543. http://www.aclweb.org/anthology/D14-
1162

[42] David Martin Powers. 2011. Evaluation: from precision, recall and f-measure
to roc, informedness, markedness and correlation. Journal of Machine Learning
Technologies 2, 1 (2011), 37–63.

[43] Nicolas Pröllochs, Stefan Feuerriegel, and Dirk Neumann. 2015. Enhancing
sentiment analysis of financial news by detecting negation scopes. In 2015 48th
Hawaii International Conference on System Sciences. IEEE, 959–968.

[44] Juan Ramos et al. 2003. Using tf-idf to determine word relevance in document
queries. In Proceedings of the first instructional conference on machine learning,
Vol. 242. Piscataway, NJ, 133–142.

[45] Gabriele Ranco, Darko Aleksovski, Guido Caldarelli, Miha Grčar, and IgorMozetič.
2015. The effects of Twitter sentiment on stock price returns. PloS one 10, 9
(2015).

[46] Gabriele Ranco, Ilaria Bordino, Giacomo Bormetti, Guido Caldarelli, Fabrizio
Lillo, and Michele Treccani. 2016. Coupling news sentiment with web browsing
data improves prediction of intra-day price dynamics. PLoS one 11, 1 (2016).

[47] Jürgen Schmidhuber. 2015. Deep learning in neural networks: An overview.
Neural networks 61 (2015), 85–117.

[48] Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional recurrent neural net-
works. IEEE transactions on Signal Processing 45, 11 (1997), 2673–2681.

[49] Achira Jeewaka Shamal, Rankothge Gishan Hiranya Pemathilake, Sa-
chith Paramie Karunathilake, and Gamage Upeksha Ganegoda. 2018. Sentiment
Analysis using Token2Vec and LSTMs: User Review Analyzing Module. In 2018
18th International Conference on Advances in ICT for Emerging Regions (ICTer).
IEEE, 48–53.

[50] Claude Elwood Shannon. 2001. A mathematical theory of communication. ACM
SIGMOBILE Mobile Computing and Communications Review 5 (2001), 3–55.

[51] Richard Socher, Eric H Huang, Jeffrey Pennin, Christopher D Manning, and
Andrew Y Ng. 2011. Dynamic pooling and unfolding recursive autoencoders
for paraphrase detection. In Advances in neural information processing systems.
801–809.

[52] Sahar Sohangir, Dingding Wang, Anna Pomeranets, and Taghi M Khoshgoftaar.
2018. Big Data: Deep Learning for financial sentiment analysis. Journal of Big
Data 5, 1 (2018), 3.

[53] Peter D Turney. 2002. Thumbs up or thumbs down?: semantic orientation applied
to unsupervised classification of reviews. In Proceedings of the 40th annual meet-
ing on association for computational linguistics. Association for Computational
Linguistics, 417–424.

[54] Shuo Xu. 2018. Bayesian Naïve Bayes classifiers to text classification. Journal of
Information Science 44, 1 (2018), 48–59.

[55] Dani Yogatama, Chris Dyer, Wang Ling, and Phil Blunsom. 2017. Generative and
discriminative text classification with recurrent neural networks. arXiv (2017),
preprint arXiv:1703.01898.

[56] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. 2018.
Recent trends in deep learning based natural language processing. IEEE Compu-
tational intelligenCe magazine 13, 3 (2018), 55–75.

[57] Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional
networks for text classification. Advances in neural information processing systems
(2015), pages 649—-657.

216

https://keras.io
http://arxiv.org/abs/cs.CL/1810.04805
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162

Voting for Authorship Attribution Applied to Dark Web Data
Britta Sennewald

britta.sennewald@unb.ca
University of New Brunswick

Fredericton, Canada

Rainer Herpers
rainer.herpers@h-brs.de

University of Applied Sciences Bonn-Rhein-Sieg
Sankt Augustin, Germany

Marco Hülsmann
marco.huelsmann@h-brs.de

University of Applied Sciences Bonn-Rhein-Sieg
Sankt Augustin, Germany

Kenneth B. Kent
ken@unb.ca

University of New Brunswick
Fredericton, Canada

ABSTRACT
This research is about authorship attribution (AA) within multiple
Dark Web forums and the question of whether AA is possible
beyond the boundaries of a single forum. AA can become a curse
for users that try to protect their anonymity and simultaneously
become a blessing for law enforcement groups that try to track users.
In this paper, we explore AA within multiple Dark Web forums to
determine whether AA is possible beyond the boundaries of a single
forum. The analysis revealed that analyzing all features together
with a single classifier does not achieve as good results as when
they are classified separately and the final result is computed by a
voting mechanism. The latter achieves an F1-Score that is up to 44%
higher than in the former case. On top of that, the analyses show
that the author of a post is at least 94% within the top three most
likely candidates. This shows that AA can threaten the anonymity
of Dark Web users across the boundaries of different forums.

CCS CONCEPTS
• Security and privacy; • Computing methodologies → Ma-
chine learning; Natural language processing;

KEYWORDS
Authorship Attribution, Dark Web, Machine Learning, Natural Lan-
guage Processing, Voting

ACM Reference Format:
Britta Sennewald, Rainer Herpers, Marco Hülsmann, and Kenneth B. Kent.
2020. Voting for Authorship Attribution Applied to Dark Web Data. In
Proceedings of 30th Annual International Conference on Computer Science and
Software Engineering (CASCON’20). IBM Corp., Riverton, NJ, USA, 10
pages.

1 INTRODUCTION
Authorship attribution (AA) focuses on assigning documents to
their corresponding authors. This is very successful when a suf-
ficient amount of text is available. If the length of a text and/or
the number of texts per author is small, it becomes increasingly
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CASCON’20, November 10–13, 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

challenging to attribute them correctly to an author [23]. Nonethe-
less, several researchers e.g., S. R. Pillay et al. [18] or R. Layton et
al. [11] focused especially on this typical problem of online texts.
It applies to texts within the openly accessible internet (Surface
Web) as well as for the Dark Web. The latter is accessible via special
technologies such as The Onion Router (TOR), which are becoming
increasingly popular [1]. It offers the opportunity to access the
internet anonymously, which is interesting for users who want to
protect their privacy or circumvent censorship on the internet, but
also for those who do not want to be identified when performing
illegal activities [21]. Therefore, AA transferred to the Dark Web
implies, that posts within Dark Web forums could be assigned to
their authors, and thus it means that AA can be a danger to their
anonymity.

A good AA algorithm is of interest to law enforcement agencies
who, e.g., want to track or find users engaged in illegal activities
shown by scientists like M. Yang et al. [25] or M. Sultana et al. [22].
However, the same algorithm can be used to identify users who are
dependent on the anonymity of the Dark Web to be able to express
their opinions freely and thus avoid the suppression of regimes.
Therefore AA can be both a way to track criminals, as well as a
danger to privacy on the Dark Web. For these two reasons, it is
interesting to investigate how precise posts can be assigned to their
authors on the Dark Web, especially between multiple forums.

In this research, four different Dark Web forums are crawled/-
scraped to apply AA to posts published by authors that are active
in two of these Dark Web forums. For this purpose, different tech-
niques like Natural Language Processing (NLP) and Machine Learn-
ing (ML) are used. By doing so, it is possible to determine to what
extent posts can be attributed to their correct author, regardless
which of the two forums the posts were published within or which
username was used. A very important role in this context will also
be played by the application of a voting classifier, which will be
used in addition to the normal classifiers.

Since usernames within forums can be chosen freely by every-
body they are not a reliable way to link user profiles. Hence, within
this research, another way that provides more reliability was cho-
sen as a ground truth: Pretty Good Privacy (PGP)- keys that are
often used for confidentiality reasons within Dark Web forums and
marketplaces. Not all users use the same PGP-key within two or
more forums, however, users that do so are linkable by this feature.

217

CASCON’20, November 10–13, 2020, Toronto, Canada Britta Sennewald, Rainer Herpers, Marco Hülsmann, and Kenneth B. Kent

2 RELATEDWORK
Authorship attribution is a difficult task in an environment with
hundreds or even thousands of different authors and texts that differ
greatly in size. Many researchers already focused on authorship at-
tribution and also on the DarkWeb, but only a few researchers have
concentrated on a combination of both. Two of them are Ho and
Ng, which analyzed stylometric features of texts posted in different
DarkWeb forums [9]. They tried to connect ten authors within Dark
Web forums by extracting stylometric-based features and special
fingerprints like typical words or typos of an author. Within their
analysis, Ho and Ng focused on Support Vector Machine (SVM)
classifiers only.

Another research project regarding Dark Web and authorship
attribution was undertaken by Spitters et al. [21]. They achieved
their results by using a combination of time-based and stylometric
features as well as character trigrams. For the classification, they
also used Support Vector Machines just as Ho and Ng did [9]. By
using all three features together, the actual author was ranked first
with a probability of 88% and within the top five most highly ranked
candidates with a probability of 97%.

Forum posts also provide another interesting feature for AA, the
time when a post was posted. Even if the research of La Morgia et
al. [15] is not in the context of authorship attribution, it shows that
only the activity of a user can reveal his/her location. The authors
analyzed the activity of users of five different dark web forums.
In the case of two of them, they already knew where most of the
users were coming from. Hence, their goal was to figure out where
the users of the other three forums were coming from. To obtain a
ground truth regarding how the activity of users appears around
the world, they used a Twitter data set with the known origin of all
users. After that, they were able to distinguish groups of dark web
users from different regions around the globe within a crowd just
by analyzing the timestamps of posts. Therefore it can be concluded,
that the activity of users that are living in a different timezone is
different regarding the time. Hence, this feature might be especially
useful when analyzing forums with a global community.

Ashcroft et al. tried to match multiple aliases of the same user
within a data set of an Irish web forum and within a Twitter dataset
[2]. This research did not focus on the Dark Web environment, but
tried to match users within different domains by using AA tech-
niques. The authors used stylometric and time-based features, but
they also added so-called emotion-based or Twitter-specific fea-
tures to their analysis. Within their analysis, the authors used three
different machine learning classifiers AdaBoost, Support Vector
Machine, and Naive Bayes (NB).

Linking users within different Dark Web forums is one of the
main tasks in this research and is quite challenging. Fortunately,
although not in the context of authorship attribution, Me, Spagno-
letti and Pesticcio focused on the relationship between different
TOR marketplace users by concentrating on their PGP-keys [12].
Within Dark Web marketplaces, PGP-Keys are often used to pro-
vide confidentiality within transactions. Hence, the public key of
vendors and buyers can often be found in their user profile. Even
if the original research problem of this paper does not belong to
AA, it points out that Dark Web users are using PGP keys for their
transactions and can be linked by these keys.

Pillay and Solorio also worked on AA of Web Forum posts [18].
They used stylometry features (lexical and syntactical), statistical
language models, clustering, and different machine learning algo-
rithms in their work. Clustering was applied to use the output as
meta-features for identifying the authors. The results show, that
their approach is able to classify posts of five authors with a proba-
bility of around 90% correctly by using BayesNet. However, by an
increasing number of authors, the C4.5 algorithm to create a deci-
sion tree seems to be the better choice than BayesNet. Besides that,
the authors observed that when the number of authors increased,
those classifiers that incorporate a cluster identifier worked best.

Swain,Mishra, and Sindhu give an overview of recent approaches
to AA techniques [23]. They list multiple research projects focusing
on this area, especially the category, language, domain, features, and
techniques that have been used. This survey shows that Naive Bayes
and Support VectorMachine are themost commonly used classifiers,
English the most frequently analyzed language and lexical and
syntactic features the most popular features.

3 DATASET
One of the most important parts of this research was to create a
suitable dataset for AA analysis. Thus the following section focuses
on how this dataset was created, which Dark Web forums were
used, and which features were extracted.

3.1 Creation of the Dataset
Developing a crawler for the Dark Web is not as straightforward as
for the Surface Web. Therefore, in this section, the most important
key aspects for crawling/scraping Dark Web forums that were
essential for creating this dataset are briefly described. Some of
them are strongly influenced by Gwern Branwen’s experiences
when creating his Dark Web dataset between 2012 and 2015 [6].

First of all, connecting to a Dark Web website is completely
different than connecting to a Surface Website. The TOR network
is accessible over the TOR browser or a TOR proxy that can be used
by a crawler. To increase the speed of the crawling process multiple
TOR proxies were set up to allow multiple TOR sessions in parallel.

However, Dark Web websites tend to protect themselves from
being crawled or attacked, e.g., by a Distributed Denial of Service
(DDoS) attack [14], more rigorously than websites on the Surface
Web. Therefore, the timing of requests and thus the speed of the
crawler is an extremely challenging task within the Dark Web. Too
many requests per minute might lead to a detection of the crawler,
whereas too few requests will result in a slow crawl. Thus, a trade-
off between both factors needs to be found, which unfortunately is
a trial and error process.

In addition, most Dark Web forums do not allow users to access
the content of the forum without being registered. Fortunately,
having an account on a Dark Web forum is often linked with the
possibility to adjust the settings for the forum’s outward appearance.
For example, choosing the highest possible number of posts per
page will result in a faster crawl as there are fewer pages to crawl.
Furthermore, an approach that contains blacklisting as well as
whitelisting needs to be set up, e.g., to avoid accidentally being
logged out during the crawling process. The last important aspect
was to separate automatic and manual processes as all forums

218

Voting for Authorship Attribution Applied to Dark Web Data CASCON’20, November 10–13, 2020, Toronto, Canada

Table 1: Statistics of all four crawled Dark Web forums,
showing an overview of the dataset used in this thesis. The
number of PGP-Key ownerswithinTMGrefers to only those
that could be matched.

Forum name Number of
posts

Number of
users

Number of users
with PGP Key

Total number of
files crawled

DNMA 75,165 10,489 277 20,645
TH 225,135 26,502 1,900 55,106
TMG 201,538 5,121 193+ 15,678
Dread 385,839 63,299 2,943 163,943

require solving a captcha when signing in, or logging in. Since the
captchas were not easy to solve automatically, this had to be done
manually, whereas the final crawl was completely automatic.

3.2 Dark Web Forums Used
The number of active users in the dark web forums found between
October and December 2019 within the context of this research
ranged either between a few hundred or between a thousand and
more. Since the probability of finding users who are active in two
or more forums is expected to be higher when concentrating on
those forums that seem to be the most popular, only forums with
more than 1000 active users were selected. However, in future work,
this threshold could be lowered to also include smaller forums with
only a few hundred users to increase the size of the data set 1.

At the end of 2019 there were fewer than 10 Dark Web forums
found with a large community (around 1000 active authors or more).
Unfortunately, the number of those forums that allow users to
publish their PGP keys in their user profiles, was even smaller. In
the end, only four forums fulfilled the requirements for this analysis,
which are presented in Table 1.

3.2.1 DNM Avengers. This is the smallest Dark Web Forum that
was crawled within this research. It focuses mainly on drugs, but
there are also some threads about more general topics, politics,
security, cryptocurrency or Dark Web marketplaces.

3.2.2 The Majestic Garden (TMG). This onion service is a mix-
ture of forum and marketplace. It has some threads dealing with
general topics but the main focus is on drugs as well. TMG has
over 40,000 users in total (end of 2019) but only around 5,000 that
are active (wrote at least one post) in the forum. Compared to the
three other forums, it is the only one where users are not able to
access the user profiles of others. Therefore, users post their pub-
lic PGP keys within multiple threads to share them with others.
Unfortunately, it’s very time-consuming to check all posted PGP
keys manually, whether they are complete or unusable or whether
they have been posted twice or even more times. Hence, due to
simplicity, only those users that have a PGP key and are linkable to
one of the three other forums are manually checked and counted
as users that own a key in Table 1. Hence, 193+ indicates that there
are more users with a PGP key within this forum, but their exact
number was not calculated.

1Due to privacy concerns, the data set created for this project is available by request
only on GitHub [7].

3.2.3 The Hub (TH). TH is the sister-forum of The Majestic Gar-
den, containing approximately 225,100 posts and 26,500 active users.
As its name already indicates, TH is a kind of central point with
many threads with discussions about other Dark Web sites, mainly
marketplaces. Additionally, it contains many threads regarding
security and vendor reviews.

3.2.4 Dread. Dread is the biggest forum crawled within this
research with over 63,000 active users. In contrast to the others, it
does not have a specific topic. It is more like a platform for everyone
that wants to ask questions or talk about various topics. Besides
that, the design of this website strongly resembles Reddit, which
many people already know from the Surface web. Dread recently
faced significant DDoS attacks and thus has extremely strict DDoS
protection, which makes it difficult to crawl.

3.3 Features
Features that are extracted from the given data are the basis for
an AA analysis. The feature categories used in this research, are
influenced by related work or are established based on scientific
interest (language model). Another category called social-based
features (e.g., the usage of quotations of other user comments) was
used in previous work but did not contribute well to the final results.
Therefore, this feature category was excluded from this research.
However, there might be other features (e.g., transforming text to
an image) that are worthy of interest but that are not considered
here. These could be analyzed in future work.

The features used in this project are listed in Table 2. More
detailed information can also be found in [20]. The four feature-
categories used in this research, as well as their corresponding
subfeatures, are explained in the following.

3.3.1 Lexical-based Features. Term frequency, also known as
Bag of Words (BOW), or Term Frequency Inverse Document Fre-
quency (TF-IDF) features are called lexical-based features in this
research. They are often used in the context of AA [18], [11]. The
main focus of these features is not on the topic but rather on the
frequency of words within a text. However, the TF-IDF approach
tries to overcome a typical problem of the BOW approach that
rarely used words (that might be the most interesting ones) are
shadowed by more frequently used words.

3.3.2 Stylometric-based Features. Stylometric features are fre-
quently used for authorship attribution tasks [21],[2], [9]. The focus
of this category is not onwhat an author is writing about, but rather
how he writes a text. This includes grammar mistakes, typos, emo-
jis, part-of-speech (POS) tags, as well as statistical measurements
of an author’s writing style, e.g., the number of sentences, words,
characters per word, etc.

3.3.3 Time-based Features. This feature category is inspired
by La Morgia et al. [15], and Spitters et al. [21]. It contains six
subfeatures: the time (hour and minute) when a user is typically
active within a Dark Web forum, the date (year, month, and day)
that a post was posted, and the day of the week on which a post
was written, which might be very important to see whether some
users tend to be more active during weekends and others more
during weekdays.

219

CASCON’20, November 10–13, 2020, Toronto, Canada Britta Sennewald, Rainer Herpers, Marco Hülsmann, and Kenneth B. Kent

Table 2: Features used within this research. For those fea-
tures that are annotated with a * the sum, mean, median,
and standard deviation are computed with regard to every
post.

Category Feature Extraction Tool
Lexical Count Vectoriser scikit-learn [16]
Lexical TF-IDF scikit-learn [16]
Language Model Word2Vector, GloVe, FastText Gensim [19]
Language Model Sentiment (pos./neg./neu./comp) vaderSentiment [10]
Language Model LDA and NMF scikit-learn [16]
Stylometric 11 Emoji categories RE (Python)
Stylometric Grammar mistakes LanguageTool API [8]
Stylometric Typos LanguageTool API [8]
Stylometric 35 POS tags nltk [3]
Stylometric Number of characters per word* Python
Stylometric Number of capital letters* RE (Python)
Stylometric Number of small letters* RE (Python)
Stylometric Number of punctuation marks* RE (Python)
Stylometric Number of abbreviations* nltk [3]
Stylometric Number of lowercase-words* RE (Python)
Stylometric Number of uppercase-words* RE (Python)
Stylometric Number of words with both

cases*
RE (Python)

Stylometric Number of numbers Python
Stylometric Number of words Python
Stylometric Number of spaces Python
Stylometric Number of sentences starting

with a capital letter*
RE (Python)

Stylometric Lexical richness nltk [3]
Stylometric Number of Sentences nltk [3]
Stylometric Number of Lines nltk [3]
Stylometric Number of invisible Characters* RE (Python)
Time Minute, hour, day, month, year,

day of the week
Python

3.3.4 Language model-based Features. This feature category
contains features based on a sentiment analysis, on two topic-
modeling algorithms, Latent Dirichlet Allocation (LDA) [4] and
Non-Negative Matrix Factorization (NMF), as well as on three
language-modeling algorithms, Word2Vec [13], GloVe [17], and
FastText [5]. These algorithms are not typically used within AA
analyses. However, they were chosen to be part of this research to
experiment with different ways to analyze the topic, word embed-
dings, semantic, and sentiment an author typically uses within a
post.

4 METHODOLOGY
AA in the Dark Web is technically hardly different from AA in the
Surface Web, but it is very different in terms of the conceptual view
and the underlying conditions. In the Surface Web, there are large
data sets (e.g., datasets based on Twitter) that can be used for AA.
In many cases, they contain the full name of the authors which can
be used as ground truth for a supervised ML approach. The Dark
Web, on the other hand, contains relatively few data sources with
posts from users who want to hide their identity (ground truth).
The latter makes it nearly impossible to combine training data from
the Surface Web and test data from the Dark Web for a supervised
ML approach and therefore to overcome the problem of a limited
amount of data in the Dark Web.

The authorship attribution (AA) analysis within this research
is based on ML tools provided by scikit-learn version 0.22 [16]
and is very extensive, which is why the following sections are

Table 3: Remaining forum combinations and number of cor-
responding authors after filtering out all authors with less
than 50 posts in both forums.

Name Forum combination Number of authors
FC-1 DNMA & TH 2
FC-2 DNMA & TMG 2
FC-3 DNMA & Dread 7
FC-4 TMG & Dread 10
FC-5 TH & Dread 17
FC-6 TMG & TH 20

Table 4: The number of words per author. All values are av-
eraged over all authors within the respective forum combi-
nations.

FC Median Mean Standard
Deviation

Min Max Sum

FC-1 484 626 734 2 5697 223659
FC-2 121 238 467 4 4732 108605
FC-3 158 366 482 8 3963 111012
FC-4 168 243 390 4 2775 74720
FC-5 132 307 530 2 4016 111028
FC-6 145 268 560 2 4992 131828

very important to understand and interpret the results described in
Section 5. Due to the immense computational costs of the analyses,
hardware provided by the Platform of Scientific Computing at Bonn-
Rhein-Sieg University of Applied Scienceswas used for this research
[24].

4.1 Preparations
Before the analysis could start it was crucial to select suitable au-
thors from the dataset, as well as to decide which preprocessing
tools and which classification algorithms should be used. Detailed
information about all preprocessing steps and classifiers usedwithin
this research can be found in [20].

4.1.1 Selection of Authors. One of the first steps to be able to
start the analysis was to find appropriate authors. In this case, the
term appropriate refers to authors that can be linked via a PGP-key.
On top of that, a trade-off needed to be found between the number
of posts that have been written by an author within a forum (the
more the better) and the total number of authors that remains for
the analysis (the more the better). Therefore in this research, only
authors that have written at least 50 posts in two forums were
considered to be appropriate. The remaining forum combinations
with more than one candidate author, as well as the number of
remaining authors, are listed in Table 3. In addition, some text
statistics are available in Table 4.

4.1.2 Preprocessing Tools. Before data is fit into a classifier, it is
often beneficial to preprocess it first to either fulfill the requirements
of a classifier or just to improve the final results. In this research,
three different kinds of preprocessing are tested: standardization,
normalization or no preprocessing at all. Standardization is used
because some estimators are sensitive to the distribution of the
data they are fitted with. Normalizing is especially useful when the
similarity between a pair of samples should be computed and is

220

Voting for Authorship Attribution Applied to Dark Web Data CASCON’20, November 10–13, 2020, Toronto, Canada

Figure 1: Visualisation of analysis type I and analysis type
II

often used for text classification, e.g., in the TfidfTransformer from
scikit-learn [16].

4.1.3 Classifiers. There are several different classifiers available
in scikit-learn. Some of them can be linked to the three classifier
categories SVM, Naive Bayes, and Decision Trees, which are in
the main focus within this research. However, other classifiers like
K-nearest neighbors (KNN) or a Multilayer Perceptron (MLP) are
used in this analysis.

4.2 Final Setup of the Analysis
The analysis of this research is extensive because of the intention
to analyze the data in as many ways as possible to find the most
appropriate one. First of all, each of the six forum combinations
listed in Table 3 is analyzed in two different ways (see Section 4.2.1
and 4.2.2). In both types, each forum combination is once analyzed
with an unbalanced dataset (with the full amount of data) and once
with a balanced dataset (see Section 4.2.3). Furthermore, within
each analysis type, each forum combination is analyzed with three
versions of the dataset. Each of these three versions contains only
those authors that wrote a specific minimum of posts (see Section
4.2.3).

4.2.1 Analysis Type I: Combined Analysis. The most common
technique for AA is to extract a text corpus that includes all texts
from all authors and split this corpus into a training set and testing
set. This is done in the first part (type I) of the analysis by combining
each forum pairing as listed in Table 3 into a single dataset. After
that, the posts are mixed and split up into 70% training data and
30% testing data. The advantage of this type of analysis is that
all posts from all linked authors can be used. However, a major
disadvantage is that the proportion of posts from forum A and B
vary significantly from author to author. Therefore, the main focus
of this analysis is on the feasibility of AA, based on posts from
different Dark Web sources. The results of this analysis type will
always be visualized in blueish colors in all the figures in this paper.

4.2.2 Analysis Type II: Separate Analysis. The second part of
the analysis is based on training sets that contain only posts from

Figure 2: Each bar shows the sum of all posts from all
authors within the corresponding forum combination and
type of analysis.

forum A of a given forum combination and testing sets that contain
only posts from forum B of the same forum combination. The
differences between analysis type I and II are visualized in Figure 1.
Within analysis type II, the forum that has more posts per author
on average is used for the training set and the other for the testing
set respectively. Furthermore, the proportion between the two sets
remains the same as in type I (70%/30%), which unfortunately leads
to a high loss of data. The extent of this problem is illustrated in
Figure 2. However, when the number of posts of an author has to
be reduced to maintain the ratio, then only the longest posts were
chosen for the corresponding data set.

This type of analysis can reveal which features can achieve
good results even when the author might have changed some of
their typical behaviors between the training and testing forum.
Therefore the focus of this analysis is on the suitability of the
extracted features. The results of this analysis type will always be
visualized in greenish colors in all figures in this paper.

4.2.3 Sub-analyses. Both analyses (type I and II) are further
divided into several sub-analyses. In general, the more text from
an author that exists, the better is the probability of a successful
AA analysis. Thus, there are three different sub-analyses for each
analysis type. In the case of analysis type I, this is an analysis with
all authors, one with only those authors that wrote more than 500
posts, and the last with only those authors with more than 1000
posts. As the total number of posts per author is lower in analysis
type II, one sub-analysis is based on all authors, the second on all
authors that wrote more than 200 posts (summed over both forums),
and the last on authors that wrote more than 400 posts.

A major problem of both analysis types, as well as the previously
mentioned sub-analyses, is that some authors wrote a huge number
of posts whereas others just wrote only a few hundred or fewer.
Figure 3 visualizes the situation in analysis type I only, but it is
similar to that in analysis type II. To analyze the effect of this
problem on an AA analysis, all datasets are analyzed twice; one
time unbalanced and the other time balanced. Balanced means that
the number of posts of all authors is limited to the number of posts
written by the author with the fewest posts within the dataset.

221

CASCON’20, November 10–13, 2020, Toronto, Canada Britta Sennewald, Rainer Herpers, Marco Hülsmann, and Kenneth B. Kent

Figure 3: The proportion of the number of posts for each
author within the six datasets of analysis type I, where each
color represents a different author.

Similar to the procedure in analysis type II, only the largest posts
are kept when shrinking the number of posts of an author. In the
case of analysis type I, also the proportion of posts from forum
A and B was balanced as much as possible to focus on the main
research question, which was AA of posts written in two different
Dark Web forums.

5 RESULTS
The results described in this section are selected results for each
forum combination and each feature category within each analysis
mentioned in Section 4. In this research, the best results of an
analysis and/or classifier are considered to be those with the highest
F1-score and the highest accuracy. This is based on the fact that
a high recall, as well as a high precision, are essential for AA in
the Dark Web to assign a post to its correct author as reliably as
possible. Since the F1 score is a kind of average between precision
and recall, only this score is chosen as an evaluation criterion.

When focusing on Figures 5 and 6 it can be observed, that AA
within this analysis becomes more difficult with more candidate au-
thors. However, there is a significant difference between the results
of analysis type I and analysis type II, which is most significant for
datasets with more than two authors (FC-3 to FC-6). The results of
analysis type II (Figure 6) are, in general, 10% to 20% worse than
those achieved within the analysis type I (Figure 5). This tendency
can also be found in the remaining analyses with a focus on authors
that have written comparatively many posts.

The results achieved by the different feature-categories differ
significantly among each other and between the different types
of analyses. Therefore, in the following subsections strengths and
weaknesses of the different categories that can be concluded from
the given results of FC-5 and FC-6 are described. These two forum
combinations are chosen for this more detailed analysis because
they represent the challenges and difficulties for a successful AA
analysis. However, a brief overview of the average results (F1-score)
of the feature categories within the analyses of all forum combina-
tions is shown in Figure 4.

Figure 4: The average F1 scores achieved by the four feature
categories calculated over the results obtained from the anal-
yses of all six forum combinations.

5.1 Time-based Features
Time-based features belong to the most accurate features of all
within both analysis types of FC-1 and FC-2 but unfortunately not
for the other four forum combinations with a higher number of
authors (see Figures 5 and 6). However, a detailed analysis of the
results revealed that the correct author of a post is determined 88%
(FC-6) and 91% (FC-5) within the three most likely candidates when
considering time-based features only and all authors within type
I. Except that, in 40 out of all 52 analyses, the time-based features
were classified best by tree-based classifiers like the ExtraTrees
classifier and RandomForest classifier.

Within FC-5, one main reason for good performance of the time-
based features is the number of posts per author. However, the
results of FC-6 show that it does not necessarily mean that an author
is unidentifiable when they have written only a few posts. This
indicates two facts: in general, the more candidate authors there are,
the higher the number of posts per author is needed to identify an
author using time-based features. On the other side, some authors
do not need a high number of posts because their daily rhythm
seems to be so atypical that they stand out easily. When taking a
look at the balanced analysis that considers the longest posts of all
authors, the F1-score of those authors that wrote many posts drops
significantly. This is because the number of posts is reduced to a
minimum number of posts written by an author within the dataset.
On top of that, when balancing the dataset by choosing posts at
random, the same tendency occurs. This leads to the conclusion
that there is, in general, no connection between the length of a
post and the time when a post is written. As visible in Figure 6
the results achieved by analysis type II are significantly lower than
within analysis type I. The most obvious reason for the poor results
within type II would be that there are simply not enough posts
for each author to be able to find all daily rhythms. As the results
within analysis type I are comparatively high, it seems that authors
tend (at least) to be active to a similar time within their favorite
forum in that they have written the most posts.

5.2 Stylometric-based Features
Compared to the time-based features, the results of the stylometric-
based features are worse within analysis type I whereas they are,

222

Voting for Authorship Attribution Applied to Dark Web Data CASCON’20, November 10–13, 2020, Toronto, Canada

Figure 5: Overview of the F1-Score achieved by analyzing the complete datasets of all forum combinations for each feature
category with analysis type I by using either an unbalanced dataset or a balanced dataset. #A denotes the number of authors
within a forum combination and #P the number of posts.

Figure 6: Overview of the F1-Score achieved by analyzing the complete datasets of all forum combinations for each feature
category with analysis type II by using either an unbalanced dataset or a balanced dataset.

in general, better within analysis type II (see Figures 5 and 6). In
addition to the results shown in these two charts, the probability
that the correct author can be found within the top 3 most likely
candidates within FC-5 and FC-6 is around 50% for type II and
ranges between 70% and 83% for type I. However, the classifiers
that achieved the highest results by analyzing this feature category,
were the LinearSVC (26/52), the ExtraTreesClassifier (11/52), and
the MLP Classifier (9/52).

One of the most important factors for a high F1-score when
analyzing stylometric-based features seems to be the number of
posts. This is based on the observation that the F1-score of authors
that could be identified best is more negatively affected when the
dataset is balanced (no matter if only the longest posts are chosen
or not). Therefore, the stylistic pattern that makes these authors
expose most, can only be found when analyzing a great number of
posts and thus a mixture of long and short posts. The remaining
analyses revealed, that the more posts per author on average are

included in the dataset, the more effective it is to focus on the
writing style in longer posts. Furthermore, the results achieved
by poorly detectable authors show that balancing the dataset and
focusing on only the longest posts leads to an improvement of their
score up to 44%. Therefore, a tradeoff needs to be found that keeps
as many posts as possible for each author from the well-identifiable
authors within the dataset, but at the same time, reduce the number
of posts as much as possible so that the others also have a chance
to stand out.

However, results of analysis type II are around 20% lower than
those within analysis type I. The main reason for that seems to
be the comparatively low number of posts within the dataset as
well as a tendency, to write posts of a different length within the
two forums. Therefore, the overall conclusion when considering
the results of analysis type I and II is that authors seem to write
more passionately in either one or the other forum, which results
either in a different style of their posts or in a different number

223

CASCON’20, November 10–13, 2020, Toronto, Canada Britta Sennewald, Rainer Herpers, Marco Hülsmann, and Kenneth B. Kent

of posts per forum that are available for the analysis. Both cases
are a problem for the stylometric-based features especially within
analysis type II.

5.3 Lexical-based Features
The results shown in Figures 5 and 6 prove that the lexical-based
features belong to the best features within this analysis. When an
unbalanced dataset is used, then the probability that the correct
author of a post is within the top three candidates is at least very
close to or above 60% in nearly all cases (analysis type I and type II).
On top of that, when the analysis is based on a balanced dataset, the
probability of finding the correct author within the top three rises
to at least 66% and up to 86%. When taking a closer look at the best
classifiers, then it becomes apparent that Naive Bayes classifiers
seem by far the most suitable type when analyzing the lexical-based
features (in 37 of 52 analyses).

When focusing on the results of each author within the balanced
and unbalanced analyses (those that consider all authors) it becomes
obvious that an author that wrote long posts stands out from the
crowd more easily when considering only a few posts than an
author that usually writes many short posts. This means that the
length of the posts is the most important influencing factor for the
lexical-based features. Furthermore, when comparing the results
achieved by an analysis of all authors to those achieved by an
analysis that considers only authors with 500 or 1000 posts, an
interesting fact can be observed. Focusing on a few longer posts
per author by balancing the dataset is, in general, more or at least
equally effective than focusing on only those authors that wrote
comparatively many posts.

In general, the lexical-based features are suited comparatively
well for authorship attribution within analysis type II. As the overall
score of the lexical-based features within analysis type II is better
than that of the stylometric-based features, it seems like authors
rather tend to write about the same things or at least use similar
words within two different forums than to use the same writing
style when posting a post.

5.4 Language Model-based Features
The language model-based features, combined together into a single
dataset, are not suitable for AA within the Dark Web (see Figures
5 and 6). Datasets with a large number of authors (FC-6) seem to
be especially problematic; in the best case the correct author of
only 62% of all posts is listed within the top 3 most likely can-
didates. FC-5 has three fewer authors, which seems to lead to a
slightly better probability of finding the correct author within the
top 3 candidates (up to 75%). When examining at the classifiers,
the LinearSVC (25/52) and the PassiveAgressiveClassifier(13/52)
seem to achieve the best results of all classifiers when analyzing
the language model-based features only.

There are a few authors that can be recognized better when
focusing on language model-based features only but there is no
single common reason for all authors. Some have many posts and
others do not, the same applies to the length of the posts, some
have long posts, others not. However, two small tendencies can be
observed. First, it is more likely that an author that has written 500
or more posts can be identified comparatively well. Second, when

an author tends to write small posts, then it is more likely that a
classifier cannot classify them by using only this feature category.

5.5 Voting
When putting all features together and analyzing them combined,
one might expect that the results must increase because all infor-
mation is now merged. However, real-life experience shows, that
this is not the case within most of the analyses in this research. The
probability that a post can be correctly attributed to its author when
focusing on all features combined within the unbalanced datasets
of FC-5 and FC-6 including all authors is comparatively low (40%
or less). However, there is a clear tendency that this probability in-
creases when balancing the dataset. In the best case, it rises within
analysis type I to 80% and even higher (to 86%) when the top 3 most
highly ranked candidates are included.

The question is, where did the potential of the individual features
get lost in the joint analysis? The answer is surprisingly simple: each
feature category can be classified best by different classifiers. Thus,
when putting all features together and classifying them with only
one classifier, the results decrease. Therefore, another approach
to analyzing all features combined was tested. In contrast to the
previous one, the features are not put together in one single dataset.
Instead, they are classified as stand-alone by the same classifier
with the same classifier parameters. However, this time, the result
of each classifier is fed into a final voting classifier. Thus, this final
classifier receives four results from four different classifiers for
each sample that is used for testing. Out of these results, the voting
classifier computes the most likely candidate author for each post.
Since it is known from the previous analyses when each feature
category works well, weights can be added to the computation so
that those classifiers that are more reliable in a given situation than
others, have more influence on the final result. E.g., when focusing
on analysis type I with an unbalanced dataset, it is known that
the time-based features work very well, the stylometric-based and
lexical-based features are not as suitable as the time-based features,
but still work well, whereas the language model-based features
achieved the worst results. This knowledge produces a tendency
for which features should be weighted more or less. However, the
final weights still need to be determined by experimentation.

Mathematically, the computations made by the voting classifier
can be described as in Equations (1) and (2) where B ∈ Rn×j×k

denotes a three-dimensional matrix that contains the probability
estimates of all classifiers (the probability of the posts for each
author in each model) and A ∈ Rj×k denotes a matrix that contains
the weighted averages am,l of the probability estimates.

am,l =

∑n
i=0 bi,m,l ·wi∑n

i=0wi
∀ am,l ∈ [0, 1] (1)

for allm ∈ {0, ..., j}, where j denotes the total number of samples,
for l ∈ {0, ...,k}, where k denotes the total number of authors, for
bi,m,l ∈ Bn×j×k , where n denotes the total number of classifiers,
and where the vectorw contains the weights for each classifier. The
final output of the voting classifier can be mathematically described
as shown in (2):

vm = arg max
l ∈{0, ...,k }

am,l (2)

224

Voting for Authorship Attribution Applied to Dark Web Data CASCON’20, November 10–13, 2020, Toronto, Canada

Figure 7: Detailed overview of all results achieved by analy-
sis type I of FC-5 and FC-6 (balanced). #A denotes the total
number of authors and #P denotes the total number of posts.
Acronyms are explained in Table 5.

Table 5: Acronyms used within Fig. 7 and Fig. 8.

ASC: All Stylometric-based Features Combined Em: Emojis
ALMC: All Language model Features Combined FT: FastText
AC: All Features Combined GV: GloVe
L: Lexical-based Features Gr: Grammar
T: Time-based Features POS: POS-tags
TM: Topic Modeling Se: Sentiment
VAS: Voting all Features Separately Ty: Typos
VAS-: Voting all Features Separately - Emojis etc. St: Style
VFC: Voting Combined Feature Categories W2V:Word2Vec

where arдmax computes the column index of the author/column
with the highest probability and thus the most likely author within
each row (sample) of A.

Figure 9 shows a significant increase of the results achieved by
voting all feature categories instead of putting them all together
into one single dataset and analyzing them by a single classifier
(Figures 5 and 6). Especially within analysis type I, the results of
the previously unsuitable unbalanced datasets increases to 80% in
the case of FC-6 which is the largest forum combination with 20
authors. A similar trend can be seen for FC-5, which achieves an
F1-Score of 87% when voting the results of all feature categories.
Interestingly, the results of analysis type II, as well as those of
the balanced analyses, do not increase that much. There might be
several reasons for that. All datasets of analysis type II as well as
the balanced datasets of analysis type I contain significantly fewer
posts. This leads to an increase of the F1-score of the lexical-based
features but to a decrease of the score for the time-based features.
As the latter ones had the most influence on the voting results of
the unbalanced datasets, it is not surprising that the results of the
balanced datasets do not increase in the same way. In the case of
analysis type II, there were only a few feature categories that passed
the 50% limit at all. Thus, the voting classifier is not able to improve
the results of this final analysis when most of the feature categories
are not able to pass the 50% limit stand alone.

In Figures 7 and 8 amore detailed overview of the results achieved
by all features and different types of voting analyses is shown. Vot-
ing all Features Separately (VAS) denotes a voting analysis of all

Figure 8: Detailed overview of all results achieved by analy-
sis type II of FC-5 and FC-6 (balanced). #A denotes the total
number of authors and #P denotes the total number of posts.
Acronyms are explained in Table 5.

subfeatures without the results of the corresponding feature cat-
egory where all subfeatures are combined and analyzed with a
single classifier. In Voting all Features Separately without Emojis
etc. (VAS-) only those subfeatures with the best results are voted.
Therefore this analysis does not include the results of the analyses
of the emoji, sentiment, topic modeling, grammar, and typo fea-
tures. As the weights for these features were already quite small
within VAS it is not surprising that the voting results of an anal-
ysis without them, do not change significantly. The results that
are labelled Voting Combined Feature Categories (VFC) are those
that were discussed in the previous paragraph. Thus in this case,
only four results (one for each feature category) are voted. This
version of voting seems to work best for large datasets. However,
when the datasets are small, like in the balanced analyses, there
is either no difference with the other two voting methods or the
results are a little worse. Besides that, Figure 7 shows that in most
cases subfeatures that are analyzed separately do not achieve better
results than when analyzed combined.

Figure 9: Comparison of the probability that a post is classi-
fied to its correct author (top 1) or that the correct author is
within the three most likely candidates (top 1-3) when con-
sidering all authors and vote the classification results of all
features.

225

CASCON’20, November 10–13, 2020, Toronto, Canada Britta Sennewald, Rainer Herpers, Marco Hülsmann, and Kenneth B. Kent

6 CONCLUSIONS
The focus of this research was on authorship attribution within
multiple Dark Web forums. That AA is feasible within one forum
was already shown by e.g., M. Spitters et al. [21]. Thus the main
research question was whether it would also be possible beyond the
boundaries of a single forum. Therefore, a crawler/scraper was de-
veloped that can extract posts from four different Dark Web forums:
DNM Avengers, The Hub, The Majestic Garden, and Dread. By
comparing public PGP-keys, users were linked between these four
forums. The results show that it is (in general) a good idea to reduce
the number of posts from authors that wrote significantly more
posts than the average. By this, it is more likely to better classify
authors with only a few posts. However, even under the challenging
conditions with posts originating from different sources, there is
still a probability of at least 94% that the correct author of a post
can be found within the three most likely authors. This result is
achieved by voting the results of four different classifiers that clas-
sify four different feature categories. However, it shows that AA
is indeed a danger to the anonymity of Dark Web users across the
boundaries of different forums. Therefore, all users that want to
avoid getting linked via AA should keep the following aspects in
mind: a post can most likely be assigned to its author if they tend
to have an abnormal or very typical daily rhythm that is reflected
in their online behavior, if they tend to write many long or short
posts with the same structure, and also even when they write only
a few but comparatively long posts with a large number of similar
words.

6.1 Future Work
Several aspects could not be realized within this research and should
be optimized or extended in future work. Unfortunately, only a few
authors could be linked at all between these forums and those that
could be linked rarely wrote more than 50 posts in both forums.
Thus, it would be desirable to find more popular Dark Web forums
that can be used as an additional data source for further validating
the research presented. It would also be interesting to analyze
whether the improvment in the results within the analyses with a
focus on authors with a greater number of posts is rather related to
the comparatively high number of posts or to the reduced number of
authors. Apart from this aspect, the analysis of ensembling methods
like stacking, boosting, or bagging would also bear fruitful results.

ACKNOWLEDGMENTS
The authors would like to acknowledge the financial support of both
the Natural Sciences and Engineering Research Council (NSERC) as
well as the New Brunswick Innovation Foundation (NBIF) for their
support of the research. Thanks also to Stephen MacKay for editing
grammar and style and Andreas Priesnitz for the great support on
the University of Applied Sciences Bonn-Rhein-Sieg (BRSU) side
to help this research move forward. The authors would also like to
thank the Plattform of Scientific Computing at BRSU for providing
the hardware needed for the analyses.

REFERENCES
[1] Johanna Amann and Robin Sommer. 2016. Exploring Tor’s Activity Through

Long-Term Passive TLS Traffic Measurement. In Passive and Active Measurement,

Thomas Karagiannis and Xenofontas Dimitropoulos (Eds.). Springer International
Publishing, Cham, 3–15.

[2] M. Ashcroft, F. Johansson, L. Kaati, and A. Shrestha. 2016. Multi-domain Alias
Matching Using Machine Learning. In 2016 Third European Network Intelligence
Conference (ENIC). 77–84.

[3] Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural Language Processing
with Python (1st ed.). O’Reilly Media, Inc.

[4] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet
Allocation. J. Mach. Learn. Res. 3, null (March 2003), 993–1022.

[5] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016.
Enriching Word Vectors with Subword Information. CoRR abs/1607.04606 (2016).
http://arxiv.org/abs/1607.04606

[6] Gwern Branwen, Nicolas Christin, David Décary-Hétu, Rasmus Munksgaard
Andersen, StExo, El Presidente, Anonymous, Daryl Lau, Sohhlz, Delyan Kratunov,
Vince Cakic, Van Buskirk, Whom, Michael McKenna, and Sigi Goode. 2015. Dark
Net Market archives, 2011-2015. www.gwern.net/DNM-archives. Accessed:
22-05-2019.

[7] CAS-Atlantic. [n. d.]. Dark Web forum dataset 2019 (DWF-CAS-IVC-
2019). https://github.com/CAS-Atlantic/Dark-Web-forum-dataset-2019-DWF-
CAS-IVC-2019. Accessed: 21-08-2020.

[8] LanguageTooler GmbH. [n. d.]. LanguageTool - Proofreading Software. https:
//languagetool.org. Accessed: 09-08-2020.

[9] Thanh Nghia Ho andWee Keong Ng. 2016. Application of Stylometry to DarkWeb
Forum User Identification. In Information and Communications Security, Kwok-
Yan Lam, Chi-Hung Chi, and Sihan Qing (Eds.). Springer International Publishing,
Cham, 173–183.

[10] C.J. Hutto and E.E. Gilbert. 2014. VADER: A Parsimonious Rule-based Model for
Sentiment Analysis of Social Media Text. In Eighth International Conference on
Weblogs and Social Media (ICWSM-14). Ann Arbor, MI.

[11] R. Layton, P. Watters, and R. Dazeley. 2010. Authorship Attribution for Twitter
in 140 Characters or Less. In 2010 Second Cybercrime and Trustworthy Computing
Workshop. 1–8.

[12] G. Me, L. Pesticcio, and P. Spagnoletti. 2017. Discovering Hidden Relations
Between Tor Marketplaces Users. In 2017 IEEE 15th Intl Conf on Dependable,
Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and
Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science
and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). 494–501.

[13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. 1–12. https://arxiv.org/abs/
1301.3781

[14] Jelena Mirkovic and Peter Reiher. 2004. A Taxonomy of DDoS Attack and DDoS
Defense Mechanisms. SIGCOMM Comput. Commun. Rev. 34, 2 (apr 2004), 39–53.

[15] M. La Morgia, A. Mei, S. Raponi, and J. Stefa. 2018. Time-Zone Geolocation of
Crowds in the DarkWeb. In 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS). 445–455.

[16] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau,
Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. 2011. Scikit-Learn:
Machine Learning in Python. J. Mach. Learn. Res. 12, null (Nov. 2011), 2825–2830.

[17] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:
Global Vectors for Word Representation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP). 1532–1543. http://www.aclweb.org/anthology/
D14-1162

[18] S. R. Pillay and T. Solorio. 2010. Authorship attribution of web forum posts. In
2010 eCrime Researchers Summit. 1–7.

[19] Radim Řehůřek and Petr Sojka. 2010. Software Framework for Topic Modelling
with Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks. ELRA, Valletta, Malta, 45–50.

[20] Britta Sennewald. 2020. Authorship Attribution in the Dark Web. Master’s thesis.
University of New Brunswick, Fredericton, NB, Canada.

[21] M. Spitters, F. Klaver, G. Koot, andM. v. Staalduinen. 2015. Authorship Analysis on
Dark Marketplace Forums. In 2015 European Intelligence and Security Informatics
Conference. 1–8.

[22] M. Sultana, P. Polash, and M. Gavrilova. 2017. Authorship recognition of tweets:
A comparison between social behavior and linguistic profiles. In 2017 IEEE Inter-
national Conference on Systems, Man, and Cybernetics (SMC). 471–476.

[23] S. Swain, G. Mishra, and C. Sindhu. 2017. Recent approaches on authorship attri-
bution techniques — An overview. In 2017 International conference of Electronics,
Communication and Aerospace Technology (ICECA), Vol. 1. 557–566.

[24] Bonn-Rhein-Sieg University. [n. d.]. Platform for Scientific Computing at Bonn-
Rhein-Sieg University. https://wr0.wr.inf.h-brs.de. Accessed: 08-05-2020.

[25] Min Yang and Kam-Pui Chow. 2014. Authorship Attribution for Forensic Investi-
gation with Thousands of Authors. In ICT Systems Security and Privacy Protection,
Nora Cuppens-Boulahia, Frédéric Cuppens, Sushil Jajodia, Anas Abou El Kalam,
and Thierry Sans (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 339–350.

226

http://arxiv.org/abs/1607.04606
https://languagetool.org
https://languagetool.org
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162

Dynamic Reconfiguration of Consensus Protocol for IoT Data
Registry on Blockchain

Marios Fokaefs
marios.fokaefs@polymtl.ca

Department of Computer and Software Engineering
Polytechnique Montreal

Montreal, Canada

Mohammadreza Rasolroveicy
mohammadreza.rasolroveicy@polymtl.ca

Department of Computer and Software Engineering
Polytechnique Montreal

Montreal, Canada

ABSTRACT
Blockchain technology has recently gained momentum among prac-
titioners to increase security in shared distributed platforms. One
of the main characteristics of Blockchain is consensus that prevents
double-spending attacks on the network and lowers the chance
of Distributed Denial-of-service (DDoS) attacks. However, each
consensus algorithm has its strengths and its limitations. The pur-
pose of this paper is to design a self-adaptive mechanism that can
dynamically choose the appropriate consensus algorithm for the
network. This framework provides an ability to easily manage and
change the consensus algorithm for IoT data registries based on
Blockchain in an effort to manage cost, performance, and security
of the network. Moreover, it can dynamically reconfigure properties
of the consensus protocol including number of validation nodes,
validation time and others. The goal is to provide an effective and
cost-efficient consensus protocol while ensuring quality of service.
Our experiments show that different consensus algorithms behave
differently as the workload changes and we demonstrate how our
MAPE-k architecture can allow additional flexibility under dynamic
conditions.

KEYWORDS
Internet of Things, Software Performance, Adaptive Systems, Blockchain

ACM Reference Format:
Mohammadreza Rasolroveicy and Marios Fokaefs. 2020. Dynamic Recon-
figuration of Consensus Protocol for IoT Data Registry on Blockchain. IBM
Corp., Riverton, NJ, USA, 10 pages.

1 INTRODUCTION
Internet of Things (IoT) applications are rapidly gaining popularity
and by 2030 the number of IoT devices that will be connected to the
internet is projected to surpass 125 billion [27]. IoT has been applied
on several domains such as smart homes, smart agriculture, and smart
hospitals[11]. Nevertheless, IoT is not without challenges. Due to
improper configuration and limited computation resources of IoT
devices, they are vulnerable and a main target of hackers. In
October 2016 [9], an attack, known as the Mirai botnet attack,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honoured. For all other uses, contact the owner/author(s).
CASCON’20, November 10-13 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

exploited the poor security configuration of thousands of IoT de-
vices, connected to the internet using IP addresses, such as security
cameras and wireless printers. The attackers created several DDoS
(Distributed Denial of Service) attacks and targeted the DNS (Do-
main Name System) provider. Subsequently tens of thousands of
IoT devices were used to produce several DNS lookup requests
which resulted in downtime of the internet for several users in the
USA, Canada and Europe [5].

IoT applications usually include a variety of sensors, as well
as controllers and network gateways. These distributed IoT peers
constantly store their generated data to the database and they need
to access the database for reading andmaking appropriate decisions.
Themassive amount of generated data by IoT applications will make
it difficult to control and monitor the system properly [17].

Distributed Ledger Technology (or more commonly known as
Blockchain) has been proposed as a secure and immutable network
for IoT applications which can addresss three main concerns: avail-
ability, confidentiality, and integrity [16]. Blockchain principle is
built around a consensus protocol [34] that secures the network
against double spending attacks [21] and DDoS attacks [29] in IoT
applications. This means that when we store IoT data in the net-
work, we can ensure that our data is almost immutable and tractable,
so that we can easily trace the anomalies inside the system.

Taking advantage of Blockchain has proven [5] to be a valid solu-
tion to mitigate DDOS attacks by introducing a distributed database
that is based on peer-to-peer (P2P) networks. In Blockchain systems,
each data block that is submitted to the network will be verified by
the peers of the network, and then it will be broadcast to all mem-
bers. Moreover, the leaders in Blockchain only have permission
to append the block to the network and these leaders are chosen
by a consensus mechanism [14]. Blockchain, unlike the traditional
distributed databases, only provides read/write access of the data
and when data has been stored, it can neither be altered nor erased.
This technique can be effective in preventing attacks, like the Mi-
rai botnet attack, in IoT applications because of non-repudiation;
malicious activities are stored, they cannot be erased or tampered
with and they can be traced [5].

Despite the ability of Blockchain to guarantee immutability of
data through consensus, it is also true that this consensus protocol
can be a performance and resource bottleneck, which is contradicted
for real-time IoT applications. A number of different consensus
protocols have been proposed for Blockchain including Proof of
Work (PoW) [15], Proof of Elapsed Time (PoET) [20], Practical
Byzantine Fault Tolerance (PBFT) [19], Raft [38] and Devmode [1].
These algorithms have different mechanics and properties, which
also include different degrees of performance degradation. One of

227

CASCON’20, November 10–13, 2020, Toronto, ON Mohammadreza Rasolroveicy and Marios Fokaefs

the objectives of this work is to study and quantify this impact on
a variety of IoT application scenarios. To achieve this, we selected
Hyperledger Sawtooth [36], a Blockchain platform that supports
at least four of these consensus algorithms [3], namely Raft, PoET,
PBFT and Devmode. To evaluate the performance of each consensus
algorithms, we subjected the platform to varying IoT data loads
and measured the performance in terms of CPU and response time.

It is expected that the different algorithms will have both advan-
tages and limitations and that these would manifest under different
scenarios. Consequently, it is also expected that the stakeholders
would want to choose the algorithm that fits best their require-
ments and business goals. Given that in a real-time IoT application,
these requirements may be dynamic, so should the decision about
the consensus algorithm. In order to implement such a dynamic
behavior, we invest in the design of a self-adaptive management
system that would automatically and dynamically switch between
consensus algorithms and deployment configurations according
to the requirements of the applications and based on changes in
the data load. The proposed self-adaptive system is based on the
MAPE-k architecture [25]

This work makes two contributions:
• A comparative study on the performance overhead of the
available consensus algorithms in Hyperledger Sawtooth
including PBFT, PoET and RAFT.

• A self-adaptive system to dynamically and automatically
choose and deploy the right consensus algorithm at run-
time.

The rest of the paper is organized as follows. In Sections 2 and 3
we outline the related literature and provide the background of
the concepts and technologies used in our study. In Section 4, we
present the methodology and preparation for our study, while in
Section 5, we present our novel adaptive and dynamic consensus
protocol. In Section 6 we discuss the results of our experimental
study and the evaluation of our self-adaptive mechanism. In Sec-
tion 7, we discuss the threats to validity of our study and finally,
Section 8 concludes our work.

2 RELATEDWORK
Our work studies the performance of Blockchain systems, focusing
on the consensus protocols, when they act as data registries for
IoT applications. In addition, it proposes a self-adaptive system to
automatically manage the deployment infrastructure of Blockchain
and dynamically switch between consensus algorithms. As such,
the present work is related to the integration of Blockchain with
IoT and self-adaptive systems.

2.1 Integration of IoT and Blockchain
Dorri et al. [23] proposed a Blockchain-based architecture for re-
source constrained IoT network. They have removed the Proof
of Work (PoW) consensus algorithm to increase efficiency and
overheads for real-time IoT applications. They argue that using
Blockchain for IoT security and privacy is vital as we can store
our produced data in a private immutable ledger that performs
similarly to Blockchain and it is also manageable. They have evalu-
ated their proposed method for smart home applications using the
Cooja simulator [39]. The results of their study demonstrated that

the proposed solution reduces the processing and packet overhead
comparably to the Blockchain implementation which was used in
traditional Blockchain PoW-based algorithms in Bitcoin.

Aung and Tantidham [12] reviewed different possible approaches
that can be applied to an Ethereum private Blockchain for a Smart
Home System (SHS). In their work, they have considered SHS as a
case study which is an integration of home appliances together with
sensors to get automatic operations of heating, lighting, air condi-
tioning, home security, health care systems, and others. The authors
presented an approach for a private Blockchain implementation
for SHS to deal with privacy and security issues. The Ethereum
Blockchain packages for SHS, according to its smart contract fea-
tures for carrying out access control policy, data storage, and data
flowmanagement, have been reviewed. As compared with the work
of Dorri et al. [23] the architecture of the two systems is different.
The architecture proposed by Aung and Tantidham consists of a
smart home Validator nodes (SH-Validators), a private Blockchain
and a local storage, which connects to SH sensor and actuator de-
vices. SH-Validators carries out a private Blockchain. The purpose
of the private Blockchain is to store policies for data flow or trans-
action management. However, they argue that because of the low
transaction time of Ethereum Blockchain, it may be inappropriate
for time-sensitive conditions.

Liang et al. [32] proposed a secureHyperledger Fabric Blockchain-
based dynamic secret sharing mechanism to secure data transmis-
sion for Industrial Internet of Things (IIoT). The security authenti-
cation in Hyperledger Fabric power, a Blockchain-based network,
can guarantee secure communication between the power node and
the system, as well as between systems. Their experiments showed
that the optimized Fabric power data storage and transmission
show high security and reliability. The proposed technique can
improve the transmission rate and packet receiving rate by 12%
and 13%, respectively. According to the authors, it is important
to evaluate how efficient their model is in terms of resource and
energy consumption.

Alaslani et al. [6] have studied the effect of emerging IoT appli-
cations on the end-to-end delay encountered by Byzantine-based
Blockchain systems. The effects of a broad range of IoT traffic char-
acteristics including packet arrival rate, payload size, device density,
and surface area were studied. The results illustrated the impor-
tance of incorporating the unique IoT characteristics in designing
Byzantine-based Blockchain systems for IoT networks. They sug-
gested enhancing the semi-distributed BFT (Byzantine Fault Toler-
ance) algorithms by partitioning the large-scale IoT network and
reducing the communication complexity to facilitate and enable the
wide adoption of Blockchain in the IoT context. However, sending
large-scale data to the validator nodes (consensus protocol) will
introduce another network and bandwidth bottleneck.

Ahmed et al. [5] have proposed a Blockchain-based solution to
the problem of mitigating Mirai botnet attacks on IoT devices. The
solution depends on dividing the network into AS (Autonomous
Systems) which communicate through the Blockchain network to
share malicious node information. Blockchain platforms are used
to store and share a list of IP addresses of different hosts connected
to an AS, to show which of these have been identified as malicious.
The proposed approach is simulated on a custom simulator, which
is adapted to use an appropriate value for the malicious threshold.

228

Dynamic Reconfiguration of Consensus Protocol for IoT Data Registry on Blockchain CASCON’20, November 10–13, 2020, Toronto, ON

The authors are interested in finding the delay incurred in propa-
gating the information of malicious hosts between the AS over an
Ethereum Blockchain. To this end, they have simulated a scenario
in which the AS is very large and thousands of malicious hosts are
connected to the AS. The simulation indicates that the proposed
approach, when appropriately tuned, can yield a true detection rate
of 95%.

Lingering Zhao and Jiangshan Yu [44], have studied an alterna-
tive of Blockchain technology for integration of lightweight IoT
devices. They have summarized the central features of IoTA by
analyzing the functionality of this Directed Acyclic Graph (DAG)-
based model. DAG-based examples are expected to provide greater
scalability and fast economical benefits that most of the Blockchain-
based platforms fail to accomplish. They have shown that, IOTA has
a transaction rate under 20 tps according to live transaction monitor
provided by the Tangle[40] A peak transaction rate more than 400
tps has been seen in IOTA before and it has been handled well with
a confirmation ratio over 99%. Although, IoTA [22] is much more
faster than Blockchain. However because there is neither validator
nodes nor blocks to participate in consensus and integrity of the
data, it is shown that IoTA is still vulnerable to double-spending
attacks [31].

2.2 Integration of Blockchain and
Self-Adaptive Systems

Alzahrani and Bulusu [8], proposed “Block-Supply”, a decentralized
anti-counterfeiting supply chain that exploits NFC (Near-field com-
munication) and Blockchain technologies. This Block-Supply chain
can detect modifications, cloning, and tag reapplication attacks,
in addition to tracking products without a centralized managing
server. The authors developed a new truly decentralized consen-
sus protocol that does not need PoW and dynamically uses a set
of validators of varying size each time a new block is proposed
based on random algorithms. The proposed protocol employs a
game-theoretical model to analyze the risk likelihood of the block’s
proposing nodes. Likewise, the proposed protocol uses a novel, de-
centralized, dynamic mapping between the nodes that participate
in the consensus process. The protocol protects against several real
attacks mounted by powerful adversaries. The simulation results
depict that the new protocol is scalable for large networks using
a relatively small number of validators. Moreover, it maintains a
satisfactory level of security. However, concerning the simulation,
they have used OMNET++ [43], which is not considered to be an
ideal real-time simulation for IoT applications.

Liaskos et al. [33] proposed a simple model for quantitative rea-
soning about the parameters that impact and are influenced by
the consensus process of public open-access Blockchain networks
and attempted one of the first formulations of such a model as
an adaptive system. To motivate the approach, the authors experi-
mented with an idealized controller, only to subsequently analyze
it and reveal the challenges in designing real-world controllers.
The authors identified variables that influence its sustainability,
including those imposed by the environment and those that can be
directly configured by the network’s governance. Next, they pro-
posed a model to show how these variables relate and affect each
other. With that model underway, they worked out the problem

as a standard control engineering problem in which a controller
(Blockchain governance) optimizes the parameter choices so that
the output of the controlled system (Blockchain network) meets
certain objectives.

Casado-Vara et al. [18] proposed a new adaptive strategy for
Blockchain-based system by exploiting game theory and prediction
of accuracy of future states to reduce the tracking error and enhance
the effectiveness of the algorithm aiming at ensuring the efficiency
of an adaptive temperature control algorithm. The authors have
designed a Blockchain-based platform to enhance the operation of
the monitoring and control of the IoT networks to improve energy
efficiency. This control system optimizes the temperature of a smart
building uses state prediction module, which uses Markov chains
to predict the accuracy states of IoT nodes in future time. The
experiment results indicate that the predicted temperature signal is
surrounded by a small interval close to the collected temperature
data.

Hovland and Kucera [26] designed and implemented a self-
adaptive simulation model for the Proof-of-Work consensus algo-
rithm in Blockchain. The model has been validated by a statistical
analysis of miner solutions to PoW challenges with varying dif-
ficulty levels from a sample of more than 500,000 solutions. The
controller in their architecture consists of a nonlinear inversemodel,
which estimates the next difficulty level from the desired block time,
the current average block time, and the previous difficulty level. By
using the simulation model, controller designs can be tested and
analyzed in a few seconds compared to typically several days for
implementation on a test network. The purpose of the study is to
develop a Blockchain difficulty adjustment controller and to study
the stability of the closed-loop system from a control engineering
perspective. Their results show that their model has fast response
and high sability in all cases.

3 BACKGROUND
3.1 Consensus in Blockchain
Consensus in Blockchain is introduced to address two problems,
namely the Byzantine Generals Problem [30] and Double Spend-
ing. Double Spending means that we can not reuse the digital cur-
rency in two separate transactions at the same time. Blockchain
can address this issue by verifying all the transactions by several
distributed nodes in the decentralized network, and not by a single
authority. This is more robust especially when the single author-
ity can also be corrupted. The Byzantine Generals problem is a
common issue in distributed environments. The data in the net-
work will be delivered between several nodes through peer-to-peer
communications. However, some of the nodes in the distributed
network could act maliciously which can corrupt data. Healthy
nodes need to able to distinguish information delivered to them
that has been altered legitimately and obtain consistent results with
other healthy nodes. Byzantine Fault Tolerance implies that the
system has enough nodes, so that it is resilient in the presence of
some malicious nodes. The consensus protocol in Blockchain has
been designed to provide data verification (by consensus) and fault
tolerance [34].

Proof of Work (PoW) is the first consensus algorithm that has
been used in Blockchain. Its core idea is to give rewards based

229

CASCON’20, November 10–13, 2020, Toronto, ON Mohammadreza Rasolroveicy and Marios Fokaefs

on hashing power competitions among peers in the Blockchain
network. Each node calculates and solves a specific mathematical
problem. The first node which is successful to solve the mathe-
matical puzzle will be allowed o create the next block and will
be rewarded a certain amount of currency, which could be either
Bitcoin or the Ether currency in the Ethereum network [35]. PoW
is computationally expensive and has a time overhead which is
undesirable for real-time IoT applications [23].

Next, we will discuss three alternative consensus protocols that
are introduced in Hyperledger Sawtooth.

3.1.1 Proof of Elapsed Time . Proof of Elapsed Time (PoET) is the
main consensus protocol that was introduced by Intel in Hyper-
ledger Sawtooth. The algorithm randomly chooses the next leader
to finalize the block. This consensus protocol employs this method
to deal with malicious peers in an open-ended Blockchain network.
PoET utilizes the Trusted Execution Environment (TEE) which is
called Enclave inside of Intel processors to prevent cheating and to
provide confidentiality, integrity, and blacklisting malicious behav-
iors based on asymmetric key cryptography and an additional set
of election policies[2, 13].

3.1.2 Practical Byzantine Fault Tolerance . The PBFT consensus
algorithm is based on the Byzantine Fault Tolerance principles,
which can tolerate that less than one third faulty nodes of total
nodes in the 𝑛 = 3𝑓 + 1 total nodes in the network. PBFT extends
this principle to the concept of consensus: at least 2𝑓 + 1 nodes
need to agree to reach the consensus and confirm transactions [42].

3.1.3 Raft Algorithm . The Raft [37] algorithm can be used in pri-
vate Blockchains, where an administrator of the network can add or
remove nodes. This algorithm is proposed to solve the inefficiencies
of PBFT. It is a lead-based algorithm which means that the peers
of the network will choose the leader in an election process. This
means that only the leader node is allowed to publish blocks which
are validated by other peers. This algorithm cannot tolerate any
malicious nodes but it can tolerate up to 50% crash faulty nodes.
Since in a private Blockchain all the peers are verified by the admin-
istrator, this algorithms aims at resolving crash faults other than
Byzantine faults [28].

4 STUDY METHODOLOGY AND
EXPERIMENTAL SETUP

With respect to our first objective, our intention is to evaluate the
performance and scalability of the various consensus algorithms in
Hyperledger Sawtooth to guide the right decisions and to motivate
the design for our self-adaptive system. As we mentioned before,
Hyperledger Sawtooth has four main consensus protocols, namely
Raft, PoET, Devmode, and PBFT. As Devmode is only considered
for testing purposes, but not for the production network, we de-
cided to experiment only with the other three protocols. The three
algorithms were compared based on their resource consumption
and latency in the context of a simulated IoT application.

To evaluate the performance of the system, we created a cus-
tom workload generator that simulates data generated by sensors
in a smart home environment. In our simulated environment, we
assume that the smart home is equipped with several IoT devices,
including surveillance cameras, thermostats, door sensors, GPS

Figure 1: Simulated IoT environment

sensors and sound sensors (capturing random noise). The devices
differ with respect to the transmission rate and the amount of data
transmitted. For example, GPS sensors send a position report every
2 seconds, thermostats report the temperature every 1 second and
door sensors report the state of a door (Open / Closed) every 5
seconds. The size of data is ranging from few bytes to few kilobytes
based on the type of sensor. These devices would send their data
to a gateway and the gateway pushes the data to a Blockchain
database which in our case is a Hyperledger Sawtooth network.
Figure 1 shows the architecture of our simulated IoT lab, which
uses python scripts and Docker containers to simulate each de-
vice, designed according to instructions set forth by Ramprasad
et al.[41]. We specify the number of IoT devices, type of devices
(camera, thermostat, GPS, door sensor device and sound device),
time-scheduling in the Configuration Interpreter, the Data Produces
component produces the data and Data Emitter transfers the data
to the Blockchain for storing the produces data. To implement the
virtual IoT environment, every sensor is implemented as a python
script, with a message that corresponds to the appropriate size of
data and transmission rate, deployed on a Flask web server hosted
by a Docker container. In addition, we use Nginx as the web server
that implements the gateway and accepts data from the sensors
and HAProxy is a load balancer deployed in front of the Blockchain.
The devices first generate and transmit their data to the gateway, as
presented in Figure 2, and then the gateway sends it to the Sawtooth
network to be stored securely.

Figure 2: Architecture of experimental setup

230

Dynamic Reconfiguration of Consensus Protocol for IoT Data Registry on Blockchain CASCON’20, November 10–13, 2020, Toronto, ON

Figure 3: The distribution of devices over time

In our experiments, the number of sensors varies over time but
the distribution of sensors and devices is kept relatively stable: 20%
cameras, 30% thermostats, 10% GPS, 15% door sensor devices and
25% sound devices. Figure 3 shows that our experimental study
takes about 43 minutes per experiment. During this time, the num-
ber of IoT devices continuously increases and decreases to period-
ically stress and saturate the network. The change in load is that
which will trigger the adaptation and will stress the Blockchain
system. Besides that, the configuration of the IoT network is kept
constant throughout the experiment, since our goal is to examine
the impact of load on the consensus algorithm and by extent on the
performance of the Blockchain, so we try to eliminate the effect of
different configurations.

The data we are storing in our scenario includes: Device ID, Time
Stamp, Message, Message Size, Message Hash and Device Type. It
is important to mention that the purpose of this IoT simulation is
only to saturate the network with random data as much as possible
to evaluate the performance of the consensus protocols in the same
scenario. However, in a real case, in order to reduce the size of the
network, we could store data off-chain and record only the hash
on Blockchain for immutability, aggregate the data and store only
relevant portions on Blockchain. Since we need to verify all the
data by all validators, it will not be suitable for large volumes of
data on a permanent Blockchain store, especially those that may
by relevant only for a short time. In our experiments, our goal is to
cause as much saturation as possible, so we send and store all data,
under a “worst case scenario”.

Figure 4: Our Sawtooth Network

Figure 4 demonstrates the Hyperledger Sawtooth infrastructure
and its components as it was used in our experiments. We used
multiple containers to deploy Sawtooth as the default framework
consists of multiple processes, including among others the supply
Rest API, validator nodes, the consensus engine, a Postgres data-
base, and others. By default, the consensus protocol is designed
to be “Devmode”, which is a simplified random-leader consensus
algorithm mostly for testing purposes. For our experiments, we
have made some small modifications to Sawtooth to enable dy-
namic configuration of the consensus protocol [4]. This allowed
us to evaluate the different consensus algorithm under our sim-
ulated algorithm, but it also enabled the implementation of our
self-adaptive system. We have applied the default configuration for
each consensus algorithm based on Sawtooth documentation [4]
guidelines.

The infrastructure of our experiment was deployed on the Ama-
zon EC2 cloud. One virtual machine with 8 VCPUs and 15 GB
RAM (rc4.2XLARGE) was used to deploy the Hyperledger Saw-
tooth. Docker and Docker-compose were installed in this machine
to enable the use of containers. The containers that corresponded
to validators, which run the consensus protocol, and were hosted
by this VM were limited to use only 25% of the total CPU of the
host VM. It has been shown that when left unrestricted containers
can take up all the resources of the host VM, rendering scaling inef-
fective [24]. Another VM with 2 VCPUs and 8 GB RAM (T2.Large)
was used for the simulation of the IoT workload. Both machines
ran Ubuntu 18.03. As mentioned earlier, we evaluated performance
in terms of CPU consumption and response time. For CPU, we used
the Docker Remote API [10] to collect CPU consumption for the
Sawtooth network. For response time, the python script for data
emission by every sensor was configured to receive back a response
from the Sawtooth network and record the response time.

5 SELF-ADAPTIVE SYSTEM DESIGN
In order to implement our self-adaptive mechanism to enable the
dynamic configuration of the consensus protocol, we followed the
MAPE-k architecture [25] with four componets: a) a monitoring
component which gathers CPU data from Docker and response
time using our custom script, b) an analysis component that checks
if the CPU has crossed the predefined thresholds, c) a planning com-
ponent that will decide to add or remove a validator, based on CPU
consumption, and to dynamically change the consensus algorithm,
and d) an execution component that connects to Docker to scale the
validators or to Sawtooth to change the consensus algorithm. We
have integrated our MAPE-k framework to the Sawtooth network
as illustrated in Fig. 4.

The analysis component checks the average CPU consumption
of the Sawtooth validator containers and if that surpasses 70%, our
MAPE-k system automatically adds a new validator node in the net-
work. Preliminary tests have shown that when there is an increasing
number of peers in the network (sensors in our case), Sawtooth
can handle the traffic to validators and it crashes. Increased CPU
consumption can be an indicator for impending crashes, so scaling
of the validators is an appropriate action. Conversely, when average
CPU drops below 30%, the analysis component signals the removal

231

CASCON’20, November 10–13, 2020, Toronto, ON Mohammadreza Rasolroveicy and Marios Fokaefs

of a validator in order to reduce costs, but also to speed up the
validation process as less nodes are necessary for a reduced traffic.

The planning component has to make two decisions. The first
concerns the scaling of the validator cluster as described above.
The second decision concerns the choice of a consensus algorithm.
Preliminary results have shown that the size of the network and
the number of validators impacts the performance of consensus dif-
ferently for each algorithm. According to Sawtooth documentation,
each consensus protocol has different communication complexity.
As was mentioned earlier, the number of nodes in the network has
an impact on the performance of the system and we are interested
to experimentally measure the threshold when the performance of
the system decreases and at the same time to see which consensus
protocol outperforms when addingmore nodes. The planning phase
for scaling and for the choice of consensus algorithm is described in
Algorithm 1. The thresholds of validator nodes to trigger a change
in the consenus algorithm were determined empirically, based on
the results of our study, as presented in Section 6.

It is worth noting that while performance is a crucial aspect
of distributed systems, and IoT systems in particular, the main
motivation behind using Blockchain is security. We have studied
relevant studies and corresponding documentation to assess the
security capabilities of each algorithm and design our planning
module accordingly. PoET is deemed the most vulnerable algorithm
since an adversary can jeopardized the integrity of the network
by compromising 𝜃 (𝑙𝑜𝑔𝑙𝑜𝑔𝑛

𝑙𝑜𝑔𝑛
) of the total participating nodes in the

network [20]. This implies that this algorithm can be more secure
when the number of nodes is relatively large. However, based on
our experimental study (see Section 6), PoET is the most performant
of the three in terms of resource consumption and average response
time even when the network scales up to a large number of nodes.
The Raft algorithm can tolerate 50% crashed faulty nodes and PBFT
can tolerate 1/3 of faulty nodes [7].

Based on our performance results, Raft algorithm performance
(in terms of both resp one time and resource consumption) reduces
when it scales to 9 nodes thereby, PBFT can perform better than
RAFT even with more nodes. For this reason in our self-adaptive
mechanism, we start with Raft algorithm, when it reaches to 9
nodes we switch to PBFT and when PBFT reaches to 15 nodes as
both resource consumption and response time start worsening we
will switch to the PoET as it can assure the security with a large
number of nodes.

6 EXPERIMENTAL RESULTS
6.1 Performance Evaluation of consensus

protocols in Hyperledger Sawtooth
The first set of experiments concerns the study of how each consen-
sus algorithm performs in terms of CPU consumption and response
time under a varying number of peers in the Blockchain network.
Since we know that none of the configurations automatically scales
according to the size of the network and we also know that if the
validators are not scaled, the network crashes, we enabled a simple
scaler (lines 5-8 of Algorithm 1) to protect the system and be able
to continue our experiments. Figure 5 shows the number of valida-
tors for Raft (red line), PBFT (yellow line) and PoET (green line)

Algorithm 1 Self-Adaptive framework for Hyperledger Sawtooth
for choosing the right consensus algorithm
1: Input: Nodes — the number of Validator nodes in the Sawtooth

network
2: Input: Consensus-Algorithm - Retrieves the current Consensus

Algorithm of the Sawtooth Protocol
3: Input: utilization — the average CPU utilization of containers

in a VM
4: Input: lower threshold and upper threshold — the limits of the

desired range for the CPU consumption of Validator containers
in a VM

5: if if utilization ≥ 70 then
6: Validator = Validator + 1;
7: else if utilization ≤ 30 then
8: Validator = Validator - 1;
9: Consensus-Algorithm = Raft
10: if Nodes < 9 then
11: Consensus-Algorithm = PBFT;
12: else if Nodes ≥ 9 then
13: Consensus-Algorithm = Raft;
14: else if Nodes > 14 then
15: Consensus-Algorithm = POET;
16: else if Nodes ≤ 14 then
17: Consensus-Algorithm = PBFT;
18: else
19: Consensus-Algorithm = Raft;

Figure 5: The distribution of number of sensors to all three
validators for the studied consensus algorithms

against the number of sensors (blue line) representing the size of the
Blockchain network. As it is obvious from the graph, the number of
validators increases and decreases according to the corresponding
fluctuations to the size of the network. However, it is also obvious
that PoET consistently need less validators compared to the other
two algorithms for the same number of sensors, while we find PBFT
at the opposite end of this comparison. In fact, as it is summarized
in Table 1, PoET needs an average of 7.5 validators throughout the
experiment, compared to 15.3 for PBFT and 10 for Raft. At the peak
of the traffic (just after the 20th minute of the experiment), PoET
requires a maximum of 15, while PBFT and Raft require 22 and

232

Dynamic Reconfiguration of Consensus Protocol for IoT Data Registry on Blockchain CASCON’20, November 10–13, 2020, Toronto, ON

18 respectively. Already, this shows that PoET is a close optimal
choice concerning cost-efficiency and resource utilization.

Table 1: Summary of results of comparison between Raft,
PBFT and PoET

Algorithms Raft PBFT PoET

Avg Validators 10 15.3 7.5
Max Validators 18 22 15
Avg CPU 51.26% 55.70% 45.72%
St.Dev. CPU 24.92 23.14 24.44
Avg Response time (ms) 874.12 853.04 759.14
St.Dev. Response time 100.96 122.64 106.62

Figure 6: Raft CPU Utilization VS Number of Sensors

Figure 7: PBFT CPU Utilization VS Number of Sensors

When looking at CPU consumption, results do not differ much.
PoET is by far the most efficient algorithm recording an average
CPU consumption of 45.72%. At the other end, PBFT is still the
worst of the three with 55.7%, while Raft is the middle solution with
an average CPU consumption of 51.26%. Figures 7, 6, and 8 show
graphically the progress of CPU consumption for PBFT, Raft and

Figure 8: PoET CPU Utilization VS Number of Sensors

PoET respectively. One first observation is that CPU oscillates (dras-
tically fluctuates), especially close to scaling action. The reason for
this is that the impact of a scaling action is prominent to the output
(in our case, CPU) especially right after the action and especially if
the system is small (as is the case for the number of validators in
our experiments). This condition is systemic throughout our exper-
iments, in the sense that it is present in all three algorithms, so it
does not affect our conclusions. To further minimize this impact, we
should not that after taking any scaling or reconfiguration action,
our analysis freezes for 10 seconds to allow the system to settle and
avoid opposite scaling actions immediately after. Nevertheless, our
monitoring module is not stopped, which is the reason why the
oscillations are visibile in the graphs.

Finally, PoET is also the winner when considering response time
with an average of about 760 ms. However, in this case we have a
change for the second most performant algorithm, where PBFT had
853 ms average response time, while Raft had 874 ms. Nevertheless,
PBFT had a more variance (122 standard deviation) compared to
Raft, which implies that their difference may be neither significant
nor consistent. The difference between PBFT and Raft is visible in
Figures 10 and 11 respectively, where we see that in Raft response
time stays higher for a longer period. Figure 9 shows clearly that
PoET maintains low response time at all times.

Figure 9: PoET Response Time VS Number of Validators

233

CASCON’20, November 10–13, 2020, Toronto, ON Mohammadreza Rasolroveicy and Marios Fokaefs

Figure 10: PBFT Response Time VS Number of Validators

Figure 11: RAFT Response Time VS Number of Validators

Looking at Figures 9, 10, and 11 with the progress of response
time for PoET, PBFT and Raft respectively, we can observe that
scaling validators has a positive impact on response time as the size
of the network grows, until we reach a certain point where there
is a plateau and the response time remains at least constant even
when we keep adding validators. The interesting observations is
this point is different for each algorithm. We found that the plateau
is reached for about 9 validators for PoET and Raft and for almost 14
validators for PBFT. This also roughly corresponds to the average
number of validators necessary for each algorithm. We can see
that from this perspective PoET is once again the most efficient
of the three algorithms. However, as mentioned before, PoET is
not as robust and secure with a small number of validators. Given
its increased security thanks to higher number of validators and
its ability to maintain good performance under this condition, we
argue that PoET is the recommended consensus algorithm, when
the size of the network increases considerably.

The findings of this study helped us to design our self-adaptive
mechanism to dynamically reconfigure the consensus protocol of
Hyperledger Sawtooth at run-time. When we have a small-sized
network and a small number of validators (less than 9) is sufficient,

our MAPE-k tool picks the robust PBFT algorithm. For medium-
sized networks where less than 14 validators are necessary, MAPE-
k picks the Raft algorithm. Finally, when the required validators
exceed 14 and we need to maintain good performance, MAPE-k
recommends the use of PoET (see Algorithm 1).

6.2 Evaluation of the Self-Adaptive mechanism
When testing our self-adaptive mechanism, we enable in the plan-
ning module the dynamic reconfiguration of the consensus protocol
(lines 9-19 in Algorithm 1) on top of the simple scaler (lines 5-8
in Algorithm 1). By default our MAPE-k system starts with Raft
as the consensus algorithm and changes based on the number of
validator nodes deployed in the Sawtooth system. Figure 12 shows
the number of validator nodes (blue for Raft, yellow for PBFT and
green for PoET) deployed as the response to the fluctuation in
the number of sensors (black line). As it can be seen, the line for
valdiators is colored differently for each consensus algorithm and
a change in color indicates a decision to switch algorithms. For
example at time 8 minutes, the consensus has been changed from
Raft (blue) to PBFT (yellow). In addition, Figures 13 and 14 show
the CPU consumption and the response time of the system, when
of our MAPE-k system is deployed. Finally, Table 2 summarizes the
results of this experiment.

As it can be seen, our adaptive consensus protocol performs ex-
ceptionally well compared to Raft and PBFT, while its performance
is comparable to that of PoET, 11 validators on average against the
10 of PoET, 50% average CPU consumption against 45% of PoET and
784 ms response time compared to 759 ms of PoET. The additional
benefit, as it is obvious from the graphs, is that PoET is deployed at
higher traffics with a large number of validators, exactly when it is
the most powerful.

0

5000

10000

15000

0

5

10

15

20

25

0 10 20 30 40

Nu
m

be
r

of
 V

al
id

at
or

s

Time (min)

RAFT PBFT POET Sensors

Nu
m

be
r

of
 S

en
so

rs

Figure 12: Number of validators VS number of sensors. The
change in color indicates a switch of consensus algorithm
by the self-adaptive mechanism.

7 THREADS TO VALIDITY
In this study, we have designed a self-adaptive mechanism that can
efficiently choose and deploy a different consensus algorithm at run-
time. To evaluate the system, we have simulated a virtual IoT lab
environment that aims to store its generated data in the Blockchain
database. For our future study, we plan to use real IoT devices that

234

Dynamic Reconfiguration of Consensus Protocol for IoT Data Registry on Blockchain CASCON’20, November 10–13, 2020, Toronto, ON

0

10

20

30

40

50

60

70

80

90

100

0

5000

10000

15000

0 10 20 30 40

Nu
m

be
r

of
 s

en
so

rs

Time (min)

Sensors RAFT PBFT POET

C
P

U
U

til
iz

at
io

n
(%

)

Figure 13: CPU Utilization VS Number of Sensors. The
change in color indicates a switch of consensus algorithm
by the self-adaptive mechanism.

0

250

500

750

1000

1250

0

5

10

15

20

25

0 10 20 30 40

Nu
m

be
r

of
 V

al
id

at
or

s

Time (min)

Validators RAFT PBFT POET

Re
sp

on
se

 T
im

e
(m

s)

Figure 14: Response Time VS Number of Validators. The
change in color indicates a switch of consensus algorithm
by the self-adaptive mechanism.

Table 2: Summary of experimental results for self-adaptive
system

Algorithm SA

Avg Validators 10.98
Max Validators 18
Avg CPU (st.dev.) 49.96% (22.57)
Avg Response Time (ms) (st.dev.) 784.22 (97.49)

will produce and send their actual data to the Blockchain server
to see how it impacts the network. In this study, we experimented
with synthetic data to better control the environment. There can
exist other parameters that can impact performance, such as such as
messaging format (JSON vs. Protobug), communication protocols
(such as GRPC), security, or any other unique workload character-
istics of IoT devices. It is our intention to include these factors in
other future studies.

Another threat to validity could be the number of considered
consensus protocols. We specifically chose to focus on PBFT, PoET
and Raft, because these are all supported by Hyperledger Sawtooth.

By using a single Blockchain platform, thus a homogeneous hosting
platform, we eliminated the impact of other factors and studied
only the impact of the consensus protocol. Naturally, our intention
is to study more algorithms in the future.

To conduct study, we have used the suggested default configura-
tion of consensus protocols in the Hyperledger Sawtooth network.
It is expected that special configurations may have render an al-
gorithm much more efficient than we reported in our study. By
keeping the same default configurations for all algorithms, we made
sure that the comparisons were fair and under the same given condi-
tions for all algorithms. The exploration of different configurations
is another possible future step of this work.

Lastly, for our experiment , we have used a single VM, which
implies the network I/O is negligible. For future studies, we plan to
use different VMs for the nodes and see the effect of the network
I/O on the performance.

8 CONCLUSION
Although Blockchain is an emerging technology among practition-
ers to improve security issues for distributed systems, it could also
prove inefficient in terms of bandwidth and cost, especially for IoT
systems. In this study, we first compared three popular consensus
algorithms for Blockchain, namely PBFT, Raft and PoET, to see
whether there is a single best with respect to time and computation
overheads or if there are trade-offs between the three consensus
protocols in Hyperledger Sawtooth. From the empirical analysis,
we have observed that PoET is the most efficient consensus algo-
rithm comparably to RAFT and PBFT, but probably not as robust
and secure for small networks. Conversely, the performance of Raft
and PBFT deteriorates for larger-sized networks.

Based on our performance evaluation and theoretical security
analysis of the consensus protocols, we have designed a novel
self-adaptive mechanism to dynamically and automatically choose
and deploy the right consensus algorithm at run-time. Our results
demonstrate that our self-adaptive mechanism has better CPU uti-
lization comparably to PBFT and RAFT, and average Response Time
is also better than both RAFT and PBFT. In theory, our adaptive
consensus protocol addresses the security limitations of PoET for
small networks while maintaining the same performance standards
for larger networks. In the future, we plan to extend our study to
also include these security concerns in a concrete manner.

In this study, we have focused on reducing the cost and assessing
the security based on the number of nodes. For future research,
we are planning to explore how the framework can be used if the
optimization target changes regarding other security aspects (e.g.,
the ones related to Blockchain forks). Moreover, another interesting
subject to explore for future studies is to analyze algorithms’ per-
formance concerning the number or frequency of the transactions
and possibly the characteristics of these transactions.

ACKNOWLEDGMENT
We acknowledge the support of the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC) Collaborative Research
and Training Experience (CREATE) Dependable Internet of Things
Applications (DITA) program.

235

CASCON’20, November 10–13, 2020, Toronto, ON Mohammadreza Rasolroveicy and Marios Fokaefs

REFERENCES
[1] 2020. DevMode Consensus, . https://sawtooth.hyperledger.org/docs/core/

nightly/1-2/sysadmin_guide/about_dynamic_consensus.html#devmode-
consensus-label. Accessed: 2020-05-20.

[2] 2020. PoET Consensus, . https://sawtooth.hyperledger.org/docs/core/releases/
latest/architecture/poet.html. Accessed: 2020-05-20.

[3] 2020. Sawtooth Documentation for Supporting Different Consensus Protocols, .
https://sawtooth.hyperledger.org/faq/consensus//. Accessed: 2020-05-20.

[4] 2020. Sawtooth Dynamic Consensus, . https://sawtooth.hyperledger.org/docs/
core/releases/latest/sysadmin_guide/about_dynamic_consensus.html. Accessed:
2020-05-20.

[5] Zohaib Ahmed, Syed Muhammad Danish, Hassaan Khaliq Qureshi, and Marios
Lestas. 2019. Protecting IoTs from Mirai Botnet Attacks Using Blockchains. In
2019 IEEE 24th International Workshop on Computer Aided Modeling and Design
of Communication Links and Networks (CAMAD). IEEE, 1–6.

[6] Maha Alaslani, Faisal Nawab, and Basem Shihada. 2019. Blockchain in IoT
Systems: End-to-End Delay Evaluation. IEEE Internet of Things Journal 6, 5 (2019),
8332–8344.

[7] Shikah J Alsunaidi and FahdAAlhaidari. 2019. A Survey of Consensus Algorithms
for Blockchain Technology. In 2019 International Conference on Computer and
Information Sciences (ICCIS). IEEE, 1–6.

[8] Naif Alzahrani and Nirupama Bulusu. 2020. A new product anti-counterfeiting
blockchain using a truly decentralized dynamic consensus protocol. Concurrency
and Computation: Practice and Experience 32, 12 (2020), e5232.

[9] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, et al. 2017. Understanding the mirai botnet. In 26th {USENIX} Security
Symposium ({USENIX} Security 17). 1093–1110.

[10] Docker Remote API. 2019. Docker Remote API, 2019. Accessed: 2019-11-02.
[11] Luigi Atzori, Antonio Iera, and Giacomo Morabito. 2010. The internet of things:

A survey. Computer networks 54, 15 (2010), 2787–2805.
[12] Yu Nandar Aung and Thitinan Tantidham. 2017. Review of Ethereum: Smart

home case study. In 2017 2nd International Conference on Information Technology
(INCIT). IEEE, 1–4.

[13] Arati Baliga. 2017. Understanding blockchain consensus models. In Persistent.
[14] Shehar Bano, Mustafa Al-Bassam, and George Danezis. 2017. The road to scalable

blockchain designs. USENIX; login: magazine (2017).
[15] Martijn Bastiaan. 2015. Preventing the 51%-attack: a stochastic analysis

of two phase proof of work in bitcoin. In Availab le at http://referaat. cs.
utwente. nl/conference/22/paper/7473/preventingthe-51-attack-a-stochasticanalysis-
oftwo-phase-proof-of-work-in-bitcoin. pdf.

[16] Aymen Boudguiga, Nabil Bouzerna, Louis Granboulan, Alexis Olivereau, Flavien
Quesnel, Anthony Roger, and Renaud Sirdey. 2017. Towards better availability
and accountability for iot updates bymeans of a blockchain. In 2017 IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW). IEEE, 50–58.

[17] Roberto Casado-Vara, Pablo Chamoso, Fernando De la Prieta, Javier Prieto, and
Juan M Corchado. 2019. Non-linear adaptive closed-loop control system for
improved efficiency in IoT-blockchain management. Information Fusion 49 (2019),
227–239.

[18] Roberto Casado-Vara, Fernando De la Prieta, Sara Rodriguez, Ines Sitton, Jose L
Calvo-Rolle, G Kumar Venayagamoorthy, Pastora Vega, and Javier Prieto. 2019.
Adaptive Fault-Tolerant Tracking Control Algorithm for IoT Systems: Smart
Building Case Study. In International Workshop on Soft Computing Models in
Industrial and Environmental Applications. Springer, 481–490.

[19] Miguel Castro, Barbara Liskov, et al. 1999. Practical Byzantine fault tolerance. In
OSDI, Vol. 99. 173–186.

[20] Lin Chen, Lei Xu, Nolan Shah, Zhimin Gao, Yang Lu, and Weidong Shi. 2017. On
security analysis of proof-of-elapsed-time (poet). In International Symposium on
Stabilization, Safety, and Security of Distributed Systems. Springer, 282–297.

[21] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi, and Kian-
Lee Tan. 2017. Blockbench: A framework for analyzing private blockchains. In
Proceedings of the 2017 ACM International Conference on Management of Data.
1085–1100.

[22] M Divya and Nagaveni B Biradar. 2018. IOTA-next generation block chain.
International Journal Of Engineering And Computer Science 7, 04 (2018), 23823–
23826.

[23] Ali Dorri, Salil S Kanhere, Raja Jurdak, and PraveenGauravaram. 2017. Blockchain
for IoT security and privacy: The case study of a smart home. In 2017 IEEE
international conference on pervasive computing and communications workshops
(PerCom workshops). IEEE, 618–623.

[24] Marios Fokaefs, Cornel Barna, Rodrigo Veleda, Marin Litoiu, Joe Wigglesworth,
and Radu Mateescu. 2016. Enabling devops for containerized data-intensive
applications: an exploratory study. In Proceedings of the 26th Annual International
Conference on Computer Science and Software Engineering. 138–148.

[25] P Horn. 2001. Autonomic computing: IBM’s perspective on the state of informa-
tion technology, IBM Corporation.

[26] Geir Hovland and Jan Kucera. 2017. Nonlinear feedback control and stability
analysis of a proof-of-work blockchain. (2017).

[27] Jenalea Howell. 2017. Number of connected iot devices will surge to 125 billion
by 2030. IHS markit says (2017).

[28] Dongyan Huang, Xiaoli Ma, and Shengli Zhang. 2019. Performance analysis
of the raft consensus algorithm for private blockchains. IEEE Transactions on
Systems, Man, and Cybernetics: Systems (2019).

[29] Nir Kshetri. 2017. Can blockchain strengthen the internet of things? IT profes-
sional 19, 4 (2017), 68–72.

[30] Leslie Lamport, Robert Shostak, andMarshall Pease. 1982. The Byzantine generals
problem. ACM Transactions on Programming Languages and Systems (TOPLAS) 4,
3 (1982), 382–401.

[31] Yixin Li, Bin Cao, Mugen Peng, Long Zhang, Lei Zhang, Daquan Feng, and Jihong
Yu. 2020. Direct Acyclic Graph-Based Ledger for Internet of Things: Performance
and Security Analysis. IEEE/ACM Transactions on Networking (2020).

[32] Wei Liang, Mingdong Tang, Jing Long, Xin Peng, Jianlong Xu, and Kuan-Ching
Li. 2019. A secure fabric blockchain-based data transmission technique for
industrial Internet-of-Things. IEEE Transactions on Industrial Informatics 15, 6
(2019), 3582–3592.

[33] Sotirios Liaskos, BoWang, and Nahid Alimohammadi. 2019. Blockchain networks
as adaptive systems. In 2019 IEEE/ACM 14th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE, 139–145.

[34] Du Mingxiao, Ma Xiaofeng, Zhang Zhe, Wang Xiangwei, and Chen Qijun. 2017.
A review on consensus algorithm of blockchain. In 2017 IEEE International Con-
ference on Systems, Man, and Cybernetics (SMC). IEEE, 2567–2572.

[35] Satoshi Nakamoto. 2008. Bitcoin whitepaper. URL: https://bitcoin. org/bitcoin.
pdf-(: 17.07. 2019) (2008).

[36] Kelly Olson, Mic Bowman, James Mitchell, Shawn Amundson, Dan Middleton,
and Cian Montgomery. 2018. Sawtooth: An Introduction. The Linux Foundation,
Jan (2018).

[37] Diego Ongaro and John Ousterhout. 2014. In search of an understandable consen-
sus algorithm. In 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC}
14). 305–319.

[38] Diego Ongaro and John Ousterhout. 2015. Raft consensus algorithm. (2015).
[39] Fredrik Österlind, Adam Dunkels, Joakim Eriksson, Niclas Finne, and Thiemo

Voigt. 2006. Cross-level sensor network simulation with cooja. In First IEEE
International Workshop on Practical Issues in Building Sensor Network Applications
(SenseApp 2006).

[40] Serguei Popov. 2016. The tangle. cit. on (2016), 131.
[41] Brian Ramprasad, Marios Fokaefs, Joydeep Mukherjee, and Marin Litoiu. 2019.

EMU-IoT-A Virtual Internet of Things Lab. In 2019 IEEE International Conference
on Autonomic Computing (ICAC). IEEE, 73–83.

[42] Harish Sukhwani, José M Martínez, Xiaolin Chang, Kishor S Trivedi, and Andy
Rindos. 2017. Performance modeling of pbft consensus process for permissioned
blockchain network (hyperledger fabric). In 2017 IEEE 36th Symposium on Reliable
Distributed Systems (SRDS). IEEE, 253–255.

[43] Andras Varga. 2010. OMNeT++. In Modeling and tools for network simulation.
Springer, 35–59.

[44] Liangrong Zhao and Jiangshan Yu. 2019. Evaluating DAG-Based Blockchains for
IoT. In 2019 18th IEEE International Conference On Trust, Security And Privacy In
Computing And Communications/13th IEEE International Conference On Big Data
Science And Engineering (TrustCom/BigDataSE). IEEE, 507–513.

236

https://sawtooth.hyperledger.org/docs/core/nightly/1-2/sysadmin_guide/about_dynamic_consensus.html##devmode-consensus-label
https://sawtooth.hyperledger.org/docs/core/nightly/1-2/sysadmin_guide/about_dynamic_consensus.html##devmode-consensus-label
https://sawtooth.hyperledger.org/docs/core/nightly/1-2/sysadmin_guide/about_dynamic_consensus.html##devmode-consensus-label
https://sawtooth.hyperledger.org/docs/core/releases/latest/architecture/poet.html
https://sawtooth.hyperledger.org/docs/core/releases/latest/architecture/poet.html
https://sawtooth.hyperledger.org/faq/consensus//
https://sawtooth.hyperledger.org/docs/core/releases/latest/sysadmin_guide/about_dynamic_consensus.html
https://sawtooth.hyperledger.org/docs/core/releases/latest/sysadmin_guide/about_dynamic_consensus.html

Parallel Windowed Method for Scalar Multiplication in
Elliptic Curve Cryptography

Tanya Bouman
McMaster University
Hamilton, Ontario

boumante@mcmaster.ca

Yusra Irfan
McMaster University
Hamilton, Ontario
yirfan3@uwo.ca

James You
McMaster University
Hamilton, Ontario
youy2@mcmaster.ca

Christopher K. Anand
McMaster University
Hamilton, Ontario

anandc@mcmaster.ca

ABSTRACT
Commercial software applications, such as permissioned Blockchains,
are increasingly dependent on Elliptic Curve Cryptography for dig-
ital signatures. Elliptic Curve Cryptography uses a group operation,
point addition, in the set of points on an elliptic curve over a prime
field. Scalar multiplication is the repeated addition of a fixed point
P in the curve. A common optimization for scalar multiplication,
the windowed method, decomposes the number of additions into
nibbles or other digits, using a pre-computed table of values P , 2P ,
3P , and so on to compute the final product. To avoid side-channel
attacks, implementations must avoid conditional execution. This
ensures constant-time and constant-power execution. This paper
presents a theoretical 42% reduction in latency for the windowed
method using two tables and three cores, versus a single-threaded
computation.

CCS CONCEPTS
• Security andprivacy→Cryptography; •Computingmethod-
ologies → Parallel computing methodologies; • Theory of
computation → Scheduling algorithms;

KEYWORDS
cryptography elliptic curve cryptography window method blockchain
parallel computing scheduling algorithms
ACM Reference Format:
Tanya Bouman, Yusra Irfan, James You, and Christopher K. Anand. 2020.
Parallel Windowed Method for Scalar Multiplication in Elliptic Curve Cryp-
tography. In EVOKE CASCON 2020: Conference of the Centre for Advanced
Studies on Collaborative Research. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.475/123_4

1 INTRODUCTION
Scalar multiplication is a fundamental operation in the various
schemes comprising elliptic curve cryptography such as Elliptic

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honoured. For all other uses, contact the owner/author(s).
CASCON’20, November 10-13 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

Curve Diffie-Hellman (ECDH) key exchange and the Elliptic Curve
Digital Signature Algorithm (ECDSA). The Elliptic Curve Digital
Signature Algorithm is the most frequently used signing algorithm
for public blockchains [15].

The computation of a signature in ECDSA requires the genera-
tion of a private key, d , and a public key, Q = d ×G. The private
key, d , is a bounded random integer, and the public key, Q , is com-
puted by the scalar multiplication of d and G . Both parties agree in
advance on G, which is one of the points in an elliptic curve. The
public key is then combined with some hash1 of the message in
order to generate the signature.

There exist numerous methods [6] for computing the scalar mul-
tiplication product. Among these are the binary method, windowed
method and the Montgomery ladder. Building on work of previous
authors, we show that windowed method for scalar multiplication
can be parallelized, first to generate the lookup table, and then to
perform the rest of the computation. In particular, we work out
a method which uses 3 cores and could achieve a speedup of 42%
compared to a serial windowed method.

2 BACKGROUND
2.1 Elliptic Curve Cryptography
An equation of the form

y2 = x3 + ax + b

defines an elliptic curve on a plane. For the purposes of crypto-
graphical schemes, this curve is defined over a prime field.

Given two points, P and Q , an addition operation to calculate a
third point, R, can be defined by taking the line through P andQ and
finding the third point −R on the curve where the line intersects.
Then P + Q is defined as −(−R) or R. In the case that P = Q , the
tangent to the curve at the point is used. Figure 1 illustrates both
cases. Thus the set of points on the curve forms a group, with the
point at infinity, O , serving as the identity, i.e. P +O = P = O + P .

There are two representations for points on the curve used in
computation. The usual representation of a point in (x ,y) coordi-
nates is called affine coordinates. This representation is compact, but
cannot represent the identity point (infinity). Since not all points
(x ,y) are points on the curve, a point not on the curve could be

1A specific hashing method is not defined in the protocol.

237

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

CASCON'20, November 10-13, 2020, Toronto, Canada Bouman, Irfan, You, Anand

y

x

P

Q

R

y

x

P

R

Figure 1: Addition and doubling of points on an elliptic
curve [6]

used to represent the identity, but normal calculations would not
work with this point.

An alternative way of representing the points on the curve is
with projective coordinates, (X : Y : Z). Unlike affine coordinates,
projective coordinates are not unique representations of a point.
Jacobian coordinates are one example of projective coordinates, and
are useful for calculations on elliptic curves because they avoid
expensive modular inverses that are necessary to compute in affine
coordinates.

Since good performance is our goal, we use Jacobian coordinates
in our calculations. We use existing algorithms for point addition

Operation Cost (modular multiplications)
2*J 8
J+A 12
J-A 12
J+J 16
J-J 16

Table 1: Cost of point operations on affine (A) and Jacobian
(J) coordinates

and point doubling (see [4]). For performance estimates, we count
the number of modular multiplies performed in each calculation,
since other operations have negligible cost in comparison. See
Table 1

Given these addition and doubling operations, it is possible to
define a scalar multiplication, sometimes known as point multiplica-
tion, dP for an elliptic curve point P . In elliptic curve cryptography,
the secret key d is the scalar in the multiplication and the product
dP is the public key. Additionally, this scalar multiplication takes up
a large amount of the execution time in elliptic curve cryptographic
schemes [6].

The simplest method of calculating the scalar multiplication
is to take the binary representation of the scalar and go through
each bit, determining when to double and add points to get the
answer. This is the same concept as methods used to calculate
binary multiplication using addition and shifting [13], and similar
methods can be used to improve performance. More sophisticated
methods of doubling and adding attempt to use shorter addition
chains than the one given by the binary representation of the scalar
[5]. Since subtraction of an elliptic curve point is simply addition of
the negative, and the negative of an elliptic curve point is formed
by taking the negative of the second coordinate, subtraction costs
about the same as addition and addition-subtraction chains further
improve performance [11].

For any of these approaches, the value of the scalar affects the
number of operations needed to compute the product, and thus
the amount of computational time and energy spent. This makes it
possible for an attacker to discover information about the secret key
by monitoring either the time elapsed or the energy expended. In
fact, within 200 signatures, an attacker may be able to reconstruct a
secret key for a 256-bit curve through a side-channel, which would
otherwise be computationally impossible [3].

To avoid this problem [8], the Montgomery ladder multiplication
method [10] performs all of the possible doublings and additions
needed for the scalar multiplication, but substitutes a no operation
in place of unnecessary operations for the final product. The win-
dowed method improves performance by calculating multiples of
P in advance, i.e.,

1, P , 2P , ..., (2w − 2)P , (2w − 1)P ,

wherew is the width, in bits, of the window. To compute the scalar
multiple dP , the integer is decomposed into “digits”

d = dDdD−1 · · ·d1d0

each with w bits, and containing a value between 0 and 2w − 1.
In the first step, a table lookup finds the corresponding dDP to be

238

Parallel Windowed Method for ECC CASCON'20, November 10-13, 2020, Toronto, Canada

Op. Cost (mod. mults.)
2 ∗ nP 2*P 8
(2n − 1)P + 1P P+1 12
∀i : 2 ≤ i < n : (2n − i)P + iP P+Q 16

Table 2: Ways to calculate (2n)P , including costs in number
of modular multiplications.

used as the accumulator. In subsequent steps, the accumulator is
doubledw times before adding the next diP . So if the running total
started as

D∑
i=D

di2(i−D)wP ,

afterw doublings, it becomes
D∑
i=D

di2(i−D+1)wP .

To this we add the value dD−1P from the table to obtain
D∑

i=D−1
di2(i−(D−1))wP .

After D − 1 steps, we obtain
D∑
i=0

di2iwP = dP .

Other methods exist which improve upon the windowed method
by skipping computation for bits which have a zero value, and using
a non-adjacent form (NAF) [14] to increase the number of zero bits
in the representation, but these do not perform the computation in
constant time, and as a result are vulnerable to side-channel attacks
[6].

Finally, there are other methods such as applying a Frobenius
map [9] or other endomorphisms, but these only apply to specific
types of curves.

3 SCHEDULING
This section discusses the scheduling methodology used.

3.1 Table Generation
To generate the table for a standard windowed method, we calculate
all of the points between 2P and 2wP − 1, starting with 1P as
the input value in affine coordinates. The number of operations
necessary to calculate each point does not matter; only the total
number of operations to calculate the entire table matters. The cost
for a certain point is the number of operations used to calculate that
point, given all the previously calculated points. This calculation
will vary depending on the cost of the point doubling and point
addition algorithm. The addition of a point in affine coordinates
to a point in Jacobian coordinates costs less than the addition of
two Jacobian points, and the only point that will be available in
affine coordinates is P itself, so adding 1P is preferred over other
additions.

Starting with 1P , the only possible way to get 2P is by dou-
bling 1P , which costs 8 modular multiplies. Then, if all the points

Op. Cost (mod. mults.)
(2n)P + 1P P+1 12
∀i : 2 ≤ i ≤ n : (2n − i + 1)P + iP P+Q 16

Table 3:Ways to calculate (2n+1)P , including costs in number
of modular multiplications.

from 1P to (2n − 1)P are already calculated, there are several ways
of calculating (2n)P , and then (2n + 1)P . See Tables 2 and 3. For
(2n)P , doubling nP is the cheapest option. This costs 8 modular
multiplies. For (2n + 1)P , the cheapest option is adding 1P to (2n)P ,
which costs 12 modular multiplies. Therefore, if all the table pre-
computation occurs serially, the best solution is that the even num-
bers be computed by point doubling and the odd numbers by adding
P to the even number immediately preceding it, and this has a cost
of 2w−2

2 (c J + c JA), where c J is the cost of doubling a Jacobian and
c JA is the cost of adding a Jacobian to an affine. These costs are 8
and 12 modular multiplies, respectively.

3.1.1 Greedy Scheduling for Infinitely Many Cores. However,
when multiple cores can work in parallel to compute the table, it
becomes possible that the best schedule performs different calcu-
lations than the optimized ones in the previous section. Table 4
shows a possible schedule for the initial calculations of a table. It
starts out the same way as the table in serial. However, the order
begins to differ at the computation of 8P , as it could begin before
the computation of 6P and 7P . After a while, things get more com-
plicated. Notice, for example, that at time 24, the computation 10P
is not yet started, even though it could be calculated from 8P + 2P .
This is because at the next step we find out that it will actually be
faster to compute 10P by doubling 5P , if we just wait one more
step until it is completed. So 10P was removed from that step and
moved to a later step.

This scheduling is greedy in that it does as many computations
as possible at the earliest time that they can possibly end.

Since there is no limit for simultaneous calculations, the comple-
tion time of each point can be minimized using the same methods
as double-and-add calculations. The time to calculate the whole
table is equivalent to the longest time required to calculate any
single given point. In the case of the table of width 3, the point 7P
is the last to finish, so that whole table requires 36 modular multi-
plies to calculate, compared to 60 modular multiplies if the table
was calculated serially. However, the total amount of calculation
increases to 64, because the calculation of 7P from the addition of
3P and 4P costs more than the addition of 1P to 6P , and that adds
two Jacobians together, rather than an affine point to a Jacobian
point.

One of the relevant improvements to the double-and-add meth-
ods is that rather than limiting the chain of calculation to addition
operations, we can include subtractions in the chain, and obtain
a better result. The smallest point which benefits from a mixed
addition subtraction chain is 15P . Table 5 demonstrates the im-
provement, and the benefits continue for larger multiples of P .

3.1.2 Generate and Prune Scheduler for Finite Cores. The above
algorithm schedules as many possible computations at a time. Real-
istically, we only have a limited number of cores available. When

239

CASCON'20, November 10-13, 2020, Toronto, Canada Bouman, Irfan, You, Anand

Time
0 2P[2 ∗ P]
8 3P[P + 2P] 4P[2 ∗ 2P]
16 3P[P + 2P] 5P[P + 4P] 8P[2 ∗ 4P]
20 5P[P + 4P] 6P[2 ∗ 3P] 7P[3P + 4P] 8P[2 ∗ 4P]
24 5P[P + 4P] 6P[2 ∗ 3P] 7P[3P + 4P] 9P[8P + P] 11P[8P + 3P]

16P[2 ∗ 8P]
Table 4: Given infinitely many cores, this is the greedy schedule.

Time Without Subtraction With Subtraction
0 2P[2 ∗ P] 2P[2 ∗ P]
8 3P[P + 2P] 4P[2 ∗ 2P] 4P[2 ∗ 2P]
16 3P[P + 2P] 8P[2 ∗ 4P] 8P[2 ∗ 4P]
20 7P[3P + 4P] 8P[2 ∗ 4P] 8P[2 ∗ 4P]
24 7P[3P + 4P] 16P[2 ∗ 8P]
32 7P[3P + 4P] 15P[16P − 1P]
36 15P[7P + 8P] 15P[16P − 1P]
44 15P[7P + 8P]
52

Table 5: Comparison of calculating 15P with and without
subtraction.

more computations are ready than cores available, we must decide
which computations to allocate and which computations to delay
for future allocation. Given all of the computations possible at a
certain point, we come up with all of the possibilities for which com-
putations to allocate, and which computations to delay until there
is a core available. Since we have no obvious way to know which
choice of delays will produce the shortest schedule, we try them all
out. However, there might be schedules whose partial heights are
longer than whatever schedules were already generated, so these
are pruned away to avoid any further scheduling on them.

The results given here are an estimate based on the number of
modular multiplications that an operation takes. This gives us a
cost of 8 for point doubling, 12 for addition of the base point to
another point and 16 for any other addition. While there are other
operations involved, their cost is negligible in comparison, so for
the purposes of this estimate, they are not considered.

The histogram in Figure 2 shows the distribution of schedule
lengths produced from the brute force scheduling of a table with
width 5 on 4 cores. Since the brute force scheduler produces many
possible schedules, we select only first the 500 000 to show in the
graph. While most of the schedules in the graph do not have the
optimal height of 96 modular multiplications, none of them have
a latency longer than 108, and the majority of the latencies are
between 96 and 108.

Figure 3 show the latency of table generation for different bit
widths versus the number of cores shows how much parallelism is
available in the window computation. For example, at bit width 2
with a table size of 4, there is enough parallelism to reduce latency
by 30% with two cores, but not enough parallelism to exploit more
than two cores. At bit width 4, two cores brings a 40% reduction
in latency, four cores a 48% reduction, and there are no further

96 100 104 108

0

2

4
·105

Schedule Height (Latency in modular multiplies)
Fr
eq
ue
nc
y

Figure 2: A histogram of schedule heights generated by
depth-first search shows that most schedules have similar
heights.

20 21 22 23 24 25 26 27

102

103

104

Cores

La
te
nc
y
(G
-F

M
ul
tip

lic
at
io
ns
)

Latency versus Cores

Width 10

Width 9

Width 8

Width 7

Width 6

Width 5

Width 4

Width 3

Width 2

Figure 3: Cost of table computation for different numbers of
cores and widths.

gains. Unsurprisingly, it is easy to exploit parallelism across a small
number of cores. But for bit widthsw ≤ 5, there is no advantage to
using more than 2w−1 cores.

240

Parallel Windowed Method for ECC CASCON'20, November 10-13, 2020, Toronto, Canada

Algorithm 1: Function for Brute Force Scheduling of Parallel Table Pre-Computation

Input: width, cores, time, schedule, run, complete,delayed
Satisfying: time = 0, schedule = [(2, 0, (1, 1),doublePointCost)], run = [(2,doublePointCost)], complete = [1],delayed = []
Output: A parallel schedule for a generating a table of the specified width
1: newlyCompleted ← remove completed points from run
2: complete ← complete + newlyCompleted
3: for all nc in newlyCompleted do
4: for all c in complete do
5: if nc == c then
6: delayed += (newComplete+complete, (complete,newlyCompleted), doublePointCost)
7: else if nc == 1 or c == 1 then
8: delayed += (newComplete+complete, (complete,newlyCompleted), addJAPointCost)

+ (newComplete-complete, (-complete,newlyCompleted), addJAPointCost)
9: else
10: delayed += (newComplete+complete, (complete,newlyCompleted), addJJPointCost)

+ (newComplete-complete, (-complete,newlyCompleted),addJJPointCost)
11: end if
12: end for
13: end for
14: newRuns,newDelayeds

← take the updated delayed and find all the possibilities of what can currently be run and what needs to be delayed
15: for all r in run do
16: r ← (r .0, r .1 − 1)
17: end for
18: for all rs,ds in newRuns,newDelayeds do
19: newSchedule ← schedule
20: for all r in rs do
21: newSchedule ← newSchedule + r
22: end for
23: schedules ← scheduleFunction(width, cores, time + 1,newSchedule, rs, complete,ds)
24: end for

return minimum of schedules

Figure 4 shows the latency of table generation compared to the
width. Plotting the latency of window computation as a function
of the window width in bits shows that the computation scales
exponentially with a single core, but has sub-exponential scaling
with larger numbers of cores. For a single core, the cost depends on
the width as 10(2w − 2). For two cores, it is 5(2w) − 4, whenw > 2.

3.2 Main Computation
Given the above method of pre-computing the table in parallel,
we want the main part of the computation to also be parallelized.
When looking at the method which requires the least amount of
computation, it is not immediately obvious that any parallelism is
possible:

dP = d0P +
D−1∑
i=1

2ws+(i−1)wdiP

= d0P + 2ws (. . . (dD−2P + 2w (dD−1P)) . . .)
(1)

where D is ⌈ 256w ⌉ andws (the width of the short digit at the end) is
256 − (D − 1)w . In the equation above, each operation must occur
in order, leaving no room for parallelism. The cost to perform all of

these operations in serial is

16(D − 1) + 8(256 −w).

Every digit needs to be added to the total, so there are ⌈ 256w ⌉ − 1 or
D − 1 additions. Then the repeated doubling in 2w happens for all
but one of the digits, for a total of 256 −w doubles.

In order to allow parallelism, Equation 1 must be modified to
a different form that still calculates the same dP . These modifica-
tions may do redundant or duplicate operations in order to improve
parallel performance. We present two methods of introducing par-
allelism, and combine them to produce the final speedup.

3.2.1 Negative table. Since we can very cheaply negate a point
by negating its y-coordinate, calculating a table of 0 . . . 2wP costs
almost exactly as much as calculating a table of −2wP . . . 2wP . The
advantage here is that the secret key d can be divided into larger
digits, reducing the overall number of digits. This means that the
width used in calculating the table is 1 less than the width of the
digits, so we usewd andwt to distinguish them, wherewd = wt +1.
For any digit d , we first subtract 2wt , then look it up in the table,
finally adding 2wt P . The cost of a single addition is 16 modular
multiplications with the cost of the subtraction and table look-up
considered negligible.

241

CASCON'20, November 10-13, 2020, Toronto, Canada Bouman, Irfan, You, Anand

2 4 6 8 10

102

103

104

Width

La
te
nc
y
(G
-F

M
ul
tip

lic
at
io
ns
)

Latency versus Window Bit Width

1 Core

2 Cores

4 Cores

8 Cores

16 Cores

32 Cores

64 Cores

128 Cores

Figure 4: Cost of table computation for different widths and
numbers of cores.

dP = (d0−2wt)P+2wt P+
D−1∑
i=1

2ws+(i−1)wd ((di−2wt)P+2wt P) (2)

In serial, the cost of this calculation is

16(2⌈256
wd
⌉ − 1) + 8(256 −wd),

and it needs to include another 8 modular multiplications, because
the table needs to include the calculation of 2wP . The extra cost
compared to the shortest serial version is

16(2⌈256
wd
⌉ − 1) + 8(256 −wd) + 8 − 16(⌈

256
wt
⌉ − 1) − 8(256 −wt)

which simplifies to

16(2⌈256
wd
⌉ − ⌈

256
wt
⌉).

Thus, this scheme requires more computation. However, the extra
addition of 2wt P can be put in parallel with the rest of the computa-
tion, and the timing can be improved over the initial serial version.
The amount of computation that can be put onto the second core is

16(⌈256
wd
⌉ − 1).

So the total amount of time saved is

16(⌈256
wd
⌉ − 1) − 16(2⌈256

wd
⌉ − ⌈

256
wt
⌉),

simplified as

16(⌈256
wt
⌉ − 1 − ⌈256

wd
⌉).

Figure 5 compares the costs of a serial main calculation (Regular
table: 2 core table, 1 core main; Regular table: 1 core table, 1 core
main), with the extra cost of using the negative table (Negative

2 3 4 5 6 7 8

3,000

3,500

4,000

4,500

5,000

Table Width

La
te
nc
y
(G
-F

M
ul
tip

lic
at
io
ns
)

Latency of Full Computation with Negative Table

Negative table: 2 core table, 2 core main
Negative table: 1 core table, 1 core main
Regular table: 2 core table, 1 core main
Regular table: 1 core table, 1 core main

Figure 5: By expanding the table to include the negatives, we
attain a slight performance improvement.

0 ps 256

d0 d1 . . . dD1−1 dD1 dD1+1 . . . dD1+D2−1
ws1 w1 . . . w1 ws2 w2 . . . w2

Table 6: Division of the scalar into digits

table: 1 core table, 1 core main), and finally the parallel version with
negative tables (Negative table: 2 core table, 2 core main).

For the best width, 5, the cost reduces from 3140 to 2848, an
improvement of 10%. The first core is busy for the entire time of the
main computation, while the second core is only busy part of the
time. For width 5, this is 2688 and 672 modular multiplies, respec-
tively. The balance is much better for the table, where the cost of
160 represents an almost even split with a gap of 8 at the beginning,
and 4 at the end, so that the second core has 148 modular multiplies.
In total, 29% of the runtime has 2 cores running simultaneously,
while the other 71% is on one core only.

3.2.2 Multiple tables. To introduce more parallelism, we split
the summation formula into 2 pieces. We split the secret key at
some point ps . There are ps bits of the scalar on the lower side, and
256 − ps on the upper side. The bits of the scalar are laid out into
digits of sizesw1,w2, etc. as shown in Table 6.

dP = (d0P +
D1−1∑
i=1

2ws1+(i−1)w1 (diP))

+ (dD12
ps P +

D2−1∑
i=1

2ws2+(i−1)w2 (dD1+i2
ps P))

(3)

whereD1 is ⌈ psw1
⌉,D2 is ⌈ 256−psw2

⌉,ws1 (the width of the short digit at
the end) isps−(D1−1)w1.ws2 (thewidth of the short digit at the end)

242

Parallel Windowed Method for ECC CASCON'20, November 10-13, 2020, Toronto, Canada

cycle Core 1 Core 2 Core 3
0 2pS P Make Table 1

152 idle Use Table 1
1488 Make Table 2
1584
2192 Use Table 2
2208 Addition idle idle
2224 Done

Table 7: Work assignment in blocks to three cores.

is (256 − ps) − (D2 − 1)w2. Rather than calculating di2ps P at every
digit in the second half, we use a separate table to look up each digit.
This table’s values range from 0 to (2w2 − 1)(2ps)P (or −2w22ps P
to 2w22ps P if it includes negatives.) The extra computation here is
the calculation of 2ps P (which is ps doubles or 8ps), plus the cost
of the extra table calculation, which is 10(2w2 − 2).

The total amount of computation done is
10(2w1 − 2 + 2w2 − 2) + 16(D1 + D2 − 1) + 8(256 + ps −w1 −w2).

Put in parallel, the latency is

16 +max(10(2w1 − 2) + 16(D1 − 1) + 8(ps −w1)

, 10(2w2 − 2) + 16(D2 − 1) + 8(256 −w2)).
(4)

Figure 6 compares the costs of choosing different widths for
the two tables and split points. The best performing schedule is
2412 modular multiplies, when both of the widths are 4 and the
split point is 192. The total amount of computation is 4808 modular
multiplications, and is split almost evenly across the two cores, with
only the final point addition not happening in parallel.

Putting the method with two tables together with the negative
table method uses a total of 4 cores. However, the 2 cores which
add the extra 2wd P at each digit are not that busy, because there is
only one addition that needs to happen in the same time that the
an addition andwd doubles occur. So these 2 cores can be merged
together for a computation that runs on 3 cores. The latency of that
method is

16 +max(10(2w2t) − 12 + 16(D2 − 1) + 8(256 −w2d)

, 5(2w1t) + 16(D1 − 1) + 8(ps −w1d))
(5)

where w1t > 1. The best case occurs with parameters w1d =
6,w2d = 4,ps = 204, with 2308 modular multiplies.

Because of the amount of time spent on calculating 2pswd P , there
is also room on the 3 cores to split one of the main computations
again, further improving the performance.
(. . .d0 + 2wd (d1P + 2wd (. . .)))+ 2pswd (. . .dD−1P + 2wd (dDP) . . .)

Table 7 shows how the calculations are laid out to achieve a perfor-
mance of 2224.

3.3 Split Without Table
Similar to the multiple table method, we split the summation for-
mula into 2 parallel pieces. We again split it at some point ps , which
is the split point. However, this does not require a second table,
because 2ps happens once at the end of the second core portion of
the calculation. We use the same digit layout as shown in Table 6,

except that since there is only one table, there is only one width,
w1 = w2.

dP = d0P +
D1−1∑
i=1

2ws1+(i−1)w (diP)

+ 2ps (dD1P +

D2−1∑
i=1

2ws2+(i−1)w (dD1+iP))

(6)

where D1 is ⌈psw ⌉, D2 is ⌈ 256−psw ⌉,ws1 (the width of the short digit
at the end) is ps − (D1 − 1)w .ws2 (the width of the short digit at the
end) is (256−ps) − (D2 − 1)w . Thus the total amount of calculation
done is

10(2w − 2) + 16(D1 + D2 − 1) + 8(256 + ps −w1 −w2).

and the latency is

5(2w)−4+max(16(D1−1)+8(ps −w1), 16(D2−1)+8(256−w2))+16.

The table calculation happens on 2 cores, reducing its latency to
5(2w) − 4, forw > 2, and the two pieces of the main computation
happen in parallel, with the latency being whichever piece takes
longer.

Figure 7 compares the costs of choosing different widths and
split points. From the graph, the best performance is 2348 and
happens with a width of 4, and a split point 192. The total amount
of computation is 4668 modular multiplications. The load balancing
between the two cores is almost even, with a gap of 16 modular
multiplies for the final sum at the end, and 12 modular multiplies
in the table. This means that for 99% of the computation time, both
cores are active. Compared to the best serial time, the performance
improvement is 34%.

4 PERFORMANCE ESTIMATES AND
RECOMMENDATIONS

When the windowed method is used without parallelization, the
normal recommendation is to use a width of size 4, due to the
trade-off between the amount of pre-computation and the main
calculation itself. However, if the pre-computation portion can be
performed in parallel, the latency is significantly reduced, mean-
ing that larger size widths can be considered. When we calculate
the total latency including both the window pre-computation and
calculation using the window, we find a more modest expected
speedup of 20% when comparing the best window size for single-
core execution with the best window size for 32-core execution.
This is because the window-using computation is still serial. It is
interesting to note that even without parallelizing that part of the
computation, the best window size increases with the number of
cores. For a key (scalar) size of 256 bits, Figure 8 shows the total
cost for the pre-computation and the main computation together,
illustrating the trade-off that occurs for various different widths.
Thus for 32 cores, it would be better to use a table of bit width 7 or
8, rather than 4.

One danger with a larger table is if the table is larger than the
cache and some of the loads from the table miss the cache, it would
be possible for an attacker to get side-channel information from
those cache misses. For example, while the Montgomery ladder

243

CASCON'20, November 10-13, 2020, Toronto, Canada Bouman, Irfan, You, Anand

180 182 184 186 188 190 192 194 196 198 200 202 204
2,400

2,500

2,600

2,700

Split Point

La
te
nc
y
(G
-F

M
ul
tip

lic
at
io
ns
)

Latency for Computation Split on 2 Cores

w0:3,w1:4 w0:3,w1:5
w0:4,w1:3 w0:4,w1:4
w0:4,w1:5 w0:5,w1:3
w0:5,w1:4

Figure 6: By splitting the main computation across two cores, the performance improves, depending on the split point and
table widths.

170 175 180 185 190 195 200 205 210

2,400

2,500

2,600

2,700

Split Point

La
te
nc
y
(G
-F

M
ul
tip

lic
at
io
ns
)

Latency for Computation Split on 2 Cores

Width 3
Width 4
Width 5
Width 6

Figure 7: By splitting themain computation across two cores,
the performance improves, depending on the split point and
table width.

performs the same amount of computation regardless of the input,
it is still possible on certain processors to perform a side-channel
attack using information from the cache, since the memory lookups
are not the same [16].

Once we include parallelization of the rest of the computation,
the optimal width of the table reduces back down to 4 or 5, as the
cost of computing the table starts to overtake the advantages which
are now possible for the rest of the computation. There are a number
of different parameters which change the performance, including

2 4 6 8 10
2,500

3,000

3,500

4,000

Width

La
te
nc
y
(G
-F

M
ul
tip

lic
at
io
ns
)

Latency for Combined Computation

32 Cores

16 Cores

8 Cores

4 Cores

2 Cores

1 Core

Figure 8: Cost of table computation for different widths and
number of cores, and main computation on one core.

the widths of the two tables, and the split points for breaking apart
which terms go on separate cores.

Figure 9 shows how the performance is affected by the choice
of split point 2. Split point 2, ps2 , describes the number of bits
calculated on one core while the rest are on another core. To find
the best one, we try out different values.

For 3 cores, this full solution takes the time of 2224 modular
multiplications. The total amount of computation done is 5220
modular multiplications, which is split across the cores as 2216,
2184, and 820, respectively. Comparing this to the fastest serial

244

Parallel Windowed Method for ECC

150 160 170 180 190
2,220

2,240

2,260

2,280

2,300

2,320

2,340

Split point 1

Co
st
(M

od
ul
ar

M
ul
tip

lic
at
io
ns
)

Total cost based on split point 1 and split point 2

Split point 2: 9
Split point 2: 8
Split point 2: 7
Split point 2: 6
Split point 2: 5

Figure 9: Finding the optimal split point 1 and 2 by trying
different values.

computation, of 3164 modular multiplications, it has a speedup of
42%, by doing 1.6x more computation.

4.1 Simulated Implementation in Haskell
This project was developed in Haskell to take advantage of an in-
terpreter for elliptic curve operations and for ease of implementing
heuristic scheduling with greedy phases. This made it easy to test
the table computations and the applications of the tables in the
multi-window computation. This allowed us to test for correctness
of the underlying algorithm before attempting to schedule it.

4.2 Parallel Implementation in Haskell
Given this model of the computation, we proceed to implement
in parallel in Haskell, to do a preliminary test of the performance
improvement. The improvement is in comparison to the standard,
single core windowedmethod, also implemented in Haskell. Haskell
provides MVar as the basic communication method among threads.

Given an implementation which performs a scalar multiplication
on 3 threads, we check how the program actually uses the resources.
ThreadScope is a programwhich analyzes parallel Haskell programs
for their performance [1]. We used ThreadScope to help debug
synchronization problems, and verify that computation was being
distributed across cores. Unfortunately, it also shows a large amount
of overhead on core 1, which is already scheduled to be the busiest
core.

5 DISCUSSION
We have shown that there are many opportunities to reduce the
latency of scalar multiplication in elliptic curves. We have used the
number of multiplications in the Galois field as the primary unit
of computation, ignoring other operations and overhead. Given
that multiplication takes hundreds of cycles, including other com-
putation would not change our recommendations. Overhead can

CASCON'20, November 10-13, 2020, Toronto, Canada

significantly degrade performance, but in our case, we know the
sequence of tasks required, which makes overhead easier to avoid.

There are a range of platforms which need to perform cryp-
tographic operations, from high-throughput servers to desktops,
laptops and mobile devices. On servers, we expect to have large
numbers of cores and sophisticated thread scheduling in the oper-
ating system. In this case, using a thread pool and message queues
with a fixed communication pattern would allow computation to
be distributed across cores efficiently. Since the computation is not
dependent on the data, we are reasonably confident that it would
not be subject to a side-channel attack. If processor load varies
significantly, t he width o f t he a lgorithm could b e t uned t o the
environment, from one computation to the next, trading latency
off for efficiency as necessary. There is no need to dynamically
schedule the computation. It would be relatively straightforward to
implement a parallelization strategy on top of existing technology
such as OpenMP, with either implicit or explicit synchronization,
or Go using coroutines with communication via channels. On the
smallest devices (which still have multiple threads), this support
may be lacking, but the same structure as with coroutines could be
implemented by using atomic memory accesses to communicate
the availability of required inputs.

One side effect of using branch-free implementations to avoid
side-channel attacks is that computation time is completely deter-
ministic. Because multiplication in the Galois field dwarfs other
computation at the same level of abstraction, the computation is
also conveniently chunked into multiples of this time, which makes
it easier to line up the computation to make spin locks efficient.

6 RELATED WORK
Using addition chains or addition-subtraction chains has applica-
tions in other contexts. Another example in cryptography is using
addition chains to calculate powers for RSA. In the case of calcu-
lating powers, it is not helpful to include subtraction in the chains,
since division is significantly more expensive than multiplication
[5, 11]. Like many other methods, using chains of additions and
subtractions in an efficient manner dependent on the data leads
to non-constant time calculation, although there is a proposal by
Oswald to get around this with randomization [12].

Izu and Takagi parallelize scalar multiplication by dividing the
binary decomposition into high and low halves and doing the Mont-
gomery ladder in parallel for both parts [7]. This modestly reduces
the amount of computation exposes parallelism, in contrast to the
window method which is designed to reduce computation. Basu
also developed a parallel algorithm, with impressive theoretical
speedup, but it is subject to side-channel attacks. Similar to our
results, Basu notes that parallelism makes it feasible to use much
larger pre-computed tables, up to a bit width of 10 [2].

7 CONCLUSION
Initially, we showed that it is possible to parallelize the table pre-
computation portion of the windowed method for elliptic curve
scalar multiplication, and that it significantly improves the latency.
Next, we considered block schedules, and found further expected
efficiencies by scheduling computation using Table 1 in parallel

245

Bouman, Irfan, You, AnandCASCON'20, November 10-13, 2020, Toronto, Canada

with the calculation and use of Table 2. In future work, we hope to
more optimally minimize idle blocks in our current schedules.

In addition to estimating performance, we have implemented a
synchronization scheme using MVars in Haskell. This allows us to
use the existing interpreter for elliptic curve operations. Results
from the interpreter show that the schedule produces the correct
answer. However, it does not give reliable performance information,
probably due to overhead. This gives us confidence to implement
the computation in Go using a similar mechanism.

ACKNOWLEDGMENTS
The authors would like to thank NSERC and the IBM Centre for
Advanced Studies for financial support.

REFERENCES
[1] [n. d.]. ThreadScope. https://wiki.haskell.org/ThreadScope. ([n. d.]). (Accessed

on 05/04/2020).
[2] Saikat Basu. 2012. A new parallel window-based implementation of the elliptic

curve point multiplication in multi-core architectures. Group 16, 4a3 (2012), 27b2.
[3] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval Yarom. 2014. “Ooh

Aah... Just a Little Bit” : A Small Amount of Side Channel Can Go a Long Way. In
Cryptographic Hardware and Embedded Systems – CHES 2014, Lejla Batina and
Matthew Robshaw (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 75–92.

[4] Daniel J. Bernstein and Tanja Lange. [n. d.]. Explicit Formulas Database - Jacobian
coordinates with a4=-3 for short Weierstrass curves. ([n. d.]). http://hyperelliptic.
org/EFD/g1p/auto-shortw-jacobian-3.html Accessed 27 May 2020.

[5] Jurjen Bos and Matthijs Coster. 1990. Addition Chain Heuristics. In Advances in
Cryptology — CRYPTO’ 89 Proceedings, Gilles Brassard (Ed.). Springer New York,
New York, NY, 400–407.

[6] Alfred Menezes Hankerson, Darrel and SA (Scott Alexander) Vanstone. 2004.
Guide to elliptic curve cryptography. New York: Springer.

[7] Tetsuya Izu and Tsuyoshi Takagi. 2002. A Fast Parallel Elliptic Curve Multi-
plication Resistant against Side Channel Attacks. In Public Key Cryptography,
David Naccache and Pascal Paillier (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 280–296.

[8] Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In Advances in Cryptology — CRYPTO ’96, Neal
Koblitz (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 104–113.

[9] Willi Meier and Othmar Staffelbach. 1993. Efficient Multiplication on Certain
Nonsupersingular Elliptic Curves. In Advances in Cryptology — CRYPTO’ 92,
Ernest F. Brickell (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 333–344.

[10] Peter L Montgomery. 1987. Speeding the Pollard and elliptic curve methods of
factorization. Mathematics of computation 48, 177 (1987), 243–264.

[11] François Morain and Jorge Olivos. 1990. Speeding up the computations on an
elliptic curve using addition-subtraction chains. RAIRO-Theoretical Informatics
and Applications 24, 6 (1990), 531–543.

[12] Elisabeth Oswald and Manfred Aigner. 2001. Randomized Addition-Subtraction
Chains as a Countermeasure against Power Attacks. In Cryptographic Hardware
and Embedded Systems — CHES 2001, Çetin K. Koç, David Naccache, and Christof
Paar (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 39–50.

[13] George W Reitwiesner. 1957. SUMMARY DISCUSSION ON PERFORMING BINARY
MULTIPLICATION WITH THE FEWEST POSSIBLE ADDITONS. Technical Report.
ARMY BALLISTIC RESEARCH LAB ABERDEEN PROVING GROUND MD.

[14] George W. Reitwiesner. 1960. Binary Arithmetic. In Advances in Comput-
ers, Franz L. Alt (Ed.). Vol. 1. Elsevier, 231 – 308. https://doi.org/10.1016/
S0065-2458(08)60610-5

[15] Licheng Wang, Xiaoying Shen, Jing Li, Jun Shao, and Yixian Yang. 2019. Crypto-
graphic primitives in blockchains. Journal of Network and Computer Applications
127 (2019), 43 – 58. https://doi.org/10.1016/j.jnca.2018.11.003

[16] Yuval Yarom and Naomi Benger. 2014. Recovering OpenSSL ECDSA Nonces
Using the FLUSH+ RELOAD Cache Side-channel Attack. IACR Cryptology ePrint
Archive 2014 (2014), 140.

246

https://wiki.haskell.org/ThreadScope
http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html
http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html
https://doi.org/10.1016/S0065-2458(08)60610-5
https://doi.org/10.1016/S0065-2458(08)60610-5
https://doi.org/10.1016/j.jnca.2018.11.003

Hybrid Quantum-Classical Problem Solving in the NISQ Era
Prashanti Priya Angara

pangara@uvic.ca
University of Victoria

Victoria, British Columbia, Canada

Ulrike Stege
ustege@uvic.ca

University of Victoria
Victoria, British Columbia, Canada

Hausi A. Müller
hausi@uvic.ca

University of Victoria
Victoria, British Columbia, Canada

Mehdi Bozzo-Rey
mbozzore@ca.ibm.com

IBM Canada
Markham, Ontario, Canada

ABSTRACT
Quantum computing has evolved from a field of scientific research
to a quantum technology industry. Much progress is still needed to
solve real-world problems with quantum technology and achieve
quantum advantage. Industries, governments, and universities are
experimenting with advanced quantum computing technologies to
become quantum ready. One way forward is to combine quantum
and classical approaches to form hybrid models, algorithms, and
architectures to overcome the limitations of NISQ systems for near-
term quantum computations. Many algorithm design, data manage-
ment, and software engineering challenges have to be addressed
for practical hybrid development including problem decomposition,
variational circuit design, tool integration, and debugging. This
paper presents algorithmic patterns and software infrastructures
appearing in the literature for practical hybrid quantum problem
solving and software development for selected application domains.
Hybrid approaches provide significant opportunities for HPC cen-
ters and application developers to tackle hard problems that have
been considered intractable using merely classical approaches. The
most promising hybrid algorithms and architectures provide an
excellent avenue for developers to scale quantum applications grad-
ually and for educators to train the workforce incrementally.

CCS CONCEPTS
• Computer systems organization → Quantum computing.

KEYWORDS
Quantum computing, hybrid quantum-classical toolkits, variational
algorithms and circuits, QPU, HPC

ACM Reference Format:
Prashanti Priya Angara, Ulrike Stege, Hausi A. Müller, and Mehdi Bozzo-
Rey. 2020. Hybrid Quantum-Classical Problem Solving in the NISQ Era . In
Proceedings of ACM Conference (CASCON 2020). IBM Corp., Riverton, NJ,
USA.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honoured. For all other uses, contact the owner/author(s).
CASCON’20, November 10-13 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

1 INTRODUCTION
Many scientists and engineers consider quantum computing as
one of the most interesting and challenging topics with enormous
potential in many different application areas. The field of quantum
computing is not new. Physicists argue it started in the early 1920s
when the term quantum mechanics was coined. In 1981, Richard
Feynman encouraged the physics community to build a quantum
computer with his famous quote: “Nature isn’t classical, and . . . if
you want to make a simulation of nature, you’d better make it quan-
tum mechanical, and by golly, it’s a wonderful problem, because
it doesn’t look so easy.” After delivering his famous lectures on
Simulating Physics with Computers [27], the field began in earnest
with quantum information theory, computing models, and algo-
rithms [54]—culminating in seminal results, including Shor’s 1994
factoring algorithm with exponential speedup [68], and Grover’s
search (1996) with quadratic speedup [30] over classical algorithms.

Over the last 15 years, companies such as IBM, D-Wave, Mi-
crosoft, Google, Honeywell, Fujitsu, Rigetti, Xanadu, and many star-
tups have engineered real quantum computers and developed quan-
tum development kits (QDKs), such as IBM Qiskit & Aqua, D-Wave
Leap & Ocean, Microsoft Q# & QDK, Google Cirq & OpenFermion,
Rigetti Forest & Quil, Xanadu’s Strawberry Fields & PennyLane,
as well as application platforms, such as 1QBit’s OpenQEMIST, to
program these innovative systems effectively. Thus, in recent years,
the field of quantum computing has transitioned into a technology
industry [40].

We are now in the noisy intermediate-scale quantum (NISQ)
era where quantum computers have 50-200 qubits and their noise
places serious limitations on their capabilities [59]. Researchers
are investigating innovative ways to solve valuable problems us-
ing available NISQ systems and to achieve quantum advantage by
demonstrating a significant performance advantage over today’s
classical computers [10, 61].

Over the last decade, scientists and engineers have developed ef-
fective hybrid algorithms and architectures by integrating classical
and quantum processing units (QPUs) [14, 51]. Hybrid approaches
can be applied at problem-solving and design time (e.g., problem
decomposition and algorithm design techniques) as well as imple-
mentation and run-time (e.g., parameterizations and variational
circuits). Researchers have begun realizing Feynman’s dream by
decomposing nature problems—simulating molecules using varia-
tional algorithms for drug design might be the early killer applica-
tion of quantum computing [52, 58]. While hybrid algorithms and

247

https://doi.org/10.1145/nnnnnnn.nnnnnnn

CASCON 2020, November 2020, Toronto, Ontario, Canada Angara, et al.

platforms may just be the best first step, it is reasonable to assume
that quantum applications will always be hybrid [42].

Large industry and government investments are pushing for
breakthroughs in qubit counts and fidelities, with quantum advan-
tage being a much-sought-after milestone [49]. Today, quantum
computers and simulators are readily accessible and programmable
over the internet in several quantum clouds [14, 40] and can now
be explored by everybody. As a result, the demand for quantum
computing education, training, and workforce development is in-
creasing continuously [14].

The combination of these efforts has created significant oppor-
tunities for HPC centers and application developers alike, to tackle
hard problems that are considered intractable using classical ap-
proaches. Moreover, hybrid approaches provide an excellent avenue
for developers to grow and scale quantum applications gradually
and for educators to train the quantum workforce incrementally.

Three problem types are at the core of many quantum applica-
tions: simulation, machine learning, and optimization [71]. Hybrid
quantum-classical algorithms and full-stack quantum platforms are
being developed for all three problem types. This paper charac-
terizes the current hybrid quantum toolkit available to quantum
scientists and engineers, including core building blocks, selected
algorithm design patterns, and platform considerations for hybrid
quantum-classical problem-solving in the NISQ era. Lessons we
can learn in the short-term experimenting with hybrid quantum-
classical computing will be eminently useful in the long-term be-
cause we expect that quantum computing will scale and remain
hybrid.

Section 2 presents core building blocks for hybrid computing and
describes effective techniques of the hybrid toolkit prominently
featured in the literature. Section 3 outlines hybrid algorithmic
approaches to optimization and decision problems. Section 4 high-
lights algorithms and architectural patterns in quantum machine
learning problems. Section 5 discusses the notion of hybrid vari-
ational patterns, which are at the core of hybrid algorithms for
quantum optimization, machine learning, and simulation problems.
Finally, Section 6 concludes with a call for quantum software engi-
neering skills.

2 THE HYBRID QUANTUM TOOLKIT
In Chapter 3 of the famous Consensus Study Report on Quantum
Computing [32], the term basic quantum building block refers to
quantum algorithms with exponentially better performance than
classical algorithms. Here we expand the term to hybrid quantum
building blocks (or hybrid toolkit for short) to include quantum al-
gorithms that solve problems that lend themselves as sub-problems
frequently used in a larger context, and provide an asymptotic
speedup to its classical counterparts in general, as opposed to expo-
nential speed-up only. A number of these hybrid quantum building
blocks—core library routines—are useful for solving many (quan-
tum) problems.

Building blocks are elements of the hybrid toolkit that also in-
cludes algorithmic and architectural design patterns. Examples of
such powerful building blocks are quantum phase estimation (QPE),
Grover’s search, variational quantum eigensolver (VQE), variational
quantum factoring (VQF) [4], and linear equation solvers [33, 46].

Famous techniques in the hybrid quantum toolkit include quantum
approximate optimization algorithms (QAOA) [25], hybrid variants
of classical algorithm-design techniques or design patterns (e.g.,
[3, 23]), hybrid variational algorithms (Section 5), and the quantum
support vector machine (QSVM) [60]. Over the past decade, QPE,
VQE, and QAOA have emerged as the most significant near-term
building blocks and techniques for NISQ systems. [70].

Quantum Phase Estimation. QPE is the workhorse behind many
quantum algorithms [55]. QPE, which is enabled by the quantum
Fourier transform (QFT) [13], approximates the eigenvalue asso-
ciated with a given eigenvector of a unitary operator. The long
coherence times needed for QPE can be mitigated through a hybrid
approach. The QPU is used as a state preparation and measurement
routine while the CPU processes the measurement updates from the
quantum circuit. QPE has numerous applications in the quantum
problem-solving realm. For example, it is a key component of the
order-finding and factoring algorithms. Shor’s algorithm [68] is
expected to be a serious threat to popular public-key systems that
we rely on to secure information [11]. The VQF algorithm [4] is a
promising near-term alternative to Shor’s algorithm.

Grover’s Search and Variants. One of the most famous building
blocks is Grover’s search [30]. Because searching is such a funda-
mental operation, the quantum search algorithm by Grover is used
as a subroutine in many different contexts. Given 𝑛 unstructured
elements, it finds a specific item in 𝑂 (

√
𝑛) time as opposed to the

classical Θ(𝑛) algorithm, a quadratic speedup. The quantum algo-
rithm is based on a black-box transformation and phase kick-back—
both are concepts that are used in other foundational quantum
algorithms including the Deutsch-Jozsa algorithm [19] and QPE.
Important variants of Grover’s search are the quantum algorithm
for finding the minimum in an unstructured set [24], quantum
partial search [31], and quantum random walk algorithms [67].

Hybrid Variational Quantum Eigensolver. VQE is a hybrid algorithm
that computes the lowest eigenvalue of a Hermitian matrix or a
Hamiltonian 𝐻 [39, 58]. VQE algorithms are based on the varia-
tional method of quantum mechanics, which states that for a given
𝐻 its expectation value must be greater than or equal to the lowest
possible eigenvalue. VQE approximates solutions by decomposing
an exponential-sized optimization problem and executing a poly-
nomial number of quantum sub-problems. Hamiltonian 𝐻 can be
expressed as a set of terms that are realized as separate quantum
circuits. The expectation values of its parts are then summed up
classically to compute the expectation value of 𝐻 . The initial states
for these circuits are selected from a set of states based on an ansatz
and are generated by a parameterized circuit. The parameters for
the state preparation circuit are computed in a classical optimiza-
tion loop that minimizes the expectation value of 𝐻 . Compared
to QPE circuits, the depths of the VQE circuits are considerably
smaller, which is a big advantage in the NISQ era. Progress in com-
putational quantum chemistry and optimization has been driven
largely by VQE [39]. Many VQE applications are in molecule simu-
lation [39, 50], where the lowest possible eigenvalue represents the
ground state energy of the molecule. VQE also applies to hybrid
machine learning and combinatorial optimization.

248

HybridQuantum-Classical Problem Solving in the NISQ Era CASCON 2020, November 2020, Toronto, Ontario, Canada

Hybrid Harrow Hassidim Lloyd. Another useful quantum algorithm
is the Harrow Hassidim Lloyd algorithm (HHL) that solves a system
of 𝑛 linear equations in𝑂 (log𝑛) steps [33]. Solving a system of lin-
ear equations is central to many optimization problems. Aaronson
outlines ways of using the HHL algorithm in machine learning [2].

Lee et al. [46] propose a hybrid variational variant of the HHL
algorithm to solve linear equations on NISQ systems by optimiz-
ing the quantum circuit. While the quantum circuit for the HHL
algorithm consists of a quantum phase estimation part and an
ancilla quantum encoding part, followed by an inverse quantum
phase estimation, the proposed hybrid algorithm first repeatedly
performs QPE to obtain 𝑘-bit classical information of eigenvalues.
Then, it follows up with a classical routine that analyzes measure-
ment outcomes from the first step. Based on the analyzed data;
it then determines which simpler circuit implementation of the
original ancilla quantum encoding part is applicable. Finally, the
algorithm performs the original HHL algorithm with the reduced
ancilla quantum encoding part instead of the original one.

Infrastructure for Hybrid Approaches. Basic linear algebra subpro-
grams (BLAS) comprises a set of tools describing subroutines for
basic linear algebra such as matrix multiplication, dot product, and
cross-product. Biamonte et al. [8] refer to quantum algorithms for
linear algebra tasks as qBLAS or quantum BLAS. These subroutines
are provided by quantum software libraries, such as IBM Qiskit &
Aqua [36] or Microsoft Q# & QDK, which include implementations
of fundamental quantum algorithms such as QPE, Grover, VQE,
and HHL, and support for techniques such as QAOA and QSVM.
These are eminently useful in developing practical hybrid solutions.
Xanadu supports photonic computing through Strawberry Fields
and quantum machine learning through PennyLane [7]. Rigetti of-
fers quantum cloud services (QCS) including parametric compilation,
active qubit reset for improving performance, and co-located CPUs
and QPUs, which are useful for optimizing hybrid and variational
algorithms [40]. D-Wave offers access to hybrid quantum annealing
through the software frameworks Ocean SDK & Leap allowing
developers to work on quantum and classical systems in parallel.
D-Wave also provides quantum variational autoencoders (QVAEs)
to accelerate machine learning tasks [42]. Honeywell and IonQ
provide access to their trapped-ion computers through Microsoft
Azure Quantum and Amazon Braket.

Hybrid quantum-classical computations are increasingly sup-
ported by hybrid architectures. In many ways, the development
of hybrid architectures with dedicated quantum processing units
(QPUs) is similar to the evolution of graphics hardware accelerators
such as graphical processing units (GPUs), which are tightly inte-
grated into HPC platforms to tackle computationally data-intensive
problems. The race is on to develop hardware-agnostic software
models at different levels of abstraction to program hybrid solutions
effectively. One of the most prominent frameworks is eXtreme-scale
ACCelerator programming (XACC) [51], an open-source, hybrid
programming model developed at Oak Ridge National Laboratories
(ORNL), designed to enhance classical software workflows with
near-term QPUs.

3 DESIGNING HYBRID ALGORITHMS
Since the 1980s (e.g. [17]) many computational optimization and
decision problems have been studied with the goal to design quan-
tum algorithms that exhibit a significant speedup over their best
classical solutions. Today, in addition to quantum algorithms for
computational problems, which produce exact solutions with high
probability but are not practical to run on today’s NISQ systems for
even moderate input sizes, there are hybrid approaches that com-
bine quantum and classical computing. The approaches to optimiza-
tion or decision problems range from heuristic hybrid algorithms
that quantum annealing and are designed for special-purpose quan-
tum computers, to the design of specific hybrid algorithms that
produce solutions that are, with high probability, exact solutions.

Approximate & heuristic hybrid techniques. Quantum annealing is
an optimization technique that was formulated in 1998 by Kad-
owaki and Nishimori [38]. It is a heuristic used for finding a global
minimum of a given objective function using quantum fluctuation
based computation. Adiabatic quantum computing (based on the
adiabatic theorem [9]) is a form of quantum computing that relies
on a particular kind of quantum annealing. D-Wave announced the
first quantum annealer in 2011 [37]—a special-purpose quantum
computer that, through quantum annealing, can only be used for
problems defined as energy minimization. Santoro and Tosatti [62]
outline applications of quantum annealing in the area of hard opti-
mization problems, including the traveling salesperson (TSP) and
the Boolean satisfiability problem. Tran et al. [72] propose a hybrid
heuristic framework, which uses quantum annealing as part of a
complete search when tackling scheduling optimization problems.

QAOA embodies a technique using the variational method that
enables approximation algorithms for combinatorial optimization
problems [25]. One of its main features is the ability to control the
depth of the quantum circuits required by the algorithm, so that,
in principle, one can restrict the algorithm to shallow quantum
circuits while sacrificing solution quality.

Speeding up Classical Algorithms for Optimization Problems. Good
candidate problems for potential speed-up are members of classes of
computational problems for which no classical algorithm is known
to solve the problem faster than a certain exponential time. As
example serve the NP-complete problems for which exact solutions
are desired. While there is no expectation to solve an NP-complete
problem using a quantum algorithm in polynomial time [1], it is
worthwhile investigating how to combine quantum routines with
classical problem-solving strategies to speed up solutions for such
problems and in turn enable faster practical implementations.

Tran et al. [72] advocate that “an effective approach to solving com-
plex problems is to decompose them and integrate dedicated solvers for
those sub-problems.” While hybrid algorithms can be used to realize
such strategy, by decomposing the problem on the CPU, and invok-
ing quantum building blocks on the QPU, or by solving sufficiently
small sub-problems directly. This approach is highly appropriate
for NISQ systems. Also, classical algorithm design-techniques such
as divide-and-conquer and dynamic programming make use of the
idea to solve smaller sub-problems and then combining those to so-
lutions for the problem instance. Also, subroutines such as a search
or sorting are taking advantage of solving smaller sub-problems as

249

CASCON 2020, November 2020, Toronto, Ontario, Canada Angara, et al.

part of a larger algorithm. Can such ideas be realized for designing
hybrid algorithms for NP-complete problems?

Since NP-complete problems typically can be solved using a
brute-force search, Grover’s search algorithm can be applied to
achieve a quadratic speedup of the brute-force algorithm. More
efficient strategies involve exact methods to solve NP-complete
problems including dynamic programming [5, 35, 74], divide and
conquer [3, 29], and other methods in the toolkits of exact algo-
rithms [28] and fixed-parameter tractability [16, 21].

For a number of fixed-parameter algorithms that consist of a
kernelization step (i.e., a polynomial-time pre-processing algorithm
that reduces the given decision problem to a (smaller) one that has a
size that depends on a given fixed-parameter instead of the original
input size), followed by a brute-force Grover’s search, would achieve
a speedup over the classical running time. However, in many cases
applying Grover’s search to speed up an existing sophisticated
exponential-time algorithm is difficult.

Ambainis et al. [3] describe how to apply Grover’s search [30] or
its variant of finding a minimum item in a set [24] to speedup partic-
ular exponential-time dynamic-programming algorithms, for exam-
ple for the NP-complete problems Hamiltonian Circuit, TSP [5, 35]
or Minimum Set Cover [28]. What these dynamic-programming
approaches have in common is that they solve subproblems cor-
responding to subsets of an 𝑛-element set. Such a dynamic pro-
gramming approach in its most basic form typically runs in expo-
nential time in the size of the input. The achieved dynamic pro-
gramming quantum speed-up relies on pre-computing solutions for
sub-problems of a specific size (e.g., say, a quarter of the original
instance size) using the classical dynamic programming algorithm,
followed by searching—on the remaining subsets—for an answer to
the problem using a quantum search in the pre-computed answers
for the sub-problems. With their approach, they can improve upon
the famous algorithm by Bellman, Held, and Karp from 1962, which
is still state of the art for general TSP instances.

While in quantum dynamic programming algorithms as de-
scribed by the approach above, “quantum power” is used in a top
down manner by applying Grover’s search to large sets of pre-
computed solutions of sub-problems, a bottom up approach is used
in a framework of hybrid divide and conquer algorithms: Ge and
Dunjko [29] describe the technique by generalizing the specific
quantum algorithm [22] that solves the problem 3SAT by introduc-
ing a quantum version of Schöning’s algorithm [63], and is designed
specifically to work on small quantum devices. They show that ap-
plying a quantum algorithm to small sub-problems of a specific
size (e.g., a quarter of the original input size) in the divide-and-
conquer method yields a polynomial speed-up that is achievable
using quantum computers with only a few qubits, and therefore
such an algorithm can be run on NISQ systems. Note that for this
general hybrid divide-and-conquer approach, a quantum algorithm
solving the problem in question is necessary to be executed on
sufficiently small sub-instances.

4 HYBRID QUANTUM MACHINE LEARNING
In 2001, Gupta et al. proposed a mathematical model of compu-
tation called Quantum Neural Network (QNN), which is based on
Deutsch’s model of computational networks [18]. Since then, the

fields of quantum computing and classical machine learning have
exploded [8, 75]. With the advent of NISQ systems, using quan-
tum computing for machine learning has been revisited in the
past decade. Conversely, the well-established classical machine
learning methods help extend and improve quantum information
theory [66]. Schuld and Killoran [65] outline similarities between
kernel methods in machine learning and quantum computing and
lay the theoretical foundations of quantum machine learning (QML).
Classical machine learning (CML) is classified into supervised learn-
ing, unsupervised learning, and reinforcement learning. Quantum
computing can play a role in different parts of the ML pipeline.

Recently, deep learning techniques have lead to breakthroughs
in the analysis of vision, text, audio, and speech [45]. These tech-
niques rely on vectors and tensors that are transformed from one
representation to a high dimensional representation where complex
functions can be learned. These computational units are continuous
and are currently only approximated on classical computers. One
area of research is investigating whether the continuous nature of
quantum computers can be leveraged to perform computations with
continuous tensors and vectors. Unlike qubit-based quantum com-
puters, the continuous model leverages the wave-like properties of
nature. Killoran et al. describe quantum neural networks that use
the Continuous-Variable (CV) model [43]. Here, instead of encoding
quantum states as qubits, quantum states are encoded as electro-
magnetic fields. Strawberry Fields [44] is a software framework
that is based on the CV model of quantum computing.

Supervised Machine Learning. Supervised ML uses labeled data to
identify labels for unlabeled data. Supervised ML techniques, such
as classification, have largely satisfactory algorithms in classical
computing [15, 48, 76]. Havlíček et al. address the limitations to
classification problems that have large feature spaces, where kernel
functions are computationally expensive to solve classically [34].
Their methods take advantage of exponentially large quantum
states. Rebentrost et al. [60] introduce a quantum support vector
machine (QSVM) for big-data classification that relies on exponen-
tiation techniques for non-sparse matrices for training with a com-
plexity that is logarithmic in feature size and the number of training
data points (the complexity of the classical SVM is linear in com-
parison). Farhi and Neven [26] describe a generic framework for
implementing QNNs for supervised learning with classical simula-
tion and show that these networks can indeed be used to classify
data but were restricted to about 17 qubits for simulation.

Schuld et al. [64] describe a low depth variational quantum-
classical training scheme for a weak non-linear classification. They
compare this against a purely classical implementation, provide
the mapping of quantum gates to layers of a neural network, and
introduce a quantum dropout regularization scheme. The quantum-
classical implementation (using simulators) performs well on stan-
dard classical benchmark datasets, such asMNIST256 and SEMEION.
However, it is prone to overfitting without regularization.

Unsupervised Machine Learning. Unsupervised ML looks for pat-
terns in a dataset with no pre-existing labels. Perdomo-Ortiz et
al. [57] describe some of the challenges and opportunities for quantum-
assisted ML and argue that the promising “killer” applications in
quantum computing might not come from the well-researched area
of supervised ML, but rather from the areas the classical ML faces

250

HybridQuantum-Classical Problem Solving in the NISQ Era CASCON 2020, November 2020, Toronto, Ontario, Canada

challenges, such as unsupervised and semi-supervised learning. Ot-
terbach et al. [56] describe a hybrid approach to solving clustering
problems using QAOA. They leverage the statistical distributions
that are available on quantum computers to improve performance
in clustering. QAOA has also been used for generative models of ML.
Verdon et al. describe such a low-depth hybrid algorithm for gener-
ative neural network learning [73]. Related research includes the
use of quantum annealers for the implementation of QML, which
is limited by the sparse connectivity among qubits in the physical
hardware. Benedetti et al. address this challenge demonstrating
the feasibility of using quantum annealers for implementing unsu-
pervised ML models [6]. Lloyd et al. provide an overview of some
hybrid paradigms for cluster assignment and cluster finding [47].
The authors describe algorithms where quantum speedups can oc-
cur in different parts of the ML pipeline especially for “big quantum
data.” They provide algorithms for exponential speedups (compared
to their classical counterparts) in estimating distances and inner
products. For unsupervised techniques, such as clustering, their
clustering algorithm exhibits an exponential speedup as opposed
to the classical counterpart.

Reinforcement Learning. Reinforcement learning is an ML paradigm
that studies how (software) agents take actions to maximize the
cumulative reward. Reinforcement learning differs from supervised
and unsupervised techniques—the focus is on balancing exploration
(discovering unchartered territory) and exploitation (usage of the
agents’ current knowledge). Using hybrid algorithms for reinforce-
ment learning is a recent field of study, due to Dong et al. [20],
who showed promising results in this area—they found a good
trade-off between exploration and exploitation that speeds up the
learning process. Dunjko et al. [23] describe quantum-accessible
reinforcement learning for certain game playing scenarios where
the games have a recursive structure and the agent can learn by
playing against itself. Examples of such games include AlphaGo
and AlphaGo Zero, which have been studied extensively in classical
reinforcement learning [69].

5 HYBRID VARIATIONAL ALGORITHMS
Over the past decade, key quantum algorithms emerged for op-
timization, machine learning, and simulation problems. Popular
gems include VQE [58], QAOA [25], and identifying classifiers in
machine learning [64].

At the core of these algorithms are the variational principle &
method and the notion of a hybrid quantum-classical variational
algorithm, which together represent one of the most promising and
practical algorithmic patterns or frameworks for near-term NISQ
systems.

As for any other hybrid approach, variational quantum algo-
rithms (VQA) involve iterating between a CPU and a QPU. The
variational quantum circuit on the QPU gets parameters as inputs
from the CPU and delivers expectation values as outputs back to the
CPU. A classical optimization loop, minimizing a cost function and
executing on the CPU, drives the hybrid algorithm by repeatedly
feeding revised parameters to the variational quantum circuit.

VQAs have been proposed for many different applications [12],
including computational quantum chemistry and molecule simu-
lation [39, 50], computationally hard combinatorial optimization

problems [41, 72], such as MaxCut, Scheduling, TSP, and Knapsack,
linear algebra problems [77] including solving systems of linear
equations [46], integer factoring [4], and machine learning [64].

6 CONCLUSIONS
Now that a quantum technology industry has emerged in the NISQ
era with QPUs, QDKs, algorithmic toolkits including practical vari-
ational algorithms and circuits for the near-term, it is imperative
that we also focus on quantum software engineering before being
overwhelmed with a quantum software crisis as we faced for clas-
sical computing in 1968 when the term software engineering was
coined [53].

In their inspiring 2017 paper, Rigetti engineers [78] argued con-
vincingly that “we need a new breed of quantum programmer to
study and implement quantum software—with a skillset between that
of a quantum information theorist and a software engineer.” Scientist
and engineers, who implement hybrid quantum-classical toolkits,
algorithms, frameworks, architectures, and platforms, need not
only quantum information skills but also software engineering and
domain-specific application skills.

This paper aimed to outline the landscape of hybrid quantum-
classical problem solving for NISQ systems. After presenting funda-
mental building blocks for hybrid problem solving and algorithms,
we described hybrid approaches for solving quantum optimization,
simulation, and machine learning problems. The most promising
and practical avenue in the quest to achieve quantum advantage
in the NISQ era is called hybrid quantum-classical variational algo-
rithms and circuits. In summary, this paper provides solid starting
points for researchers interested in experimenting with practical
hybrid quantum-classical problem-solving approaches, especially
variational ones, for different application domains. Software engi-
neering skills are critical for building and generating the infrastruc-
ture for highly scaleable hybrid quantum-classical ecosystems.

REFERENCES
[1] S. Aaronson. 2013. Quantum computing since Democritus. Cambridge Univ. Press.
[2] S. Aaronson. 2015. Read the fine print. Nature Phys. 11, 4 (2015), 291–293.
[3] A. Ambainis, K. Balodis, J. Iraids, M. Kokainis, K. Prūsis, and J. Vihrovs. 2019.

Quantum Speedups for Exponential-Time Dynamic Programming Algor.. In
Proc. 30th Ann. ACM-SIAM Symp. on Discr. Algor. (SODA). ACM, 1783–1793.

[4] E. R. Anschuetz, J. P. Olson, A. Aspuru-Guzik, and Y. Cao. 2018. Variational
Quantum Factoring. arXiv:1808.08927

[5] R. Bellman. 1962. Dynamic Programming Treatment of the Travelling Salesman
Problem. J. ACM 9, 1 (1962), 61–63.

[6] M. Benedetti, J. Realpe-Gómez, R. Biswas, and A. Perdomo-Ortiz. 2017.
Quantum-assisted learning of hardware-embedded probabilistic graphical models.
Phys. Rev. X 7, 4 (2017), 52–54.

[7] V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, M. S. Alam, S. Ahmed, J. M. Arrazola,
C. Blank, A. Delgado, S. Jahangiri, K. McKiernan, J. J. Meyer, Z. Niu, A. Száva,
and N. Killoran. 2018. PennyLane: Automatic differentiation of hybrid quantum-
classical computations. arXiv:1811.04968

[8] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd. 2017.
Quantum Mach. Learn. Nature 549, 7671 (2017), 195–202.

[9] M. Born and V. Fock. 1928. Beweis des Adiabatensatzes. Matrix 6 (1928).
[10] S. Bravyi, D. Gosset, and R. König. 2018. Quantum advantage with shallow

circuits. Science 362, 6412 (2018), 308–311.
[11] W. Buchanan and A. Woodward. 2017. Will quantum computers be the end of

public key encryption? J. Cyber Sec. Techn. 1, 1 (2017), 1–22.
[12] M. Cerezo, K. Sharma, A. Arrasmith, and P. J. Coles. 2020. Variational Quantum

State Eigensolver. arXiv:2004.01372
[13] D. Coppersmith. 2002. An approximate Fourier transform useful in quantum

factoring. arXiv:0201067
[14] A. D. Corcoles, A. Kandala, A. Javadi-Abhari, D. T. McClure, A. W. Cross, K.

Temme, P. D. Nation, M. Steffen, and J. M. Gambetta. 2019. Challenges and

251

https://arxiv.org/abs/1808.08927
https://arxiv.org/abs/1811.04968
https://arxiv.org/abs/2004.01372
https://arxiv.org/abs/0201067

CASCON 2020, November 2020, Toronto, Ontario, Canada Angara, et al.

Opportunities of Near-Term Quantum Comp. Systems. Proc. of the IEEE (2019),
1–15.

[15] C. Cortes and V. Vapnik. 1995. Support-vector networks. Machine learning 20, 3
(1995), 273–297.

[16] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M.
Pilipczuk, and S. Saurabh. 2015. Parameterized Algorithms. Springer.

[17] D. Deutsch. 1985. Quantum theory, the Church-Turing principle and the universal
quantum computer. Proc. R. Soc. Lond. 400 (1985), 97–117.

[18] D. Deutsch. 1989. Quantum computational networks. Proc. R. Soc. Lond. 425
(1989), 73–90.

[19] D. Deutsch and R. Jozsa. 1992. Rapid solution of problems by quantum computa-
tion. Proc. R. Soc. Lond. 439 (1992), 553–558.

[20] D. Dong, C. Chen, H. Li, and T. J. Tarn. 2008. Quantum reinforcement learning.
IEEE Trans. Systems, Man, and Cybern. 38, 5 (2008), 1207–1220.

[21] R. Downey, M. Fellows, and U. Stege. 1998. Parameterized Complexity: A Frame-
work for Systematically Confronting Computational Intractability. DIMACS
Ser. in Discr. Mathem. and TCS 49 (1998).

[22] V. Dunjko, Y. Ge, and J. I. Cirac. 2018. Computational Speedups Using Small
Quantum Devices. Phys. Rev. Lett. 121, 25 (2018).

[23] V. Dunjko, Y.-K. Liu, X. Wu, and J. M. Taylor. 2017. Exponential improvements
for quantum-accessible reinforcement learning. (2017). arXiv:1710.11160

[24] C. Dürr and P. Høyer. 1996. A Quantum Algorithm for Finding the Minimum.
CoRR 9607014 (1996).

[25] E. Farhi, J. Goldstone, and S. Gutmann. 2014. A Quantum Approximate Optimiza-
tion Algorithm. arXiv:1411.4028

[26] E. Farhi and H. Neven. 2018. Classification with quantum neural networks on
near perm processors. (2018). arXiv:1802.06002

[27] R. P. Feynman. 1982. Simulating physics with computers. Int. J. Theor. Phys. 21,
6–7 (1982), 467–488.

[28] F. V. Fomin and D. Kratsch. 2010. Exact Exponential Algorithms. Springer.
[29] Y. Ge and V. Dunjko. 2020. A hybrid algorithm framework for quantum computers

with application to finding Hamiltonian cycles. J. Math. Phys. 61 (2020).
[30] L. K. Grover. 1996. A fast quantum mechanical algorithm for database search. In

Proc. 28th Ann. ACM Symp. on Theory of Computing (STOC 1996). 212–219.
[31] L. K. Grover and J. Radhakrishnan. 2005. Is Partial Quantum Search of a Database

Any Easier?. In Proc. 17th Ann. ACM Symp. Parallel. in Alg. and Arch. 186–194.
[32] E. Grumbling and M. Horowitz (Eds.). 2019. Quantum Computing: Progress and

Prospects (2019). National Academies of Sciences, Engineering, and Medicine.
The National Academies Press. https://doi.org/10.17226/25196

[33] A. W. Harrow, A. Hassidim, and S. Lloyd. 2009. Quantum algorithm for linear
systems of equations. Phys. Rev. Lett. 103, 150502 (2009).

[34] V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow,
and J. M. Gambetta. 2019. Supervised learning with quantum-enhanced feature
spaces. Nature 567, 7747 (2019), 209–212.

[35] M. Held and R. M. Karp. 1961. A Dynamic Programming Approach to Sequencing
Problems. In Proc. 16th ACM National Meeting. 201–204.

[36] IBM Quantum Experience. [n.d.]. Qiskit Aqua: Algorithms for quantum comput-
ing applications. https://qiskit.org/aqua/

[37] M.W. Johnson, M. H. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris,
A. J. Berkley, J. Johansson, P. Bunyk, E. M. Chapple, C. Enderud, J. P. Hilton, K.
Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M. C. Thom,
E. Tolkacheva, C. J. Truncik, S. Uchaikin, J. Wang, B. Wilson, and G. Rose. 2011.
Quantum annealing with manufactured spins. Nature 473, 7346 (2011), 194–198.

[38] T. Kadowaki and H. Nishimori. 1998. Quantum annealing in the transverse Ising
model. Phys. Rev. E 58, 5 (1998), 5355–5363.

[39] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M.
Gambetta. 2017. Hardware-efficient variational quantum eigensolver for small
molecules and quantum magnets. Nature 549, 7671 (Sep 2017), 242–246.

[40] P. J. Karalekas, N. A. Tezak, E. C. Peterson, C. A. Ryan, M. P. da Silva, and R. S.
Smith. 2020. A quantum-classical cloud platform optimized for variational hybrid
algorithms. Quantum Sci. Techn. 5, 2 (2020), 024003.

[41] S. Khairy, R. Shaydulin, L. Cincio, Y. Alexeev, and P. Balaprakash. 2019. Learn-
ing to optimize variational quantum circuits to solve combinatorial problems.
arXiv:1911.11071

[42] A. Khoshaman, W. Vinci, B. Denis, E. Andriyash, H. Sadeghi, and M. H. Amin.
2018. Quantum variational autoencoder. Quantum Sci. Techn. 4, 1 (2018), 014001.

[43] N. Killoran, T. Bromley, J. Arrazola, M. Schuld, N. Quesada, and S. Lloyd. 2019.
Continuous-variable quantum neural networks. Phys. Rev. Res. 1, 3 (2019), 1–21.

[44] N. Killoran, J. Izaac, N. Quesada, V. Bergholm, M. Amy, and C. Weedbrook.
2019. Strawberry Fields: A Software platform for photonic quantum computing.
Quantum 3 (2019), 129.

[45] Y. Lecun, Y. Bengio, and G. Hinton. 2015. Deep learning. Nature 521, 7553 (2015),
436–444.

[46] Y. Lee, J. Joo, and S. Lee. 2019. Hybrid quantum linear equation algorithm and its
experimental test on IBM Quantum Experience. Nature Scient. Reports 9 (2019).

[47] S. Lloyd, M.Mohseni, and P. Rebentrost. 2013. Quantum algorithms for supervised
and unsupervised machine learning. arXiv:1307.0411

[48] M. E. Maron. 1961. Automatic indexing: An experimental inquiry. J. ACM 8, 3
(1961), 404–417.

[49] M.Martonosi andM. Roetteler. 2019. Next Steps in Quantum Computing: Computer
Science’s Role. Technical Report. Computing Community Consortium (CCC).

[50] S. McArdle, S. Endo, A. Aspuru-Guzik, S. Benjamin, and X. Yuan. 2020. Quantum
computational chemistry. Rev. Mod. Phys. 92, 1 (2020), 015003.

[51] A. J. McCaskey, D. I. Lyakh, E. F. Dumitrescu, S. S. Powers, and T. S. Humble. 2019.
XACC: A System-Level Software Infrastructure for Heterogeneous Quantum-
Classical Computing. Quantum Sci. Techn. 5, 2 (2019), 024002.

[52] A. J. McCaskey, Z. P. Parks, J. Jakowski, S. V. Moore, T. D. Morris, T. S. Humble, and
R. C. Pooser. 2019. Quantum chemistry as a benchmark for near-term quantum
computers. npj Quantum Inf. 5 (2019), 99.

[53] P. Naur and B. Randell. 1968. Software Engineering: A Report on a Conference
Sponsored by the NATO Science Committee.

[54] M. A. Nielsen and I. L. Chuang. 2011. Quantum Computation and Quantum
Information. Cambridge University Press.

[55] T. E. O’Brien, B. Tarasinski, and B. M. Terhal. 2019. Quantum phase estimation
of multiple eigenvalues for small-scale (noisy) experiments. New J. Phys. 21, 2
(2019), 023022:1–28.

[56] J. S. Otterbach, R. Manenti, N. Alidoust, A. Bestwick, M. Block, B. Bloom, S.
Caldwell, N. Didier, E. S. Fried, S. Hong, P. Karalekas, C. B. Osborn, A. Papageorge,
E. C. Peterson, G. Prawiroatmodjo, N. Rubin, C. A. Ryan, D. Scarabelli, M. Scheer,
E. A. Sete, P. Sivarajah, R. S. Smith, A. Staley, N. Tezak, W. J. Zeng, A. Hudson,
B. R. Johnson, M. Reagor, M. P. da Silva, and C. Rigetti. 2017. Unsupervised
machine learning on a hybrid quantum computer. (2017). arXiv:1712.05771

[57] A. Perdomo-Ortiz, M. Benedetti, J. Realpe-Gómez, and R. Biswas. 2018. Oppor-
tunities and challenges for quantum-assisted machine learning in near-term
quantum computers. Quantum Sci. Technol. 3, 3 (2018), 30502.

[58] A. Peruzzo, J. McClean, P. Shadbolt, M. H. Yung, X. Q. Zhou, P. J. Love, A. Aspuru-
Guzik, and J. L. O’Brien. 2014. A variational eigenvalue solver on a photonic
quantum processor. Nature Communications 5 (2014).

[59] J. Preskill. 2018. Quantum Computing in the NISQ era and beyond. Quantum 2
(2018), 79.

[60] P. Rebentrost, M. Mohseni, and S. Lloyd. 2014. Quantum support vector machine
for big data classification. Phys. Rev. Lett. 113, 3 (2014), 1–5. arXiv:1307.0471

[61] D. Ristè, M. Silva, C. Ryan, A. Cross, J. Smolin, J. Gambetta, J. Chow, and B.
Johnson. 2017. Demonstration of quantum advantage in machine learning. npj
Quantum Information 3 (2017), 1–5.

[62] G. E. Santoro and E. Tosatti. 2006. Optimization using quantum mechanics:
Quantum annealing through adiabatic evolution. J. Phys. 39, 36 (2006).

[63] U. Schöning. 1999. A Probabilistic Algorithm for K-SAT and Constraint Satisfac-
tion Problems. In Proc. 40th Ann. Symp. Found. of Comp. Sci. (FOCS). 410.

[64] M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe. 2020. Circuit-centric quantum
classifiers. Phys. Rev. A 101, 3 (2020).

[65] M. Schuld and N. Killoran. 2019. Quantum machine learning in feature Hilbert
spaces. Phys. Rev. Lett. 122, 4 (2019), 40504:1–12.

[66] M. Schuld, I. Sinayskiy, and F. Petruccione. 2015. An introduction to quantum
machine learning. Contemp. Phys. 56, 2 (2015), 172–185.

[67] N. Shenvi, J. Kempe, and K. B. Whaley. 2003. Quantum random-walk search
algorithm. Phys. Rev. A 67, 5 (2003), 052307:1–7.

[68] P. W. Shor. 1994. Algorithms for quantum computation: Discrete logarithms and
factoring. In Proc. 35th Ann. Symp. Found. of Comp. Sci. (FOCS). 124–134.

[69] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T.
Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. Van
Den Driessche, T. Graepel, and D. Hassabis. 2017. Mastering the game of Go
without human knowledge. Nature 550, 7676 (2017), 354–359.

[70] M. Stechly. 2019. Variational Quantum Eigensolver Explained. https://www.
mustythoughts.com/variational-quantum-eigensolver-explained

[71] R. Sutor, T. Hickey, and L. Feller. 2018. Taking the quantum leap. https://www.
ibm.com/thought-leadership/institute-business-value/report/quantumleap

[72] T. T. Tran, M. Do, E. G. Rieffel, J. Frank, Z. Wang, B. O’Gorman, D. Venturelli, and
J. C. Beck. 2016. A Hybrid Quantum-Classical Approach to Solving Scheduling
Problems. In Proc. 9th Int. Symp. Comb. Search (SoCS). 1–9.

[73] G. Verdon, M. Broughton, and J. Biamonte. 2017. A quantum algorithm to train
neural networks using low-depth circuits. (2017). arXiv:1712.05304

[74] X. Wang and J. Tian. 2011. Dynamic Programming for NP-Hard Problems.
Procedia Engineering 15 (2011), 3396–3400.

[75] P. Wittek. 2014. Quantum machine learning: What quantum computing means to
data mining. Academic Press.

[76] X. Wu, V. Kumar, Q. J. Ross, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A.
Ng, B. Liu, P. S. Yu, Z. H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg. 2008.
Top 10 algorithms in data mining. Knowledge and Inf. Syst. 14, 1 (2008), 1–37.

[77] X. Xu, J. Sun, S. Endo, Y. Li, S. C. Benjamin, and X. Yuan. 2019. Variational
algorithms for linear algebra. arXiv:1909.03898

[78] W. Zeng, B. Johnson, R. Smith, N. Rubin, M. Reagor, C. Ryan, and C. Rigetti. 2017.
First quantum computers need smart software. Nature 549 (09 2017), 149–151.

252

https://arxiv.org/abs/1710.11160
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1802.06002
https://doi.org/10.17226/25196
https://qiskit.org/aqua/
https://arxiv.org/abs/1911.11071
https://arxiv.org/abs/1307.0411
https://arxiv.org/abs/1712.05771
https://arxiv.org/abs/1307.0471
https://www.mustythoughts.com/variational-quantum-eigensolver-explained
https://www.mustythoughts.com/variational-quantum-eigensolver-explained
https://www.ibm.com/thought-leadership/institute-business-value/report/quantumleap
https://www.ibm.com/thought-leadership/institute-business-value/report/quantumleap
https://arxiv.org/abs/1712.05304
https://arxiv.org/abs/1909.03898

Workshops
CASCON x EVOKE 2020

253

1st Workshop on AIOps and Systems Compliance
Kostas Kontogiannis

University of Western Ontario
London, ON., Canada
kostas@csd.uwo.ca

Alberto Giammaria
IBM

Austin, TX., USA
agiammar@us.ibm.com

Chris Brealey
IBM

Toronto, ON., Canada
cbrealey@ca.ibm.com

Marios Grigoriou
University of Western Ontario

London, ON., Canada
mgrigori@uwo.ca

ABSTRACT
Over the past two years we have seen a growth on AIOps. AIOps is
the area of software engineering which aims to apply Artificial In-
telligence on IT operations and on the big data which are harvested
from different IT systems across an organisation. AIOps comes as
a direct response to the dire need to break the siloed approach to
IT operations in order to support a holistic system analysis which
allows not only for the identification and proactive or even predic-
tive resolution of issues, but also for assessing the compliance of a
system against certain policies such as policies related to safety, se-
curity, and regulatory. This workshop brought together researchers
and practitioners to discuss the latest developments on AIOps and
system compliance and identified key challenge issues.

CCS CONCEPTS
• Software and its engineering → Software verification and vali-
dation; Development frameworks and environments;

KEYWORDS
Software bug prediction, machine learning, code repositories, soft-
ware metrics

ACM Reference Format:
Kostas Kontogiannis, Alberto Giammaria, Chris Brealey, and Marios
Griogriou. 2020. 1st Workshop on AIOps and Systems Compliance. In
CASCON Evoke 2020: 30st Annual International Conference on Computer
Science and Software Engineering, November 10-13, 2020, Markham, Ontario,
Canada. IBM Corp., Riverton, NJ, USA, 2 pages.

1 INTRODUCTION
Large software systems encompass complex interactions among
their components and are subjected to frequent maintenance ac-
tivities applied in order to fix bugs, add new functionality, port to
new platforms, or interoperate with other systems. An important
issue to consider, is how such activities can be achieved in a way
that first minimizes the risk of failures, and second how these main-
tenance activities can be integrated in a continuous deployment

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work must be honored.
For all other uses, contact the owner/author(s).
CASCON 2020, November 10-13, 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

(CD) / continuous integration (CI) DevOps process. One major as-
pect on achieving this objective is to identify and remediate early
on, possible vulnerabilities which are manifested as violations of
known published controls. The solution to this problem is even
more important for large scale systems such as federal enterprise
information systems. In this respect, a key part of the certification
and accreditation process for large enterprise information systems
is selecting and implementing a subset of the controls (safeguards)
from the Security Control Catalog (see NIST 800-53 vulnerabilities
controls list). Another part is the mining of run-time data and the
consequent analysis and reasoning on such data so that issues can
be identified before they occur and move from a reactive process
dealing with compliance and system vulnerabilities to a proactive
process where issues are identified and resolved proactively or
even predictively. This workshop brought together researchers and
practitioners in order to discuss and debate the state-of-the-art and
state-of-practice techniques for modeling information collected
from diverse logging and monitoring infrastructures, techniques
for analysing run-time data to proactively identify and resolve risks,
and techniques to assess the compliance against policies aiming
to avoid security risks and known vulnerabilities, achieving thus a
state we refer to as "Continuous Compliance".

2 WORKSHOP TOPIC AREAS
2.1 Modeling of Big IT Data
Modeling, reconciling, and storing data collected from different log-
ging and monitoring tools were topics discussed in the workshop.
The major objective here is to be able to break the siloed approach
in IT where different applications and systems in an organization
have their own data collected and stored in a way that is not easily
shareable with other units so that a holistic analysis across all IT
systems can be performed. More specifically, the issues raised had
to do with a) schemas for modeling data collected from diverse
tools; b) techniques to reconcile collected data including schema
normalization, heuristics related to timestamping, semantics and
informal information, and association mappings between the indi-
vidual logger schemas; c) archiving methods for efficient processing,
including distributed data repositories and; d) identification of noisy
or unrelated data by efficiently filtering big data pools.

2.2 Proactive Issue Identification
Proactive and predictive issue identification were two other topics
discussed in the workshop. These topics pose a number of open

254

Kostas Kontogiannis, Alberto Giammaria, Chris Brealey, and Marios GrigoriouCASCON 2020, November 10 - 13, 2020, Toronto, Canada

problems that require our attention for devising efficient solutions
for. First, we need to devise techniques to predictively identify is-
sues and warn system operators of the possibility of a violation or
failure. In this respect, the attendees discussed the use of reasoning
techniques, AI, and modeling frameworks which can be used to
associate the possible root causes with system behavior. The major
challenge here is how to identify system states or system behavior
which can elude that an imminent failure, violation, or risky situa-
tion can arise. In order to address this challenge one has not only
to go over large volumes of logged data at real or near real-time,
but also to identify those pieces of data and events which are string
predictors of impeding issues.

2.3 Intelligent Issue Resolution
Another area presented and discussed during the workshop was
how to resolve issues arising during system operation. The atten-
dees debated three major facets of this problem. The first facet has
to do with techniques which can be used to zoom-in the attention
and focus of engineers towards investigating the root cause of a
problem and associating root causes with remedial actions. The sec-
ond facet has to do with techniques to proactively and constantly
re-configuring a s ystem s o t hat s ystem s tates w hich c an l ead
to a failure or a security violation can be avoided before they
pose a major threat or violation. Finally, the third facet has to do
with analytics techniques for identifying the most qualified
engineering team or developer to assign an issue for resolution.

2.4 Issue Impact and Risk Determination
The next area discussed in the workshop was how to identify system
vulnerabilities and how to assess and possibly quantify the risk and
potential impact of these vulnerabilities on IT operations. This
was identified as a very challenging area which highly relates to
compliance (see below). The attendees discussed open issues and
challenges that need be addressed. These included a) schemas for
modeling vulnerabilities as these are presented in standard threat
and vulnerability tables (e.g. the NIST 800.53 lists); b) schemas and
structures for modeling complex system component dependencies
and; c) modeling the potential impact an issue or a vulnerability on a
component has on system operations. A key challenge here is to be
able to identify the scope and boundaries a vulnerability can extend
given the operational context system component dependencies, and
business flows.

2.5 Compliance Analysis
Compliance analysis has been identified a s a m ajor i ssue i n
the discussion during the workshop. The problem has been
consid-ered as a multi-faceted one. The first facet is the type of
compliance sought. Here, the attendees identified three major areas
and namely, compliance related to regulatory constraints,
compliance related to service level agreements, and compliance
related to security threats and vulnerabilities. The second facet has
to do with modeling issues and most specifically how policies are
modeled and associated in a way that can facilitate efficient
processing. The third facet deals with the design of reasoning
engines in order to be able to evaluate vulnerability policies against
system data and configuration mod-els. Finally, the fourth facet
relates to the use of analytics for the

prediction of the likelihood a vulnerability can occur on a given
system state or configuration and the estimation of effort requited
to resolve a vulnerability.

3 KEY TAKE-AWAYS
The workshop attendees identified three key short and medium
term challenge topics in the area of AIOPs, as follows:

• Continuous Compliance: The focus here is compliance of
cloud offerings both in the in the production and opera-
tions environment. Continuous compliance can be achieved
through a process where compliance controls are continu-
ously monitored (default time-interval can be 1 day or contin-
uous), and when deviations are detected they are remediated
in a period of time based on the selected baseline-impact and
the control’s severity and priority. Sub-areas here include
a) the automatic detection of anomalous/risky situations;
a) the evaluation of a weighted overall compliance status
or score of a system; c) the compilation of compliance state
related at-a-glance graphs and heat maps and d) the design
of software analytics techniques for failure and vulnerability
prediction.

• Data extraction and modelling: The focus here is the de-
sign and implementation of miners whereby information
extracted from logging and monitoring tools can be rec-
onciled, modelled, and stored for efficient processing. The
objective of such processing id to assess whether compliance
is achieved or not and whether the overall compliance level
indicators deteriorate from one release to the next, or from
one system configuration to another.

• Vulnerabilities assessment reasoning frameworks: The focus
here is to investigate probabilistic or fuzzy reasoning frame-
works in order to assess and quantify the likelihood of com-
pliance violations on a given offering as a function of planned
changes, bug fixes, or feature enhancements.

REFERENCES
[1] IBM AIOps. In https://www.ibm.com/cloud/learn/aiops.
[2] Y. Dang, Q. Lin, P. Huang. 2019. AIOps: Real-World Challenges and Research Inno-

vations. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion). ACM, pp.4–5.

[3] Yangguang Li, et al. 2020. Predicting Node Failures in an Ultra-Large-Scale Cloud
Computing Platform: An AIOps Solution. In ACM Trans. Softw. Eng. Methodol.
29, 2, Article 13 (April 2020). ACM.

[4] Masood A., Hashmi A. 2020. AIOps: Predictive Analytics & Machine Learning in
Operations. In Cognitive Computing Recipes. Apress, Berkeley, CA.

[5] Fan Y., et al. 2020. Design of Integrated Operation and Maintenance Platform
Based on AIOps. In Kountchev R., Patnaik S., Shi J., Favorskaya M. (eds) Advances
in 3D Image and Graphics Representation, Analysis, Computing and Information
Technology. Smart Innovation, Systems and Technologies, vol 180. Springer.

[6] Banica, L., et al. 2020. Empowering IT Operations through Artificial Intelligence
– A New Business Perspective. In KnE Social Sciences, 4(1). Springer, pp.412–425.

[7] Mohanty S., Vyas S. 2018. IT Operations and AI. In How to Compete in the Age of
Artificial Intelligence. Apress, Berkeley, CA.

[8] D. Zhang, S., et al. 2013. Software Analytics in Practice. In IEEE Software, Sept.
2013. IEEE, pp.30–37.

[9] Gulenko A., et al. 2020. Anomaly Detection and Levels of Automation for AI-
Supported System Administration. In Lossio-Ventura J., Condori-Fernandez N.,
Valverde-Rebaza J. (eds) Information Management and Big Data. SIMBig 2019.
Communications in Computer and Information Science, vol 1070. Springer, pp.1–7.

255

Automation, Control, and Analysis of Knowledge-
intensive Processes

Eric Yu
Arik Senderovich
eric.yu@utoronto.ca

arik.senderovich@utoronto.ca
Faculty of Information,
University of Toronto

Toronto, Canada

Hajo A. Reijers
h.a.reijers@uu.nl

Department of Information and
Computing Sciences,
Utrecht University

Utrecht, The Netherlands

Allen Chan
Sebastian Carbajales
avchan@ca.ibm.com
sebastia@ca.ibm.com

IBM Canada
Toronto, Canada

ABSTRACT
Process automation has been a widely used methodology for im-
proving business processes since the late 90’s. Typically, automa-
tion was applied to well-structured and highly routine business
processes. Knowledge-intensive processes that exhibit ad-hoc work-
flows and involve mainly knowledge workers are now becoming
more and more common in most industries. Traditionally, these pro-
cesses were considered harder to model, analyze and thus automate
due to their unstructured and flexible nature. Recent advances in the
worlds of Artificial Intelligence and Machine Learning supported
by ample data availability has led to developments in knowledge-
intensive process modeling, analysis, and automation. Specifically,
applications such as natural language processing and information
retrieval allows researchers to identify workflows in unstructured
data (e.g., emails) and map ad-hoc behavior to workflow patterns. In
this workshop, we aim at sharing experiences and research results
on recent advances in data-driven approaches to process automa-
tion with a special emphasis on ad-hoc business processes, i.e.,
work patterns with no predefined process models. The workshop
will explore theories, algorithms, and engineering methods at the
intersection of AI and process management to develop next gener-
ation intelligent business automation solutions. Speakers will be
researchers and industry leaders from diverse backgrounds includ-
ing but not limited to process automation in knowledge-intensive
processes, business process management, data-driven activity and
workflow recognition, and flexible process mining using constraint
learning. The workshop will give the audience a broad exposure
to the field, and create opportunities for collaborations among aca-
demic research groups and industry teams between various partners
that wish to develop The workshop will run as a single-session on-
line event and will be adjusted to the special circumstances of the
new normal under COVID-19 restrictions.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work must be honored.
For all other uses, contact the owner/author(s).
CASCON 2020, November 10-13, 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

KEYWORDS
Business Process Automation; Knowledge-intensive Processes; Ad-
Hoc Workflow Management

1 SCIENTIFIC SCOPE
Knowledge-intensive business processes, processes that involve
mostly knowledge work, are receiving much attention in the world
of business process management and analytics [8]. In fact, many
companies realize nowadays that improving knowledge-intensive
processes (KiP) often yields a competitive advantage over others [1].
Although these processes are prevalent in many industries, their
automation, control and testing has been considered extremely
challenging due to their high levels of flexibility and their ad-hoc
workflows [2, 12]. Therefore, their improvement is typically
enabled by standard process re-engineering techniques such as
functional analysis and process audit, rather than on workflow
automation [3].

With recent developments of machine learning technology and
the ample availability of data, automation of KiP must be recon-
sidered. Methods like robotic process automation (RPA) are be-
coming established in routine and structured processes [11, 15].
Furthermore, data science paradigm such as process mining, enable
data-driven RPA [10]. However, we identify a gap in attempting to
automate knowledge-intensive processes. One exception is the line
of work by Di Ciccio et al. [5, 6] that proposes the use of declarative
process mining using non-standardized data resources (e.g., emails)
to analyze and automate KiP (or what they call, artful processes).
The authors claim that having a collection of declarative process
representations improve the capability to control and execute the
underlying KiPs.

Another stream of work proposes novel requirement engineering
and analysis methods for KiPs [4], as well as a process ontology for
representing these processes [7]. Another human-oriented process
automation methodology uses crowd-sourcing data to elicit process
requirements [13]. The approach can be viewed as an alternative to
both traditional requirements engineering and to structured process
mining, which may be useful for KiPs that do not emit structured

256

Eric Yu, Arik Senderovich, Hajo A. Reijers, Allen Chan, and Sebastian CarbajalesCASCON 2020, November 10 - 13, 2020, Toronto, Canada

data nor whose workflows cannot be easily identified by standard
requirements techniques.

In an innovative paper, Hull and Nezhad propose to re-think
the way business processes (and KiPs, beign their special case) are
being designed and executed using cognitive computing [9]. Specifi-
cally, they propose the Plan-Act-Learn paradigm that would replace
the traditional BPM life-cycle. Plan-Act-Learn can support the full
spectrum of business processes, starting from routine processes
and ending with KiPs, in a seamless and systematic manner. The
planning component decides which of the processes (or their parts)
are going to be human-centered or automated, the learning compo-
nent uses data and cognitive AI technologies to extract information
that would facilitate automation, and the last phase of acting would
devise new decisions and goals based on the plan and learn phases.

Recently, socially-aware process redesign was proposed as an
approach to balance between automation and human training was
proposed in [14]. To this end, the paper solves an optimization
problem that would help managers to decide which parts of a pro-
cess should be automated, and which parts should be executed by
humans. In the proposed workshop, we wish to discuss the natu-
ral tension between human-oriented management of KiP and the
potential to automate (parts of) these ad-hoc processes.

2 RATIONALE
After providing the scientific background for our workshop, we
shall outline the rationale behind proposing it for CASCON. In
recent years, the main reasons for why automation has became
possible in knowledge-intensive processes is the improvement of
the machines ability to understand and extract information from
structured, semi-structured, and unstructured data sources or by
the ability to replicate human activities (e.g. replicating activities
on screen as in RPA). When this type of automation meets BPM,
we see the emergence of new industrial agendas in KiP, e.g., ‘digital
workers’ that are participating as delegate or in place of human
workers in a workforce. This gives rise to ‘hybrid workforce man-
agement’, which is a workforce composed of both human workers
and ‘digital workers’.

Hence, the question that we would like to answer in the pro-
posed workshop is ‘can we move closer to automating (parts of)
knowledge-intensive business processes?’. We believe that answer-
ing this question is of high value and relevance for both IBM prod-
ucts and for computer science research in the broader sense. We
wish to explore scientific and industry-oriented answers to the ques-
tion that we posed above at the intersection between traditional
process management and automation techniques and data-driven
methodologies such as machine learning and process mining. We
wish to explore views from researchers who advocate for automa-
tion and researchers who speak for a human-centered approach to
KiP management, which avoids automation.

We believe that advances in the field of intelligent process au-
tomation for KiP is an important and hot topic in the world of
computer science research. The workshop will bring together world-
leading researchers that would speak to the mentioned topics (both
from academia and from industry) with the aim of bringing the
community closer to solving some of the challenges posed by KiPs
with ad-hoc workflow patterns.

The research will be presented from several viewpoints of the
business process management and intelligence fields in their broad
sense, with a special focus on their intersection, which include but
are not limited to: process automation, process modeling and min-
ing, process control, and process analysis. We shall invite speakers
that work on applying techniques from the aforementioned method-
ologies to knowledge-intensive processes.

3 WORKSHOP FORMAT
The workshop is planned to be a half-day event with virtual coffee
breaks between the sessions. We shall invite research and industry
speakers that will give half-hour presentations followed by Q&A
sessions. To conclude the event, we shall have a half-hour round-
table discussion that will allow the audience to participate and ask
questions and for the speakers to discuss each other’s works.

4 TARGET AUDIENCE AND EXPECTED
OUTCOMES

The workshop caters both researchers and practitioners who are
working on related scientific and applied areas of business pro-
cess automation, with special focus on artful and ad-hoc processes.
The participants will be exposed to the novelties in the relevant
fields and will be given the chance to discuss their research and
practice with our world-leading invited speakers. We expect that
new collaborations and research directions will flourish among our
participants and their potential colleagues. For IBM, we expect that
the workshop will facilitate and advance existing CAS projects, and
pave the way for novel project ideas and products.

5 ORGANIZERS

Eric Yu is a Professor at the Faculty of Information at the University
of Toronto. His research interests include conceptual modeling, soft-
ware requirements engineering, information systems engineering,
knowledge management, enterprise modeling, and most recently,
enterprise AI. In his PhD work, he developed the i* framework
for social modeling. The work has inspired hundreds of research
papers, dozens of PhD theses, and many software tools. A version
of i* is part of an international standard. He is co-editor of the MIT
Press book series on Information Systems, and is on the editorial
boards of the Requirements Engineering journal, IET Software, and
the Journal on Data Semantics. He was Program Co- Chair for ER
2008 and 2014, and for CAiSE 2020. He was recipient of the 2019
Peter P. Chen Award.

Arik Senderovich is an Assistant Professor of Human-Centered
Data Science at the Faculty of Information at University of Toronto.
Before his appointment at the Faculty of Information, he received
the Lyon Sachs scholarship and worked as a postdoctoral fellow in
the Toronto Intelligent Decision Engineering Laboratory (TIDEL)
at the University of Toronto. He received his Ph.D. in the area of
process mining, focusing on queueing perspectives in process min-
ing, from the Technion – Israel Institute of Technology in 2016, for
which he also received the 2017 best dissertation award at BPM, the
annual Business Process Management conference. Arik’s research
focuses on data analytics in business processes, with emphasis on

257

CASCON 2020, November 10 - 13, 2020, Toronto, CanadaAutomation, Control, and Analysis of Knowledge-intensive Processes

complex systems with scarce resources. He published papers on
the above in journals, and leading conferences in the field.

Hajo Reijers is a full professor in the Department of Information
and Computing Sciences of Utrecht University, where he leads the
Business Process (BPM) Management & Analytics group. He is also
a part-time, full professor in the Department of Mathematics and
Computer Science of Eindhoven University of Technology. Previ-
ously, he worked for various management consultancy companies
and led the BPM research group at Lexmark. Hajo’s research and
teaching focus on BPM, data analytics, and information systems
engineering. On these and other topics, he published over 200 sci-
entific papers, chapters in edited books, and articles in professional
journals. He was Program Co - Chair for BPM 2009 and CAiSE 2018.

Allen Chan is an IBM Distinguished Engineer, a Technical Execu-
tive of IBM Digital Business Automation. He is currently the CTO
for Digital Business Automation, responsible for IBM Cloud Pak for
Automation including capabilities such as Business Process Man-
agement and Case Management, Application Designer, and others.
He is passionate about ensuring customers’ successful use of IBM
products. Prior to that role, he had held various technical leadership
roles in IBM BPM such as the Chief Architect for Workflow (IBM
BPM & Case Manager) and Blueworks Live. In addition, he was the
IBM BPM SWAT Technical Lead where he led a team of experts
to help ensure customer success in key IBM BPM deployment and
rollout scenarios. He is the holder of multiple patents in Canada,
United States and China, and has written a number of papers and
articles.

Sebastian Carbajales is a senior technical lead and architect for
the IBM Business Automation Workflow a nd I BM Automation
Workstream Services (IAWS) components of the IBM Cloud Pak for
Automation. As the IAWS architect, his main focus is on enabling
the business user to automate their work with a simple, no-code
approach. In addition, he is also leading the effort to infuse AI and
machine learning into Workflow and Workstreams and making it
accessible to business users. His other areas of responsibility in-
clude the integration of Business Process Management and Case
Management, both from an authoring and execution perspective as
well as the Workflow tooling platform, in general.

REFERENCES
[1] Selena Aureli, Daniele Giampaoli, Massimo Ciambotti, and Nick Bontis. 2019.

Key factors that improve knowledge-intensive business processes which lead to
competitive advantage. Business process management journal (2019).

[2] Fabrice Boissier, Irina Rychkova, and Bénédicte Le Grand. 2019. Challenges
in Knowledge Intensive Process Management. In 2019 IEEE 23rd International
Enterprise Distributed Object Computing Workshop (EDOCW). IEEE, 65–74.

[3] Peter Dalmaris, Eric Tsui, Bill Hall, and Bob Smith. 2007. A framework for
the improvement of knowledge-intensive business processes. Business Process
Management Journal (2007).

[4] Claudio Di Ciccio, Andrea Marrella, and Alessandro Russo. 2015. Knowledge-
intensive processes: characteristics, requirements and analysis of contemporary
approaches. Journal on Data Semantics 4, 1 (2015), 29–57.

[5] Claudio Di Ciccio and Massimo Mecella. 2012. Mining constraints for artful
processes. In International Conference on Business Information Systems. Springer,
11–23.

[6] Claudio Di Ciccio and Massimo Mecella. 2013. Mining artful processes from
knowledge workers’ emails. IEEE Internet Computing 17, 5 (2013), 10–20.

[7] Juliana Baptista dos Santos França, JoanneManhães Netto, Juliana do ES Carvalho,
Flávia Maria Santoro, Fernanda Araujo Baião, and Mariano Pimentel. 2015. KIPO:
the knowledge-intensive process ontology. Software & Systems Modeling 14, 3
(2015), 1127–1157.

[8] Norbert Gronau and Edzard Weber. 2004. Management of knowledge intensive
business processes. In International Conference on Business Process Management.
Springer, 163–178.

[9] Richard Hull and Hamid R Motahari Nezhad. 2016. Rethinking BPM in a cog-
nitive world: Transforming how we learn and perform business processes. In
International Conference on Business Process Management. Springer, 3–19.

[10] Volodymyr Leno, Marlon Dumas, Marcello La Rosa, Fabrizio Maria Maggi, and
Artem Polyvyanyy. 2020. Automated Discovery of Data Transformations for
Robotic Process Automation. arXiv preprint arXiv:2001.01007 (2020).

[11] Volodymyr Leno, Artem Polyvyanyy, Marlon Dumas, Marcello La Rosa, and
Fabrizio Maria Maggi. 2020. Robotic Process Mining: Vision and Challenges.
Business & Information Systems Engineering (2020), 1–14.

[12] Olivera Marjanovic and Ronald Freeze. 2012. Knowledge-intensive business
process: deriving a sustainable competitive advantage through business process
management and knowledge management integration. Knowledge and Process
Management 19, 4 (2012), 180–188.

[13] Pradeep K Murukannaiah, Nirav Ajmeri, and Munindar P Singh. 2017. Toward
automating crowd RE. In 2017 IEEE 25th International Requirements Engineering
Conference (RE). IEEE, 512–515.

[14] Joop J. Senderovich, Arik Schippers and Hajo A. Reijers. 2020. Socially-aware
Business Process Redesign. In International Conference on Business Process Man-
agement. Springer.

[15] Wil MP Van der Aalst, Martin Bichler, and Armin Heinzl. 2018. Robotic process
automation.

258

Deploying a Collaborative Framework for Crowd Sourcing the
Evaluation of AI Model Effectiveness

Sarah Packowski
spackows@ca.ibm.com

IBM

Joshua Allard
jmallard@us.ibm.com

IBM

ABSTRACT
Evaluating the effectiveness of a binary classification model can
be as simple as calculating the percent of inputs that are correctly
classified by the model.

But when it comes to evaluating the effectiveness of a speech to
text model or natural language understanding model, simply count-
ing the number of incorrect words (for example) doesn’t capture
the nuances required to understand if the model is effective enough
to do the job you need it to do. One way to tackle this problem is
to experiment with multiple evaluation methods to see what fits
your needs best.

In this workshop, participants deployed a sample Python Flask
app in IBM Cloud that enables teams to dynamically collect and
apply multiple model evaluation methods contributed by collabora-
tors.

In this workshop, participants discussed common challenges
with developing collaborative AI or data science solutions, includ-
ing:

• Streamlining the workflow so specialists can focus on their
area of expertise

• Making it easy for all team members to understand all solu-
tion components

• Scaling out the assembled solution
• Turning the solution into a platform by exposing endpoints

CCS CONCEPTS
• Software and its engineering→ Programming teams; Soft-
ware prototyping; • Computing methodologies → Natural
language processing.

KEYWORDS
collaboration, prototyping, continuous delivery, AI, effectiveness

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work must be honored. For all
other uses, contact the owner/author(s).
CASCON 2020, November 10-13, 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

1 RATIONALE
Imagine two speech to text models produce the following output
for the spoken phrase the quick, brown fox jumped over the lazy dog:

Model A result
the quick brown fox jumped under the lazy dog

Model B result
the quick brown fox jumped over the lazy frog

BothModel A andModel B got one word wrong. So, howwould
you decide which model performed better? The answer would vary,
depending on your use case:

• If you are analyzing the transcript to determine what actions
happened, the result from Model A would be more "wrong"
(jumping under instead of jumping over)

• If you are analyzing the transcript to determine who was
involved, the result fromModel B would be more "wrong"
(frog instead of dog)

To assess AI model performance for different use cases like this,
our team developed a simple framework that applied multiple eval-
uation methods simultaneously so we could easily see which meth-
ods fit our needs best. The framework was deployed to IBM Cloud
using a GitHub-integrated continuous delivery pipeline. Teammem-
bers implemented each evaluation method in its own Python file;
and then when team members uploaded their files to GitHub, the
framework was automatically redeployed with their new methods
included.

Using this simple framework and continuous delivery pipeline
has had several advantages:

• The simplicity of the framework made it easy to get started
• Each teammember could focus on their own implementation,
without worrying about deployment or app management

• We have reused the framework for multiple, different sorts
of projects with only minor adjustments

2 WORKSHOP FORMAT
In this workshop, participants gained hands-on experience deploy-
ing a Python Flask app to IBM Cloud, using a continuous delivery
pipeline with GitHub.

The direct experience in this workshop, as well as the group
discussions about how to enable both generalist and specialist team
members to contribute to a solution, gave participants strategies
for future collaborative AI or data science projects.

259

How has COVID-19 changed the development and adoption of
data science across firms and industries?

Michelle Alexopoulos
University of Toronto

m.alexopoulos@utoronto.ca

Kelly Lyons
University of Toronto

kelly.lyons@utoronto.ca

Rohan Alexander
University of Toronto

rohan.alexander@utoronto.ca

Aije Egwaikhide
IBM

aije.e@ibm.com

R. Blair Frost
University of Toronto
rb.frost@utoronto.ca

ABSTRACT
Since ancient times, individuals have recognized that innovation
and adoption of new technologies is affected by demand (i.e., “ne-
cessity is the mother of all invention”). Advances in data science,
an interdisciplinary scientific approach that combines computa-
tion methods with data to understand and solve problems in an
evidence-based manner, is no exception. Prior to the COVID-19
outbreak, the speed of data science adoption within organisations
faced barriers such as legal/regulatory challenges, available work-
force skills and financial costs. The emergence of the pandemic
has altered the incentives to invest in, and adopt these innovations.
This shifting landscape, will likely have both short run and long
run impacts.

This workshop brought together panel and audience members
drawn from academia, government agencies and different indus-
tries to discuss how COVID-19 has affected the deployment and
development of data science. For discussion purposes, COVID-19
related impacts were grouped into three themes: the effect on Re-
search & Development investment; commercialization of new and
existing technologies; and changes in the barriers to adoption across
different areas.

CCS CONCEPTS
• Social and professional topics → Government technology
policy; Computing / technology policy.

KEYWORDS
COVID-19, data science adoption, challenges, legal, organisational,
business practices

ACM Reference Format:
Michelle Alexopoulos, Kelly Lyons, Rohan Alexander, Aije Egwaikhide,
and R. Blair Frost. 2020. How has COVID-19 changed the development and
adoption of data science across firms and industries?. In CASCON 2020,
November 10-13, 2020, Toronto, ON . IBM, Riverton, NJ, USA, 2 pages.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CASCON ’20, November 10-13, 2020, Toronto, ON
© 2020 Copyright held by the owner/author(s).

1 BACKGROUND AND RATIONALE
Data science provides methods to understand and solve problems
in an evidence-based manner by combining data and experience,
with scientific methods. Despite the clear benefits from its adoption,
many firms have faced challenges, be that legal, organisational, or
business practices, when seeking to integrate data science within
their business frameworks. The emergence of COVID-19, and the
unprecedented disruption that has followed, has altered the incen-
tives to invest in, and adopt these innovations. This has created
challenges moving forward for certain applications because of fac-
tors such as supply-chain interruptions for necessary hardware
(e.g., challenges in the education space moving online), lack of
funds due to plunging profits and share prices (e.g., self-driving
ride-sharing platforms), and access to skilled workers due to travel
restrictions (e.g., due to the inability to have skilled labour immi-
grate and poor/blocked internet access from other jurisdiction).

For other firms, COVID-19 has created significant opportunities.
Legislative lock-downs have driven sharp spikes in demand for
products and services allowing for remote work and purchases.
Review of privacy issues related to tracking apps, health care ad-
vances, remote work/studies and collection and use of data has been
accelerated. Soaring share prices and record profits for some big
tech companies during COVID-19 has also created opportunities
for these companies to investment more in their R&D activities
or purchase smaller start-ups. The rationale for this workshop is
to bring together data science practitioners, policy makers and
academics to share their experiences with, and insights on, these
challenges.

2 WORKSHOP FORMAT
In this workshop, panel and audience members drew on their ex-
periences to elaborate on the data science challenges firms and
workers have encountered pre and post COVID-19. Most of the
discussion and comments can be categorised within three themes:
the effect of COVID-19 on: research and development investment;
commercialization of new and existing technologies; and changes
in the barriers to adoption across different areas.

Panel and audience members came from business, academia, and
think-tanks. In the first half of the workshop the panel members
discussed their own experience from prepared remarks and in the
second half of the workshop audience members commented on and
responded based on their own experience.

260

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CASCON ’20, November 10-13, 2020, Toronto, ON Alexopoulos and Lyons, et al.

3 ORGANIZERS AND PARTICIPANTS
The organisers of the panel were: Michelle Alexopoulos (University
of Toronto), Kelly Lyons (University of Toronto), Rohan Alexan-
der (University of Toronto), Aije Egwaikhide (IBM), and Robert
Blair Frost (University of Toronto). The organizers invited Robert
Fay (CIGI), Alex Ince-Cushman, Alvin Francis (IBM), and Denise
Almeida (UCL) to join Michelle Alexopoulos as panelists in the dis-
cussion of the evolving landscape in the Post-COVID-19 economy.

Dr. Michelle Alexopoulos is a Professor of Economics who is
cross appointed to the Faculty of Information at the University
of Toronto, a faculty affiliate of the Schwartz Reisman Centre for
Technology and Society, and a Bank of Canada Fellow. Prof. Alex-
opoulos’ recent research focuses on creating and analyzing new
measures of technical change for economies. She is a member of the
Productivity Partnership, and is a qualified legal expert in the fields
of Technical change, Applied Econometrics and Macroeconomics.

Denise Almeida is a doctoral candidate at University College Lon-
don whose main research interests are centred on privacy, change,
ethics and AI, and algorithmic accountability, particularly around
how these areas interact with different social, demographic and
contextual factors. She is a senior privacy professional, currently
working on user rights management and data protection at New
Vector/Matrix.org.

Robert (Bob) Fay is managing director of digital economy at CIGI
and responsible for its research direction and related activities. He
has extensive experience in macro- and micro-economic research
and policy analysis. Recently, he has engaged in research exploring
how data has changed the economy and how COVID-19 has expe-
dited the digital transformation. Prior to joining CIGI, Bob was a
senior director at the Bank of Canada overseeing work to assess
developments and implications arising from the digitization of the
Canadian economy.

Alvin Francis is the Executive Director of Development, Cognos
and Planning Analytics at IBM. He is an expert in statistical analysis,
predictive analytics and machine learning. Prior to IBM, he spent
several years in the telecommunications industry where he held
various senior leader positions.

Dr Alex Ince-Cushman served as Chief Technology Officer at Just
Energy from December 2018 to September 2020. Dr Ince-Cushman
was an Executive with Palantir Technologies from March 2015
to November 2018, and was an Associate Partner a McKinsey &
Company from November 2008 to February 2015.

4 OUTCOMES
In the first half of the workshop Kelly Lyons and Rohan Alexander
asked the panel to provide their insights on answers to the following
questions:

(1) Do you believe that COVID-19 has had a significant impact
on research and development?

(2) What impact has COVID-19 had on the adoption and com-
mercialization of new technologies in the field?

(3) What barriers do you think are currently hindering the adop-
tion of AI and advances in data science? Have these barriers
changed or become increasingly burdensome post COVID-
19?

(4) What, if anything, can the government do to support re-
search and development, adoption and commercialization
for Canadian firms? Has COVID-19 affected your views on
what the Government can or should do?

Each panelist provided initial opinions from prepared remarks.
A summary of the discussion is outlined below.

Dr. Alexopoulos began the discussion by reviewing the economic
changes that have occurred due to COVID-19, and discussed chal-
lenges in forecasting the future progression of economic growth,
job creation and investment in digital economy. She then discussed
the barriers to adoption that were identified in a related 2019 CAS-
CON workshop [1]. Her comments were followed by comments
from the other panelists. Each agreed that COVID-19 has dramati-
cally impacted the economy and adoption patterns with changes in
research and development funding across sectors differing in their
magnitudes. Further they confirmed that many of the challenges
pre-COVID-19 remain– issues with governance, outdated and frag-
mented legal frameworks governing data science, and access to the
supply of skilled workers. However, the severity of the problems
have been affected by COVID-19. Guaranteeing an adequate supply
of qualified workers in the short run has become more challenging
as Government policy has hampered international mobility and
immigration patterns and COVID-19 has impacted educational at-
tainment and enrollments. The panel also generally agreed that
COVID-19 has exposed greater gaps in governance of new technolo-
gies, and illustrated factors such as privacy concerns, intellectual
property protection, and the development of standards that need
to be addressed to help adoption.

In the second half of the workshop, the organizers polled the
audience to uncover (1) how COVID-19 had impacted the develop-
ment and adoption of data science across their own industries and
firms, and (2) how they ranked of the importance of the themes
and broader concerns that the panelists were describing for the
economy. The results were shared in a chat format to provide a
starting point for the discussion. The panelists were invited to ad-
dress comments relayed by the audience and the audience members
were invited to further comment on the points discussed.

The panel and audience discussion provided important evidence
to better understand the challenges of adopting data science in the
post-COVID-19 economy. It also generated ideas for related future
work.

REFERENCES
[1] Rohan Alexander, Kelly Lyons, Michelle Alexopoulos, and Lisa Austin. 2019. Work-

shop on barriers to data science adoption: why existing frameworks aren’t working.
In Proceedings of the 29th Annual International Conference on Computer Science
and Software Engineering. 384–385.

261

4th Workshop on Advances in Open Runtimes and Cloud
Performance Technologies

Daryl Maier
IBM Canada

 Markham, ON, Canada
 maier@ca.ibm.com

Vijay Sundaresan
 IBM Canada

 Markham, ON, Canada
 vijaysun@ca.ibm.com

David Bremner
 Faculty of Computer Science
 University of New Brunswick

 Fredericton, NB, Canada
 bremner@unb.ca

ABSTRACT
Cloud services such as IBM Cloud or Amazon Web Services are
increasingly becoming the environments where applications are
developed, tested, and deployed, data gets stored, and businesses
are run. Many of the features that define a cloud (e.g., resiliency,
elasticity, consistency, security) are realized through runtime
technologies. Clouds are polyglot environments, and therefore
advances in cloud development are directly driven by innovation
in runtime technologies. However, cloud environments pose
unique and often conflicting demands on runtime systems that are
generally less of a concern in isolated systems. Throughput
performance (how many results can my application produce?),
density (how many instances of my application can I create and
run simultaneously in my provisioned environment?), startup
performance (how quickly can I start a new instance of my
application?), and language interoperability are all examples of
important considerations that require innovative solutions.

Modern language runtimes are complex, dynamic systems that
involve a myriad of components that must work cooperatively to
achieve the functional and performance requirements of a given
language. Typical core runtime technologies include dynamic
just-in-time compilers for performance, garbage collection for
heap management, platform abstraction for ease of portability to
different hardware and operating system environments, test
infrastructure for quality control, developer tooling for diagnosis
and tuning of the various components, and interoperability
between different language environments.

Cloud workloads are typically containerized and employ
microservice and serverless architectures. Achieving peak
performance in such environments requires careful tuning of the
cloud services and applications in concert with the runtime
system.

The goal of this workshop was to bring together research,
industry, and developers from runtimes and cloud communities to
share and discuss innovations, challenges, and research across a
broad set of open source technologies (such as Eclipse OMR,
Eclipse OpenJ9, Node.js, Open Liberty, Kubernetes) to improve
performance in cloud environments. The focus on open solutions
rather than proprietary was key as it allowed for greater
collaboration amongst individuals, communities, researchers, and
industry through shared learning on common technology.

This was a full-day virtual speaker session workshop where
researchers, students, and practitioners presented their recent
innovative work and findings. Topics discussed in the workshop
included, but were not limited to:

• Open runtime technology frameworks;

• Compiler technology and innovative optimizations for
dynamic cloud environments;

• Garbage collection and memory subsystem
performance;

• Runtimes/Cloud cooperative tuning;

• Hardware techniques to assist runtime technologies;

• Dynamic languages for the cloud;

• Testing and correctness of runtime technology;

• Throughput and startup performance, and memory
footprint reduction;

• Use of tools and infrastructure built on open
technologies; and

• Innovative ways of exploiting open runtime
technologies.

This workshop was successful in exploring a wide range of
innovative runtime problems and solutions for the
cloud environments. Many of the innovations were based on the
open-source Eclipse OMR and Eclipse OpenJ9 projects. Eclipse
OMR is a toolkit of language-agnostic runtime components that
can be integrated in runtime environments to provide or
extend the desired runtime features. The most popular
components include garbage collection and compilation
technologies as well as a common, portable interface for
abstracting operating system functionality. Eclipse OpenJ9
is an open source, high-performance Java Virtual Machine
that fully implements that Java Virtual Machine Specification and
is used by several open source Java projects such as Open Liberty.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work must be honored.
For all other uses, contact the owner/author(s).
CASCON 2020, November 10-13, 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

262

Hands-on Workshop: Jumpstart your Application into a Reactive
Event-centric World

Yee-Kang Chang
IBM

 Markham ON Canada
yeekangc@ca.ibm.com

Gilbert Kwan
 IBM

Markham ON Canada
gkwan@ca.ibm.com

Meswan Bhaugeerutty
 IBM

Markham ON Canada
meswan@ca.ibm.com

Grace Jansen
 IBM

Hursley, United Kingdom
grace.jansen1@ibm.com

ABSTRACT
We now live in a world with data at its heart. The amount of data
being produced every day is growing exponentially and a large
amount of this data is in the form of events. Whether it be updates
from sensors, clicks on a website or even tweets, applications are
bombarded with a never-ending stream of new events. So, how can
we architect our applications to be more reactive and resilient to
these fluctuating loads and better manage our thirst for data? In
these quicklabs you'll learn what it means to easily build a cloud-
native reactive application through the Eclipse MicroProfile
reactive messaging framework and Apache Kafka.

2 Workshop Outline
This workshop covers the topics below:

• Creating reactive Java microservices
• Testing reactive Java microservices
• Acknowledging messages using MicroProfile Reactive

Messaging
• Integrating RESTful services with a reactive system
• Consuming RESTful services using the reactive JAX-RS

client
• Hands-on Labs

The sections that follow offer an introduction to the concepts and
technologies covered in the workshop.

2 Microservices Architecture

Microservice architecture is a popular approach for building cloud-
native applications so that each component is an individual service
that fulfills a specific purpose. It enables small, autonomous teams
to develop, deploy, and scale their respective services
independently. One benefit is that the application can be scaled on
a more granular level because each service is built and managed
independently. The high-traffic services can be individually scaled

to efficiently use resources rather than scaling up the entire system.
Another benefit is that failures in one service can be isolated from
the rest of the system; if a service fails, services that are
independent are unaffected while dependent services can employ
fault tolerance strategies to prevent the failure from cascading to
other services.

Although a microservice architecture provides many benefits, it
also introduces new challenges not apparent in traditional
monolithic applications. Eclipse MicroProfile addresses these
challenges so that you can easily develop cloud-native applications.
These challenges include toleration of service failures, end-to-end
security for an authenticated user request flowing through a set of
microservices, and problem determination for requests spanning
many services.

2 Eclipse MicroProfile
Eclipse MicroProfile is a modular set of technologies designed so
that you can write cloud-native Java microservices.

Cloud-native is an industry-wide approach to developing and
rapidly deploying applications to the cloud at scale. Cloud-native
applications are designed around team-aligned microservices and
developed by using agile practices and continuous
integration/continuous delivery (CI/CD) to streamline deployment.
With a range of vendors providing cloud platforms, open source
and open standards are essential enablers for avoiding vendor lock-
in.

MicroProfile enables you to develop and deploy cloud-native Java
applications as loosely-coupled, lightweight services, each
representing one unique business function. This approach is
modular and makes the application easy to understand, easy to
develop, easy to test, and easy to maintain.

263

CASCON 2020, November 10-13, 2020, Toronto, Canada Y. Chang et al.

2.1 MicroProfile layers of functionality
MicroProfile can be organized into three layers of functionality.
The bottom layer represents REST services, the middle layer is for
scaling towards hundreds of microservices, and the top layer
contains tools to help you detect and diagnose issues.

• Open Tracing
• Metrics
• Health Check

• Open API
• Fault Tolerance
• JWT
• Config

• JSON-B/JSON-P
• Rest Client
• CDI
• JAX-RS

2.2 MicroProfile simplifies developing cloud-
native Java microservices

The vast majority of cloud-native microservices are based on REST
APIs, making the bottom layer the most essential. At its foundation,
MicroProfile provides a set of technologies that make developing
and using REST APIs easy. MicroProfile takes a small set of Java
EE APIs: JAX-RS; CDI; JSON-B and JSON-P and augments them
with a simple type-safe REST client API making it easy to consume
REST services.

2.2.1 Build REST services. The JAX-RS, CDI, JSON-B and
JSON-P Java EE technologies provide the base for MicroProfile. If
you’re new to Java EE and MicroProfile, this is a good place to
start. JAX-RS is a Java API that allows you to build REST APIs by
creating resource classes and adding appropriate annotations to
create the necessary web endpoints. Context and Dependency
Injection (CDI) provides objects with the dependencies that they
need through the @Inject annotation rather than directly creating
an object or finding them using a factory. JSON-P and JSON-B
makes it easy to automatically serialize and deserialize classes to
and from JSON.

2.2.2 Consuming a REST service with type-safe Java.
MicroProfile Rest Client provides a type-safe approach for
invoking REST services over HTTP. This API greatly simplifies
the client-side API as defined by JAX-RS. MicroProfile Rest Client
handles the communication between the client and service. You
only need to define and annotate an interface that describes the
actions that you need to perform on a REST resource. An
implementation of this interface is automatically generated for you
when CDI is used to inject your client into a dependent class.

2.3 MicroProfile simplifies scaling your
organization

Handling hundreds of autonomous, collaborating and frequently
evolving services introduces a number of new challenges. These
challenges include, for example, documenting and sharing APIs
across teams, propagating security across services, handling
network or service failures, and continuously integrating and
deploying service updates. Thankfully, the middle layer of
MicroProfile features provide a number of APIs to simplify these
tasks.

2.3.1 Document your REST APIs. MicroProfile OpenAPI
provides a Java API for the OpenAPI specification that you can use
to expose API documentation for your REST APIs. You can
natively produce OpenAPI documents from your JAX-RS
applications. OpenAPI is a standardization of the Swagger
specification.

2.3.2 Handle unexpected failures in your microservices.
MicroProfile Fault Tolerance provides an API and annotations for
building robust behavior to cope with unexpected failures in the
service you depend on. Aspects of fault-tolerance include timeouts,
retries, fallbacks, bulkhead processing, and circuit breakers.

2.3.3 Authentication and role-based access control.
MicroProfile JWT provides for interoperable authentication and
role-based access control for your services. It allows for an
authenticated JWT token to be shared across multiple
microservices even if these services are running on multiple vendor
implementations. It also allows for access to microservice
operations to be controlled based on user and role information
passed within the JWT token.

2.3.4 Externalize configuration to improve portability.
MicroProfile Config externalizes configuration from the
application to improve portability of the application. A core
principle is to be able to override configuration at deployment time
using system properties and environment variables. This means you
can build your microservice once and deploy it many times through
your CI/CD pipeline by changing the configuration for each
deployment.

2.4 MicroProfile helps you detect and diagnose
problems

Handling hundreds of microservices requires a strong operations
focus. If the system is beginning to exhibit problems, how do you
track down the root cause when a request might span tens or
hundreds of services? How can you tell which service is not
performing well, or understand the journey a request took through
those microservices? The top layer of the MicroProfile feature set
helps you answer these questions. It provides APIs to help you
understand the health of services, how they’re performing, and how
requests are flowing through them.

264

Jumpstart your application into a reactive event-centric world CASCON 2020, November 10-13, 2020, Toronto, Canada

2.4.1 Determine a microservice’s availability. MicroProfile
Health Check provides a common REST endpoint format to
determine whether a microservice is healthy or not. Health can be
determined by the service itself and might be based on the
availability of necessary resources (for example, a database) and
services. The service itself might be running but considered
unhealthly if the things it requires for normal operation are
unavailable. The Health Check endpoints are also designed to be
easily integrated into Kubernetes liveness and readiness probes.

2.4.2 Monitor a microservice’s telemetry data. MicroProfile
Metrics provides common REST endpoints for monitoring the
telemetry data of a running microservice, similar in nature to JMX
but a much simpler API that uses JAX-RS. Both built-in and
application-defined metrics are accessible, with the output in either
JSON or Prometheus text formats. This API provides more
extensive detail than the simple up and down reporting provided by
MicroProfile Health.

2.4.3 Enable distributed tracing of your microservices.
MicroProfile OpenTracing allows services to easily participate in a
distributed tracing environment. OpenTracing defines behaviors
and an API for accessing an OpenTracing-compliant Tracer object
within your microservice. These trace logs can then be consumed
by a third-party distributed tracing facility such as Zipkin or Jaeger.

3 Open Liberty
Open Liberty is an application runtime designed for the cloud. It’s
small, lightweight, and designed with modern cloud-native
application development in mind. It supports the full MicroProfile,
Jakarta EE and Java EE APIs and is composable, meaning that you
can use only the features that you need, keeping the server
lightweight, which is great for microservices. It also deploys to
every major cloud platform, including Docker, Kubernetes,
OpenShift and Cloud Foundry.

4 MicroShed Testing
MicroShed Testing offers a fast and simple way of writing and
running true-to-production integration tests for Java microservice
applications. MicroShed Testing exercises your containerized
application from outside the container so you are testing the exact
same image that runs in production.

MicroShed Testing aims to:

1. be easy to get started with
2. work with any Java EE, Jakarta EE or MicroProfile

runtime
3. provide true-to-production tests

5 MicroProfile Reactive Messaging
MicroProfile Reactive Messaging provides an easy way to
asynchronously send, receive, and process messages that are
received as continuous streams of events. You simply annotate
application beans' methods and Open Liberty converts the
annotated methods to reactive streams-compatible publishers,
subscribers, and processors and connects them up to each other.
MicroProfile Reactive Messaging provides a Connector API so that
your methods can be connected to external messaging systems that
produce and consume the streams of events, such as Apache Kafka.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work must be
honored. For all other uses, contact the owner/author(s).
CASCON 2020, November 10-13, 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

265

morPOP: A fast and granular agent-based model of COVID-19 to
examine school mitigation strategies in Newfoundland &

Labrador
Dionne M. Aleman
aleman@mie.utoronto.ca
University of Toronto

Toronto, Ontario, Canada

Benjamin Tham
benjamin.tham@mail.utoronto.ca

University of Toronto
Toronto, Ontario, Canada

Sean J. Wagner
wagnerse@ca.ibm.com

IBM
Toronto, Ontario, Canada

Justin Semelhago
justin.semelhago@mail.utoronto.ca

University of Toronto
Toronto, Ontario, Canada

Asghar Mohammadi
asghar.mohammadi@med.mun.ca

Memorial University
St. John’s, Newfoundland and

Labrador, Canada

Paul Price
pprice@mun.ca

Memorial University
St. John’s, Newfoundland and

Labrador, Canada

Jordan Bradfield
jordan.bradfield1@ibm.com

IBM
Halifax, Nova Scotia, Canada

Randy Giffen
randy_giffen@ca.ibm.com

IBM
Toronto, Ontario, Canada

Proton Rahman
prahman@mun.ca
Memorial University

St. John’s, Newfoundland and
Labrador, Canada

ABSTRACT
TheMedical Operations Research Lab’s Pandemic Outbreak Planner
(morPOP) is an agent-based simulation of pandemic disease spread,
wherein each individual in the population is an agent with unique
demographic and comorbidity characteristics; for Newfoundland
& Labrador, there were ≈520,000 agents. Individuals interacted in
various environments, and each infectious contact increased prob-
ability of infection. Individuals potentially changed behaviors to
self-isolate or seek medical care when symptomatic. By comparing
the resulting disease spread across proposed school mitigation mea-
sures, including physical distancing and masks, effective policies
were identified, allowing public health officials to make evidence-
based decisions about appropriate measures to enact. The model
was unique in its ability to capture such a large population while
requiring ≈25 s computation time for a 100-day simulation on a
single processor, thanks to implementation in C++ with various
cost-saving techniques. Parallelization support was provided by the
Center for Health Informatics and Analytics (CHIA) at Memorial
University.

CCS CONCEPTS
•Applied computing→Consumerhealth; •Computingmethod-
ologies → Massively parallel algorithms; Agent / discrete
models.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work must be honored. For all
other uses, contact the owner/author(s).
CASCON 2020, November 10-13, 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

KEYWORDS
COVID-19, agent-based simulation, pandemic disease spread, school
mitigation strategies

1 INTRODUCTION
As COVID-19 has progressed throughout the world, it has become
apparent that the high-level disease spread predictions
provided by traditional epidemiological models, while fast to
implement and requiring little data to gain useful high-level
insights, are insuffi-cient to measure the impact of small-scale,
nuanced public health interventions. Agent-based simulation
(ABS) models, where each individual in the population is an agent
with unique characteristics and behaviors, are better suited to
this task. To measure the im-pact of school mitigation strategies
in Newfoundland & Labrador (NL), we adapted the existing
morPOP (Medical Operations Re-search Lab’s Pandemic
Outbreak Planner) ABS [1] to the specific nature of the NL
population and COVID known disease properties. The school
mitigation strategies tested included various levels of physical
distancing and mask usage.

2 METHODS
2.1 morPOP agent-based simulation model
morPOP modeled each individual in the population as a unique
entity, representing individual behavioral, demographic, and health

266

https://doi.org/TBD

Aleman, et al.CASCON 2020, November 10-13, 2020, Toronto, Canada

characteristics. Unique environments where people interact are
represented: households, hospitals, schools, businesses, etc. Each
individual had an infection status following the typical SIRD (sus-
ceptible, infectious, recovered, dead) model, with a five-day latent
pre-symptomatic infectious period after initial infection. Forty-two
percent of cases were assigned to be asymptomatic [4]. It was as-
sumed that 90% of individuals would self-isolate upon symptom
onset or when a household member becomes symptomatic.

Individuals followed behavior patterns like being at home for
a certain number of hours per day, going to work or school, ob-
serving physical distancing guidelines or not, and seeking medical
care when infected. At each location visited, there was interaction
with other individuals at the same location (household members,
fellow students, fellow employees, etc.), and an individual’s chance
of becoming infected was determined by contact with infected indi-
viduals in each location and the nature of that contact. Per-minute
disease transmission rates between age groups were adapted from
pandemic influenza rates [3], and contact transmission rates within
workplaces were adjusted by the Vancouver School of Economic
risk factors [5]. Since the original publication of morPOP [1], the
model was updated so that infection probabilities are calculated in
a multiplicative fashion, rather than additive.

2.1.1 Implementation. Unlike most ABSs that struggle to capture
more than ≈100,000 agents or that require lengthy computation
times and memory to perform less-detailed simulation, morPOP
was written in C++ for computational speed and parallelization.
Using a number of coding approaches specifically designed to speed
up run times, morPOP simulated a 100-day outbreak on the NL
population of ≈ 520, 000 agents in ≈25 s with < 1 GB RAM; for the
Greater Toronto Area (Ontario) for which morPOP was originally
designed, the simulation time for ≈6 million agents was < 1 min
with 4 GB RAM. The most impactful coding decisions to achieve
this performance were the use of arrays instead vectors and the
ordering of the population array such that all susceptibles and
infecteds are sequentially ordered, eliminating the need to
unnecessarily loop over recovered or dead individuals in updating
statuses, yielding a complexity improvement from O(n2) to O(n log
n)+ |S |+ |I |, where S and I are the sets of susceptible and infectious
people, respectively.

The model was parallelized with one simulation per processor
and implemented on high-performance computing infrastructure
provided by the Center for Health Informatics and Analytics (CHIA)
at Memorial University. The specific infrastructure used was three
Linux nodes, each with 32 cores (64 threads) and 256 GB RAM.

Daily SIRD counts for the population and census sub-divisions
were outputted from the model as .csv files, and were uploaded to
a custom-built web interface for high-level analysis.

2.1.2 Limitations. The benefit of such a granular ABS was the
ability to simulate complex populations and public policies. The
drawback is that it relied heavily on data that is may not be available,
and may therefore not have accurately modeled certain aspects of
reality. Thus, ABS models are best used as “what-if” machines to
compare different scenarios rather than as crystal ball predictors
of exact pandemic outcomes. Specific limitations of the current
implementation of morPOP for NL-COVID is that there was no
contract tracing in this analysis (resulting in overestimation of
infections), and no imported infections (underestimation).

2.2 School mitigation policies
School mitigation policies included 1 m physical distancing (79.7%
reduction in transmission probability [2]), 2 m physical distancing
(estimated 90% reduction), and an imperfect distancing resulting
in 50% reduction. Mandatory masks for senior and intermediate
students (82% reduction [2]) with varying levels of effectiveness of
20%, 40%, and 60% reduction were tested, with and without physical
distancing measures.

3 RESULTS
Schools were a primary driver of infections. Physical distancing
measures provided significant improvement in the infection curve
in all scenarios, but the difference between 1 m and 2 m distance
was insignificant. Distancing alone was more effective than masks
alone, since masks were only applied to intermediate and senior
students. As an example, Figure 1 illustrates distancing with fully
effective (82% reduction) and half effective (40% reduction) masks.

Figure 1: Distancing with fully effective (82% reduction) and
half effective (40% reduction)mandatorymasks for interme-
diate and senior students

4 CONCLUSION
Any one mitigation measure will likely dramatically reduce the
number of COVID cases, and any combination of distancing and
mandatory masks, even if imperfectly executed, is highly effective.
All scenarios with any level of distancing are likely within NL Public
Health’s ability to control and possibly prevent, though such an
assumption relies on fast detection of cases.

REFERENCES
[1] D.M. Aleman, T.G. Wibisono, and B. Schwartz. 2011. A nonhomogeneous mix-

ing model for predicting pandemic disease spread. Interfaces Special Issue on
Humanitarian Applications: Doing Good with OR 41, 3 (2011), 301–315.

[2] D.K. Chu, E.A. Akl, S. Duda, K. Solo, S. Yaacoub, and H.J. Schünemann. 2020. Phys-
ical distancing, face masks, and eye protection to prevent person-to-person trans-
mission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis.
The Lancet (2020).

[3] M.J. Haber, D. K. Shay, X.M. Davis, R. Patel, X. Jin, E. Weintraub, E. Orenstein, and
W.W. Thompson. 2007. Effectiveness of Interventions to Reduce Contact Rates
during a Simulated Influenza Pandemic. Emerging Infectious Disease 13, 4 (2007),
581–589.

[4] E. Lavezzo, E. Franchin, C. Ciavarella, G. Cuomo-Dannenburg, L. Barzon, C. Del
Vecchio, L. Rossi, R. Manganelli, A. Loregian, N. Navarin, and D. Abate. 2020.
Suppression of a SARS-CoV-2 outbreak in the Italian municipality of Vo’. Nature
(2020).

[5] Vancouver School of Economics. 2020. Employment and COVID-19 Transmission
Risks. https://lmic-cimt.shinyapps.io/vse_lmic_risk_analysis/. Accessed July 8,
2020.

267

https://lmic-cimt.shinyapps.io/vse_lmic_risk_analysis/

Novel Hardware & Software Design for Mathematical and AI
Acceleration

Robert F. Enenkel
enenkel@ca.ibm.com
IBM Canada Ltd.

Markham, Ontario, Canada

Silvia M. Müller
smm@de.ibm.com

IBM Systems
Böblingen, Germany

Christopher K. Anand
anandc@mcmaster.ca
McMaster University

Hamilton, Ontario, Canada

ABSTRACT
Special-purpose computational hardware, in integer and floating-
point arithmetic units, as well as in memory systems, provides
opportunities to accelerate a wide range of mathematical applica-
tions, including medical imaging, digital signal processing, artificial
intelligence, and cryptography.

In this workshop, university and IBM speakers provided insight
into a selection of novel uses of computer system design to acceler-
ate important applications.

CCS CONCEPTS
•Computer systems organization→Architectures; •Applied
computing → Physical sciences and engineering; • Mathe-
matics of computing → Mathematical software.

KEYWORDS
mathematical functions, polynomial approximation, linear algebra,
matrix operations, computer arithmetic, floating- point arithmetic,
integer arithmetic, modular arithmetic, processor hardware design,
processor architecture, system design, hardware acceleration, cryp-
tography, artificial i ntelligence, neural networks, computational
memory, phase change memory
ACM Reference Format:
Robert F. Enenkel, Silvia M. Müller, and Christopher K. Anand. 2020. Novel
Hardware & Software Design for Mathematical and AI Acceleration. In
EVOKE CASCON 2020: Conference of the Centre for Advanced Studies on
Collaborative Research. IBM Corp., Riverton, NJ, USA, 10 pages.

1 PRESENTATIONS
High-Performance Matrix Math in IBM POWER
Processors
Jose Moreira, IBM Research, Yorktown Heights
Power ISA processors have a long history of offering superior fea-
tures for HPC applications and the Open Power ISA has enabled
open access to many of these features. IBM’s most recent contri-
bution to Open Power ISA, in the form of Power ISA Version 3.1,
includes the Matrix Math Assist (MMA) instructions. The MMA
instructions are designed to deliver enhanced performance and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CASCON 2020, November 10-13, 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

efficiency for both classical high-performance computing, in the
space of scientific and technical computing, and for the increasingly
important space of business analytics. They offer increased com-
putational intensity by implementing BLAS 2- and BLAS 3-level
functionality, performing more operations per data element. Our
goal is to raise awareness of and interest in these new HPC fea-
tures, which we believe can lead to further research in processor
architecture and programming environments. Some of the most
promising application areas include graph algorithms, classical
machine learning and deep learning.

Computational Phase-Change Memory for
Neural-Network Inference
TBD, IBM Research, Zürich

HashedExpression: A Tool for High-Level
Optimization of Neural Networks
Nhan Thai, Curtis d’Alves, Christopher Anand, McMaster University
We introduce a tool for symbolic code generation which we propose
to use for high-level transformation of loss functions associated
with neural networks (NNs) and symbolic differentiation. Hashed-
Expression is a library for modelling and solving optimization prob-
lems. It places great emphasis on modelling correctness and fast,
low-level code generation. Empowered by the purely functional
programming language Haskell, HashedExpression provides users
with a type-safe, correct by construction APIs for modelling opti-
mization problems where invalid models will result in type errors.
In the case of NNs, this ensures that vector shapes match. Trans-
formations are supported by a simple, extensible pattern-matching
language which makes it easy to add optimizations specific to a
domain, such as particular neural networks. Currently, HashedEx-
pression generates C code that can be compiled and linked with
fast optimization solvers such as Ipopt, libLBFGS, or L-BFGS-B. It’s
design envisages future work on advanced parallelization, targeting
SIMD and multi-core CPUs and GPUs, as well as future hardware
acceleration.

Modular arithmetic engine for elliptic curve
cryptography on the IBM z15 processor
Silvia M. Müller, IBM Systems, Böblingen

268

Enenkel, Müller, AnandCASCON 2020, November 10-13, 2020, Toronto, Canada

2 BIOS
Silvia M. Müller

Silvia, an IBM Distinguished Engineer,
is leading the development of competi-
tive arithmetical units for POWER and
z Systems. She has been driving a shift
in IBM’s Systems value towards stack
solutions based on hardware/software
co-design and co-optimizations, special-
ized arithmetic accelerator engines and
hardware differentiation. Prior to join-
ing IBM in 1999, she was a professor for

processor arithmetic and processor design at the University of Saar-
land, Germany. She holds a Ph.D. in computer Science (1991) and an
MSC in Mathematics (1989) from the same university. She authored
over 150 issued patents, 3 books, and over 30 papers.

Jose Moreira
José E. Moreira is a Distinguished Re-
search Staff Member in the Scalable Sys-
tems Department at the Thomas J. Wat-
son Research Center. He received a B.S.
degree in physics and B.S. and M.S. de-
grees in electrical engineering from the
University of Sao Paulo, Brazil, in 1987,
1988, and 1990, respectively. He also re-
ceived a Ph.D. degree in electrical engi-

neering from the University of Illinois at Urbana-Champaign in
1995. Since joining IBM at the Thomas J. Watson Research Cen-
ter, he has worked on a variety of high-performance computing
projects. He was system software architect for the Blue Gene/L
supercomputer and chief architect of the Commercial Scale Out
project. He currently leads the IBM Research work on the architec-
ture of POWER processor. He is an author or coauthor of over 100
technical papers and 15 US patents. Dr. Moreira is a Senior Member
of the IEEE (Institute of Electrical and Electronics Engineers) and
a Distinguished Scientist of the ACM (Association for Computing
Machinery).

Christopher Kumar Anand
Christopher Kumar Anand is an Asso-
ciate Professor of Computing and Soft-
ware at McMaster University and Chief
Science Officer of Optimal Computa-
tional Algorithms, Inc., innovating in
Computer Science Education (drawing
from academic disciplines form cogni-
tive science to programming language
theory) and computer architecture, and

applying optimization (to instruction scheduling, electron mi-
croscopy, magnetic resonance imaging and machine learning). Prof.
Anand is also a Faculty Fellow of the IBM Center for Advanced
Studies.

Nhan Thai
Nhan is an MSc (Computer Science)
student at McMaster University. He re-
ceived his Bachelor at Hanoi University
of Science and Technology where he
wrote his thesis on routing algorithms in
wireless sensor networks. He is a func-
tional programming enthusiast, using
Haskell for most of his research work
on optimization and code graph trans-

formations. He is also an open source advocate who authored and
contributed to many projects, viz. https://github.com/dandoh. You
can reach him at thain1@mcmaster.ca

Curtis d’Alves
Curtis is a Ph.D candidate at McMaster
University, and IBM CAS Student Fellow
of the year (2019). His research involves
compiler optimization (in particular in-
struction scheduling) and continuous op-
timization algorithms. His work optimiz-
ing libraries for accelerating math func-
tions has been successfully productized
in releases of IBM MASS libraries. You

can reach him at dalvescb@mcmaster.ca.

Robert F. Enenkel
Robert is a technical leader for mathe-
matical libraries and numerical comput-
ing in the compiler group at the IBM
Toronto Lab, where he works on the de-
velopment of high-performance mathe-
matical function libraries and the perfor-
mance exploitation of IBM processors
through compilers. Since joining IBM in
1998, he also spent 6 years as a Research

Staff Member in the IBM Center for Advanced Studies, contributed
to the organization of multiple CASCON conferences, and served
as Program Co-Chair for CASCON x EVOKE 2019. He has a PhD
and MSc in mathematics and computer science from the University
of Toronto, and has authored or co-authored 13 patents and over
30 papers and technical articles.

ACKNOWLEDGMENTS
The authors would like to thank NSERC and the IBM Centre for
Advanced Studies for financial support.

269

https://github.com/dandoh

Z Modernization Open Tools Showcase

Steve Shao Software
Developer Debug for z/

OS
IBM Systems

steve.shao@ibm.com

Nitika Sharma
Software Developer
Debug for z/OS IBM

Systems
n.sharma@ibm.com

Stephanie Kuan
Software Developer

Debug for z/OS IBM
Systems

sbagot@ca.ibm.com

ABSTRACT

Z Modernization Open Tools Showcase is a collection of multiple

demos and use-cases built into a single environment, illustrating

how to configure and debug transactions in seconds. What’s more

exciting, it brings support to developers first choice IDEs including

VS Code. With modern tools to existing z/OS workloads,

developers can start interacting with z/OS like we would any other

cloud environment.

Keywords
Mainframe, z/OS, Debugger, VS Code

1. INTRODUCTION
Mainframes are data servers designed to process up to 1 trillion web

transactions daily with the highest levels of security and reliability.

Mainframes are found in 92 of world’s top 100 banks, handle 87%

of all credit card transactions and nearly $8 trillion payments.

Traditionally, developers leverage emulators or eclipse IDE when

debugging transactions running on Z. Nowadays, moving to the

cloud gives everyone access to enterprise-class technology. It also

allows smaller businesses to act faster than big established

competitors. Additionally, increasing popularity of cloud services

leads to the rise of cloud IDEs.

Z Modernization Open Tools bring COBOL and PL/I applications

debugging support multiple modern IDEs including VSCODE,

Open Shift, Thiea and many other cloud IDEs. It provides

developers a modern debugging experience for IBM Z Enterprise

Languages.

2. Background

2.1 What is Mainframe?
At their core, mainframes are high-performance computers with

large amounts of memory and processors that process billions of

simple calculations and transactions in real time. The mainframe is

critical to commercial databases, transaction servers, and

applications that require high resiliency, security, and agility.

Today’s mainframes are much smaller than the early “Big Iron”

machines. With a standard 19” rack, the latest mainframe

seamlessly coexists with other platforms in the data center. One

IBM z15™ single-frame system requires 75 percent less floor space

than x86 2U servers running the same workloads and throughput –

and reduces power consumption by 40 percent.

What happens in a second? There are 7812 tweets, 15,650 posts on

Facebook, 63,386 google searches and 71,381 views on YouTube.

On mainframe, 1,157,407 CICS Transactions are successfully

executed every second.

Figure 1. IBM z15 single-frame or multi-frame with one frame

2.2 Old-School Debugging Methodology
The most significant difference is that an IDE allows you to

compile and run the code. Further, some IDEs have advanced

features like debug.

In the traditional way, developers use ISPF emulators or eclipse

IDEs to debug their transactions. Without support of modern IT

tools like git or Kubernetes, developers should know more than

about COBOL, PL/I and Assembler.

3. Challenges
Modernize the IBM z/OS Debugger by providing a more modern,

familiar interface is not an easy job to accomplish. Our new

methodology must not only support debugging cloud IDEs, but also

compatible to existing eclipse IDEs.

3.1 Change with debug protocols

3.1.1 Debug Adapter Protocol
Adding a debugger for a new language to an IDE or editor is not

only a significant effort, but it is also frustrating that this effort

cannot be easily amortized over multiple development tools, as

each tool uses different APIs for implementing the same feature.

The idea behind the Debug Adapter Protocol (DAP) is to abstract

the way how the debugging support of development tools

communicates with debuggers or runtimes into a protocol. Since it

is unrealistic to assume that existing debuggers or runtimes adopt

this protocol any time soon, we rather assume that an intermediary

component - a so called Debug Adapter - adapts an existing

debugger or runtime to the Debug Adapter Protocol.

The Debug Adapter Protocol makes it possible to implement a

generic debugger for a development tool that can communicate

with different debuggers via Debug Adapters. And Debug Adapters

can be re-used across multiple development tools which
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work must be honored. For all
other uses, contact the owner/author(s).
CASCON 2020, November 10-13, 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

270

significantly reduces the effort to support a new debugger in

different tools. The Debug Adapter Protocol is a win for both

debugger providers and tooling vendors!

Figure 2. DAP with different debuggers

3.1.2 Shift from EDPC to DAP
Old IDE like IDz interacts with debug engine through EPDC

protocol. To add support for DAP, we implement a new layer above

current structure to translate data between engine and new IDE side.

3.2 New debug profile API
Old debug profile API does not have good support in terms of data

integrity, speed and security. Define a new Debug profile API

handles general user request is necessary. On the mainframe side,

we set up a new profile service that help developers configure

debug profiles in seconds.

3.3 Adapt to different environments
Our goal is to provide modern debugging interface to “Deb”

persona to debug on z/OS. Primarily we have support for vs code

in the first release. Recently we add support for Theia. As our

journey to cloud moving, we embraced cloud environments like

Red Hat open shift. Integrated with Red Hat Code Ready

Workspaces, IBM Z Open debug could provide a modern IT

experience with mainframe.

Built on the open Eclipse Che project, Red Hat Code Ready

Workspaces uses Kubernetes and containers to provide any

member of the development or IT team with a consistent, secure,

and zero-configuration development environment. The user

experience is as fast and familiar as an integrated development

environment (IDE) on their laptop.

4. A Collaborative Approach
In the figure 3 below, we illustrate the architecture of a

collaborative approach for IBM Z Open Debug. Remote debug

service is acting as a translator for VS Code and debug engine by

converting EPDC protocol to DAP. Inside VS Code, we have two

extensions running on top of that. Profile UI extension provides an

interface for developers better managing their debug profiles. The

other extension provides interactive debugging support for

debugging z/OS COBOL and PL/I applications, in conjunction

with IBM z/OS Debugger.

On the other hand, we could also find the existing architecture of

eclipse IDEs and also how it interacts with debug engine running

on z/OS.

Figure 3. Collaborative Approach Architecture

5. Future Work
In the future, we will continue work on providing tools for IBM

z/OS debugger by providing a more modern, familiar interface.

Stay our journey to the cloud, IBM z/OS debugger can help you on

your way to cloud-native infrastructure, with end-to-end coverage

that allows for complete, holistic transformation.

6. ACKNOWLEDGMENTS
Our thanks to IBM Cascon for allowing us to provide us an

opportunity to participate in this event.

7. REFERENCES
[1] https://developer.ibm.com/mainframe/2020/06/12/introducin

g-ibm-z-open-debug/

[2] https://developer.ibm.com/mainframe/2020/06/12/vscode-

zopendebug-profile-view/

[3] Debug Adapter Protocol: https://microsoft.github.io/debug-

adapter-protocol/

CASCON 2020, November 10-13, 2020, Toronto, Canada Shao, et al.

271

https://developer.ibm.com/mainframe/2020/06/12/vscode-zopendebug-profile-view/
https://developer.ibm.com/mainframe/2020/06/12/vscode-zopendebug-profile-view/

Smart Cities with Smart AI to fight back Covid19
How smart cities used smart AI to fight back the pandemic

Hina	Sharma	
IBM Cloud and Cognitive

 IBM India Pvt Ltd, Pune MH India
hinsha26@in.ibm.com

ABSTRACT	
As	 per	 the	 latest	 statistics	 (as	 of	 Sept	 25,2020),	 total	 Covid	
cases	have	risen	to	33.2	M	with	1M	lives	being	lost.	 	The	fear	
caused	 by	 this	 global	 outbreak	 has	 stranded	 the	 world.		
Conventional	education	system	and	work	environments	were	
now	challenging	but	the	show	had	to	go	on.		

Figure	1:	WHO-Region	data	representation	of	the	current	
situation	of	Covid-19	across	the	world	

With	a	 sudden	 surge	of	 requirement	 for	online	 education,	 e-
commerce	 and	 work	 from	 home,	 IT	 had	 a	 big	 role	 to	 play.		
While	we	had	the	doctors	and	policemen	at	fore	front,	IT	was	
the	backbone	of	all	the	systems	up	and	running.		
Cloud	technology	has	had	a	major	role	in	making	sure	that	the	
world	continues	even	from	the	comfort	of	our	homes.	 	Cloud	
migration	became	the	no.	1	priority	even	for	companies	which	
were	 not	 planning	 migration.	 Businesses	 were	 now	 looking	
for	 resiliency,	 High	 Availability	 and	 Load	 balancing	 for	 a	
seamless	customer	experience.		

Amongst	all	this	chaos	and	complexity	of	managing	work	and	
education,	countries	and	cities	also	had	to	control	the	spread	
of	the	deadly	virus.		With	number	of	infected	increasing	on	the	
graph,	it	became	the	focus	area	for	the	government	to	control	
the	spread.		

Figure	2:		WHO	Dashboard	latest	covid	data	

Major	issues	faced	by	countries	during	the	pandemic:		

1.	 Maintaining	social	distance	to	limit	the	contact	with	others.	
2.	 With	 the	 number	 of	 infected	 cases	 increasing,	 hospitals	
were	short	of	beds,	oxygen	and	other	resources.	
3.	 Since	 doctors,	 policemen	 had	 to	 be	 at	 the	 forefront	 too	
were	at	the	risk	of	getting	infected.	
4.	 Contamination	 and	 spread	 of	 virus	 at	 public	 places	 like	
hospitals,	stations,	airports	etc.	
5.	 Surface	 contamination	 at	 such	 public	 places	 where	 the	
infected	person	might	have	touched.	

CCS	CONCEPTS	
•	ArtiRicial	Intelligence	•	Cloud	

KEYWORDS	
Smart	City,	ArtiRicial	Intelligence,	Cloud,	covid19,	
innovations	

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work must be honored. For all
other uses, contact the owner/author(s).
CASCON 2020, November 10-13, 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

272

CASCON 2020, November 10-13, 2020, Toronto, Canada

1	 The	Smart	Cities	

							Smart	cities	are	the	prepared	cities,	are	the	cities	which	
have	equipped	themselves	with	the	right	innovations	and	
have	used	technology	to	their	beneRit.		Smart	cities	know	
how	to	Right	the	enemy	with	the	right	set	of	weapons.		
Initially,	when	the	world	was	ignorant	of	what	is	waiting	
for	it	next,	BlueDot,	a	Canadian	startup	and	AWS	customer	
was	the	Rirst	to	raise	an	alert	-	using	their	machine	
learning	algorithms.		BlueDot	helps	government	ofRicials,	
airlines	and	hospitals	to		 help	them	anticipate	and	
better	manage	the	risks.		

1.1	 Smart	cities	leveraged	Smart	AI	
Different	countries	took	different	measures	to	ensure		
the	safety	of	their	area.		Different	rules	were	enforced	to	

ensure	the	safety	of	its	citizens.			

1.	 Total	lockdown	of	the	entire	country	to	limit	
the	movement	of	people	and	limit	contacts	with	each	other.
2.	 Wearing	masks	has	been	mandated	ever	since.	
3.	 Partial	lockdown	stays	to	limit	people	movement	on	

roads	and	non-essential	movement.		

Although,	every	country	is	working	towards	the	same	
cause	and	prevention,	what	would	make	a	country	smart	is	
the	way	it	handles	the	current	times.		How	automated	the	
country	is	in	terms	of	its	operations?	How	well	the	country	or	
its	city	is	using	technology	and	especially	ArtiRicial	Intelligence	
to	Right	the	pandemic.	In	other	words,	How	Smart	is	the	city?	

Figure	3:		Countries	using	smart	AI	innovations.		Courtesy:	
www.economictimes.com	

ArtiRicial	 Intelligence	helps	 to	collect	and	analyze	data.	 It	can	
help	 to	 predict	 what	 is	 next.	 	 It	 can	 help	 take	 preventive	
measures.	 	 AI	 in	 hospitals	 can	 help	 predict	 bed	 availability,	
help	doctors	analyze	patient	and	his	history	quickly.	 	So,	let's	
discuss	 some	 of	 the	 great	 innovations	 have	 made	 a	 great	
difference	 in	the	way	we	are	Righting	this	enemy.	 	Let's	 learn	
what	 makes	 a	 city	 a	 smart	 city.	 And	 how	 smart	 cities	 are	

H. Sharma et al.

leveraging	 AI	 to	 be	 at	 the	 fore	 front	 of	 winning	 over	
these	tough	times:		

1.1.1 Better Patient Management: Cities are using AI + IOT to
better manage the patients in hospitals. Physicians are using AI
technologies to detect the symptoms of covid-19 at an earlier
stage. Early analysis of the infection and suggest therapies. Even
the treatment is based as suggested by AI and further monitoring
too. Better bed management in different hospitals in the city, can
help patients find the availability at the earliest and save the
previous time. The Citizen Covid19 Risk Self-Assessment app is
being used by Agra city in India as part of smart city initiative.
.	
1.1.2	Sanitize	your	way:	 Cities like Varanasi, India are

using smart sanitizers. These drone-based sanitizers spray the
sanitizers in covid-19 prone sensitive parts. Companies like Intel
in collaboration with AI enabled organizations are coming up with
AI enabled masks.

1.1.3 Contact	Tracing:
Countries like China have effectively embraced AI and related

technology to enable contact tracing applications. Automated
robots are placed at hospitals to take care of the patients. This
helps avoid contact of nurses with patients. Other countries have
followed the suite too. These contact tracing applications have
successfully helped the countries and its cities to track real-time
contact tracing and help the virus not to spread. India too has
Arogya-Setu app in India is the contact tracing app, which is
being used by government to track its covid-19 infected citizens.

1.1.4 Emergency	Service	Response:
Cities are collaborating across to monitor the evolution of the

diseases, sensitive areas in the cities, expect the behaviour of the
citizen, and help manage public health emergencies.

1.1.4	 Let’s	 learn	 the	 smart	 way:	 AI innovations are being
extended to online education. Using IBM Watson, we can have
several innovations in online education too. Convert the teaching
audio to notes for later reference, automated attendance system.
Understand how the student is responding to the lectures.
Countries are adopting these innovations to make sure that its
citizens progress well and nothing stops them from learning, well
not even the pandemic. 	

The	above	are	just	a	few	examples	how	smart	cities	can	utilize	
AI	to	their	beneRit	and	prevent	the	spread	of	covid-19.			This	is	
just	 the	 start	 of	 the	 next	 revolution.	 	 Governments	 are	 now	
spending	 huge	 amounts	 to	 make	 their	 cities	 smarter	 cities.		
Smarter	 cities	will	 be	 the	 connected	 cities.	 	 Connected	 cities	
will	 collect	 data,	 and	 this	 data	 will	 be	 utilized	 to	 Rind	 the	
reasons	and	thereby	control	this	virus.		

Smart	city	technologies	have	the	power	to	improve	the	health	
and	 well-being	 of	 its	 people	 and	 the	 city	 as	 a	 whole.	 	 New	

273

Smart Cities with Smart AI to fight the pandemic	

avenues	 for	 economic	 development	 in	 every	 domain	 -	
Transport,	automobiles,	health,	environment,	efRicient	energy	
usage.			Only	with	the	help	of	AI,	IOT	can	we	Right	the	biggest	
challenge	that	confronts	us.	the	potential	of	technology	has	to	
be	used	at	the	best	possible,	and	only	then	A	Smart	City	with	
Smart	AI	can	Right	back	Covid19.			
	
Countries	are	empowering	themselves	with	new	innovations.	
Edge	 computing,	 Blockchain	 integrated	 with	 AI	 is	 doing	
wonders.	Data	analysis	shows	the	strategic	and	Rinancial	gains	
to	 companies	 with	 technology	 as	 their	 friend.	 	 Businesses	
along	with	its	city	and	country	would	innovate	and	that	would	
be	their	only	key	to	recovery	during	these	tough	times.		

ACKNOWLEDGMENTS	
The	 author	 thanks	 everyone	 who	 have	 helped	 provide	 the	
required	 information	 related	 to	 the	 smart	 cities	 and	 their	
smart	innovations.		

REFERENCES	
[1] www.ipwatchdog.
[2] www.economictimes.com
[3]	 	www.smartcities.gov.in

274

Quantum Computing: Synergies and Opportunities
Mehdi Bozzo-Rey

mehdi.bozzorey@cambridgequantum.com
Cambridge Quantum Computing Ltd.

Toronto, Ontario, Canada

Robert Loredo
loredo@us.ibm.com

IBM Quantum
Miami, Florida, USA

Hausi A. Müller
hausi@uvic.ca

University of Victoria
Victoria, British Columbia, Canada

Ulrike Stege
ustege@uvic.ca

University of Victoria
Victoria, British Columbia, Canada

ABSTRACT
Quantum computing has evolved from a field of scientific research
to a quantum technology industry. Much progress is still needed to
solve real-world problems with quantum technology and achieve
quantum advantage. Industries, governments, and universities are
experimenting with advanced quantum computing technologies
to become quantum ready. One way forward is to combine quan-
tum and classical approaches to form hybrid models, algorithms,
and architectures to overcome the limitations of NISQ systems for
near-term quantum computations. CASCON 2020 features a 2-day
quantum computing workshop. This workshop discusses synergies
and challenges in workforce training and opportunities in quan-
tum computing applications featuring speakers from IBM, start-up
companies, and academic research programs. The key goal of this
workshop is to discuss synergies and opportunities in quantum
computing along three dimensions:

• Existing and emerging quantum ecosystems across Canada
• Hybrid quantum-classical problem-solving and applications
• Vibrant quantum start-up companies

CCS CONCEPTS
•Computer systems organization→Architectures; •Applied
computing→ Emerging technologies; Physical sciences and
engineering; • Software and its engineering → Software no-
tations and tools; • Social andprofessional topics→Comput-
ing education; Computing industry; Computing profession;
Computing and business.

KEYWORDS
Quantum computing, computing with nature, engagement, edu-
cation, training, algorithms, programming, Qiskit, IBM Quantum,
hybrid computing, applications, chemistry, finance, cryptography,
machine learning, quantum start-ups

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work must be honored. For all
other uses, contact the owner/author(s).
CASCON 2020, November 10-13, 2020, Toronto, Canada
© 2020 Copyright held by the owner/author(s).

1 INTRODUCTION
The field of quantum computing has seen many developments since
Google’s so called “quantum supremacy article” in 2019 [10]. We
witnessed advances in hardware, both in terms of number of qubits
and quality—reflected by the quantum volume metric [13], now used
by hardware vendors to reflect the overall quality of their devices.
IBM just released a roadmap that will take them from the noisy,
intermediate-scale devices of today to the million-plus qubit devices
of the future with the 1,000-plus qubit IBM Quantum Condor device
for 2023 [16]. Honeywell has announced hardware releases based
on their ion trap technologies with a quantum volume of 64. The
overall quantum hardware ecosystems are blooming and promise
a wider choice of technologies for end users soon [1, 19]. From
an accessibility and delivery point of view, many cloud vendors
can now be considered quantum cloud providers [17, 21, 22]; even
startups, such as Xanadu [24], provide cloud access to their own
devices. The software ecosystems bloomed vigorously with the
emergence of the concept of quantum workflows with the release of
Zapata’s Orquestra [11]. On the full-stack front, Amazon released
its first version of Amazon Braket for customers to access QPUs
from select vendors. From a circuit optimization and noise
mitigation point of view the race is still on. This is essential for
getting the most from actual NISQ devices—with many startups
involved [2, 6–8]. Language translation and the ability to access
hardware devices outside a specific ecosystem while still using
high-level quantum libraries and keeping the benefits of targeted
circuit optimization, becomes critical for rapid prototyping and
testing as pioneered by CQC [23].

2 EXISTING AND EMERGING QUANTUM
ECOSYSTEM ACROSS CANADA

The first day of the workshop presents the Canadian quantum
ecosystems and ongoing quantum education initiatives. Decades
of research investments have put Canada at the global forefront
of the Quantum Industry. In a study by McKinsey, published in
The Economist in 2017, Canada is ranked 1st among G7 nations
in per-capita spending on quantum research, 5th in the world in

275

Bozzo-Rey, et al.CASCON 2020, November 10-13, 2020, Toronto, Canada

total expenditure on quantum science, and 1st in the world in quan-
tum computing science [12, 18]. Canadian research contributions
to the highly interdisciplinary field of quantum are numerous—
from the first quantum cryptography protocol (BB84) by Gilles
Brassard (McGill) and Charles Bennett (IBM)—to Donna Strick-
land’s (Waterloo) and Gérard Mourou’s (France) Nobel Prize in
Physics in 2018. These contributions were possible with strong
and well targeted federal and provincial government initiatives to
fuel not only basic research but also strengthen industry-academic
collaboration. For example, Canada First Research Excellence Fund
(CFREF) is“helping Canadian postsecondary institutions excel in
research areas that will create long term economic advantages.”
Moreover, three major quantum institutes have been created: Insti-
tut Quantique (IQ)1, Transformative Quantum Technologies (TQT)2,
and Stewart Blusson Quantum Matter Institute (SBQMI). Canadian
provinces also funded platforms to strengthen the collaboration
between academia and industry, with the Espace IBM Quantum in
Québec and the British Columbia Quantum Algorithms Institute.
Other investment in quantum technologies research and develop-
ment came directly from the private sector, with private donations
to support the creation and ongoing operations of the Institute of
Quantum Computing (IQC) in Waterloo [14].

3 TOWARD PRACTICAL QUANTUM
APPLICATIONS USING HYBRID PROBLEM
SOLVING TECHNIQUES

Part of this workshop is dedicated to hardware and software providers,
exploring two emerging fields in Quantum Information Science
(QIS): Quantum Machine Learning (QML) and Quantum Natural
Language Processing (QNLP). Today’s quantum algorithms are gen-
erally limited to shallow-depth circuits due to noise and other envi-
ronmental effects caused by the nature of current quantum devices.
These algorithms are developed as hybrids to leverage the capabili-
ties of near-term quantum computers. Variational techniques are
some of the most promising hybrid approaches. By allowing classi-
cal and quantum systems to work together, the classical system can
provide the QPU with parameters generated in a previous iteration.

Examples include: VQE (Variational QuantumEigensolver is used
to approximate the lowest energy level of a given Hamiltonian [20]),
QAOA (Quantum Approximate Optimization Algorithm is a tech-
nique mostly used for Combinatorial Optimization problems [15]),
QNNs (QuantumNeural Networks are quantum analogues or gener-
alizations of classical neural nets [4]), VQLS (Variational Quantum
Linear Solver is used to solve systems of linear equations [9]).

4 A VIBRANT QUANTUM STARTUP
ECOSYSTEM

The last part of the workshop is dedicated to realm of startups.
Hardware vendors or cloud providers have existing non-quantum
programs dedicated to startups. Microsoft and IBM have been spear-
heading dedicated quantum startup programs over the past three
years. The diversity of quantum startups is impressive globally
and is rooted in Canada with the Creative Destruction Labs (CDL)

1Université de Sherbrooke, Québec
2University of Waterloo, Ontario

quantum stream offered in Toronto [3]. The quantum stream brings
together entrepreneurs, scientists, investors and hardware vendors
to build ventures in quantum computing and other applications of
quantum technologies. The program has been extremely successful
so far with startups from Canada, US, Europe and Singapore attend-
ing. Some of them opened offices in Canada (e.g., Multiverse Com-
puting), others built international partnerships (e.g., Miraex [5])
With advances in QML and increasing interest from the high per-
formance computing community, it is expected to see ventures
leveraging both the AI and quantum communities and startups
paving the way for hybrid solutions and transitioning from classi-
cal to quantum platforms.

5 CONCLUSIONS
This 2-day CASCON x EVOKE 2020 quantum computing track is a
great opportunity to engage in emerging quantum ecosystems, and
to get an overview of Canadian initiatives. It provides ample oppor-
tunity to network and explore partnerships, to discuss challenges
and opportunities with quantum researchers, scientists, engineers,
entrepreneurs, developers, students, practitioners, educators, pro-
grammers, enthusiasts, and newcomers.

ACKNOWLEDGMENTS
This work was supported in part by IBM CAS, Canada, Cambridge
QuantumComputing Ltd., IBM Research YorktownHeights, NSERC
Canada, and University of Victoria. The authors thank IBM CAS
for funding the project entitled “Quantum Problem Solving and
Algorithm Design on the IBM Quantum Platform.”

REFERENCES
[1] 2020. Archer. https://archerx.com.au/
[2] 2020. Cambridge Quantum Computing. https://cambridgequantum.com
[3] 2020. CDL Quantum Stream. www.creativedestructionlab.com/streams/quantum
[4] 2020. Hybrid quantum-classical Neural Networks with PyTorch and Qiskit. https:

//bit.ly/34hL5Z4
[5] 2020. Miraex as finalist of the NASA Challenge. https://bit.ly/3jdPvXj
[6] 2020. Quantum Benchmark. https://quantumbenchmark.com
[7] 2020. Riverlane. www.riverlane.com
[8] 2020. softwareQ. www.softwareq.ca/
[9] 2020. Variational Quantum Linear Solver. https://qiskit.org/textbook/ch-paper-

implementations/vqls.html
[10] F Arute, K Arya, and R Babbush et al. 2019. Quantum supremacy using a pro-

grammable superconducting processor. Nature 574 (Oct 2019), 505–510.
[11] Zapata Computing. 2020. Orquestra. www.orquestra.io/
[12] The Economist. 2017. Tech. Quart.: Quantum Devices, Here, there & everywhere.
[13] AW Cross et al. 2019. Validating quantum computers using randomized model

circuits. Phys Rev A 100 (Sep 2019), 032328. Issue 3.
[14] B Sussman et al. 2019. Quantum supremacy using a programmable supercon-

ducting processor. Quantum Sci Technol 4, 2 (2019).
[15] E Farhi, J Goldstone, and S Gutmann. 2014. A Quantum Approximate Optimiza-

tion Algorithm. Arxiv (Nov 2014). arxiv.org/abs/1411.4028v1
[16] J Gambetta. 2020. IBM’s Roadmap For Scaling Quantum Technology. IBM. www.

ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/
[17] Microsoft. 2020. Azure Quantum. https://azure.microsoft.com/en-us/services/

quantum/
[18] NRC. 2019. Economic Impact of Quantum Tech. https://nrc.canada.ca/en/research-

development/research-collaboration/programs/economic-impact-quantum-
technologies

[19] PASQAL. 2020. PASQAL. https://pasqal.io/
[20] A Peruzzo, J McClean, and P Shadbolt et al. 2014. A variational eigenvalue solver

on a photonic quantum processor. Nat Commun 5 (Jul 2014), 4213.
[21] IBM Q. 2020. IBM Quantum Experience. https://quantum-computing.ibm.com/
[22] Amazon Web Services. 2020. Amazon Braket. https://aws.amazon.com/fr/braket/
[23] S Sivarajah, S Dilkes, and A Cowtan et al. 2020. t|ket⟩: A retargetable compiler

for NISQ devices. Quantum Science and Technology (2020).
[24] Xanadu. 2020. Xanadu Quantum Cloud. www.xanadu.ai/cloud-platform

276

https://archerx.com.au/
https://cambridgequantum.com
www.creativedestructionlab.com/streams/quantum
https://bit.ly/34hL5Z4
https://bit.ly/34hL5Z4
https://bit.ly/3jdPvXj
https://quantumbenchmark.com
www.riverlane.com
www.softwareq.ca/
https://qiskit.org/textbook/ch-paper-implementations/vqls.html
https://qiskit.org/textbook/ch-paper-implementations/vqls.html
www.orquestra.io/
arxiv.org/abs/1411.4028v1
www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/
www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/
https://azure.microsoft.com/en-us/services/quantum/
https://azure.microsoft.com/en-us/services/quantum/
https://nrc.canada.ca/en/research-development/research-collaboration/programs/economic-impact-quantum-technologies
https://nrc.canada.ca/en/research-development/research-collaboration/programs/economic-impact-quantum-technologies
https://nrc.canada.ca/en/research-development/research-collaboration/programs/economic-impact-quantum-technologies
https://pasqal.io/
https://quantum-computing.ibm.com/
https://aws.amazon.com/fr/braket/
www.xanadu.ai/cloud-platform

IBM Centre for Advanced Studies
CASCON x EVOKE 2020

277

Marcellus Mindel
Head, IBM Centre for Advanced Studies

About IBM Centre for Advanced Studies

Our mission
IBM Advanced Studies works with
students, faculty and industry professionals
to deliver innovation that matters—for IBM,
and for the world. We strive to

1. Equip students to apply IBM
technology to real-world challenges

2. Enhance innovation capacity through
joint academic-industry projects

3. Inspire meaningful human outcomes
through empathy for individuals

Our centres
We have a global network of IBM Centres
for Advanced Studies
(https://ibm.com/ibm/cas) which specialize
in high touch collaborative partnerships
with post-secondary institutions. In 2020,
CAS Canada, CAS Atlantic and CAS
Alberta together supported 57 academic-
industry research projects associated with
105 IBM products, involving 124 IBMers,
59 faculty and 129 students.

Our conference
The annual CASCON x EVOKE academic-
industry conference is a unique opportunity
to engage with a community of software
developers, researchers, students,
academics, decision-makers and IBMers
promoting cross-collaboration, driving
forward-thinking research and building
informed solutions.

The year 2020 marked the 30th
anniversary of our Centre for Advanced
Studies Conference (CASCON), our first-
ever virtual edition, and our second year
of partnership with the EVOKE
Foundation. Due to extenuating
circumstances, we moved our 30th
anniversary celebration to CASCON x
EVOKE 2021.

Our future conferences are planned as
hybrid events—offering both convenient
global virtual access and an immersive
physical venue. Mark your calendars with
confidence.

• CASCON x EVOKE 2021 –
November 21-26 – Enercare Centre,
Toronto + virtual access

• CASCON x EVOKE 2022 –
November 15-18 – Metro Toronto
Convention Centre + virtual access

Contact us
• Interested in work-integrated learning

or research collaborations? Excited
to get involved in CASCON x
EVOKE? Want to help celebrate our
30th? Contact us at
casinfo@ca.ibm.com

278

	Abstract
	1 Introduction
	2 Background
	2.1 Blockchain Technology (BT)
	2.2 NIST Bugs Framework
	2.3 Analysis Methodologies

	3 Related Work
	4 Vulnerabilities
	4.1 Reentrancy
	4.2 Out-of-Gas exception
	4.3 Call to the unknown
	4.4 Typecasts
	4.5 Mishandled Exceptions
	4.6 Weak Field Modifiers
	4.7 Integer Underflow/Overflow Vulnerability
	4.8 DoS By An External Call Vulnerability

	5 Research Analysis and Insights
	6 Conclusion
	References
	EVOKE_CASCON_2020_paper_54.pdf
	Abstract
	1 Introduction
	2 Background
	2.1 The Intrusion Detection System
	2.2 The ATC Simulation
	2.3 The ATC Ontology
	2.4 IDS and the ATC Simulator Extensions

	3 Threat Scenarios
	4 Transformation Process
	5 Transformation Example
	5.1 Violation of Physical Law

	6 Evaluation and Results
	6.1 Evaluation of SPARQL
	6.2 Evaluation of IDS

	7 Related Work
	7.1 Redundancy Checking
	7.2 Related IDS
	7.3 Threats and Attacks

	8 Conclusions and Future work
	9 Acknowledgments
	References

	EVOKE_CASCON_2020_paper_26.pdf
	Abstract
	1 Introduction
	2 ELF Object Overview
	2.1 Shared Libraries
	2.2 Sections and Metadata
	2.3 ELF Characteristics

	3 Related Work
	3.1 Eclipse OpenJ9
	3.2 Mono Runtime
	3.3 Oracle HotSpot

	4 AOT compilation in Eclipse OMR
	4.1 Eclipse OMR ELF Infrastructure

	5 Proposed Solution
	5.1 Challenges
	5.2 Portability

	6 Conclusion
	Acknowledgments
	References

	EVOKE_CASCON_2020_paper_18.pdf
	Abstract
	1 Introduction
	2 Background
	2.1 Blockchain
	2.2 Ethereum and Smart Contracts
	2.3 Cryptography

	3 Related Work
	4 Method
	4.1 Design Considerations
	4.2 Ethereum
	4.3 Go Ethereum Client
	4.4 Contract Design
	4.5 Devices
	4.6 Cryptography

	5 Results
	6 Discussion
	7 Conclusions and Future Work
	References

	EVOKE_CASCON_2020_paper_66.pdf
	Abstract
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Dataset
	3.2 Models
	3.3 Performance evaluation

	4 Results
	4.1 Exploratory analysis and augmentation
	4.2 Text classification
	4.3 Sentiment classification

	5 Threats to Validity
	6 Conclusion
	References

	EVOKE_CASCON_2020_paper_19.pdf
	Abstract
	1 Introduction
	2 Implementation
	2.1 Extended-Range Fused Multiply-Add
	2.2 Lookup Functions

	3 Simulation
	3.1 Performance

	4 Alternatives
	5 Conclusion
	Acknowledgments
	References

	EVOKE_CASCON_2020_paper_48-2.pdf
	Abstract
	1 Introduction
	2 Related work
	2.1 Integration of IoT and Blockchain
	2.2 Integration of Blockchain and Self-Adaptive Systems

	3 Background
	3.1 Consensus in Blockchain

	4 Study Methodology and Experimental Setup
	5 Self-Adaptive System Design
	6 Experimental Results
	6.1 Performance Evaluation of consensus protocols in Hyperledger Sawtooth
	6.2 Evaluation of the Self-Adaptive mechanism

	7 Threads to Validity
	8 Conclusion
	References

	EVOKE_CASCON_2020_paper_43.pdf
	Abstract
	1 Introduction
	2 Portfolio Risk Analytics
	3 Related Work
	3.1 Reinsurance Analytics
	3.2 Graph Modelling Frameworks

	4 Reinsurance Portfolio as a Graph
	5 Cloud-Based System forLocation-Level Risk Analytics
	5.1 Occurrence Processor
	5.2 Graph Optimizer
	5.3 Scalability, Elasticity, and Fault Tolerance

	6 Evaluation
	6.1 Test Portfolio
	6.2 Graph Layout, Single-Trial Memory Usage and Processing Time
	6.3 Evaluation as a Distributed System
	6.4 Comparison Against a Commercial System

	7 Conclusion
	Acknowledgments
	References

	EVOKE_CASCON_2020_paper_73.pdf
	Abstract
	1 Introduction
	2 The Hybrid Quantum Toolkit
	3 Designing Hybrid Algorithms
	4 Hybrid Quantum Machine Learning
	5 Hybrid Variational Algorithms
	6 Conclusions
	References

	EVOKE_CASCON_2020_paper_12.pdf
	Abstract
	1 Introduction
	1.1 Objectives
	1.2 Paper Organization

	2 Background
	2.1 VPN
	2.2 Tor
	2.3 Machine Learning
	2.4 Related Work

	3 Approach
	3.1 Dataset
	3.2 Machine Learning

	4 Realization
	4.1 Setup for the Dataset
	4.2 Extraction of Flows
	4.3 Machine Learning

	5 Analysis
	5.1 Feature Selection
	5.2 Machine Learning Classifiers

	6 Conclusion
	7 Future Work
	8 Acknowledgements
	References

	EVOKE_CASCON_2020_paper_31.pdf
	Abstract
	1 Introduction
	2 Background
	2.1 Java Virtual Machine
	2.2 Just-in-Time Compilation
	2.3 Eclipse OpenJ9
	2.4 Constrained Devices

	3 Related Work
	4 Design
	4.1 Integrating MicroJIT and Eclipse OpenJ9
	4.2 Architecture
	4.3 Bytecodes

	5 Results
	6 Future Work
	7 Summary
	Acknowledgments
	References

	EVOKE_CASCON_2020_paper_65.pdf
	Abstract
	1 INTRODUCTION
	2 INFORMATION ABOUT THE ORIGINAL STUDY
	3 INFORMATION ABOUT THE REPLICATION
	3.1 Benchmark datasets
	3.2 Level of interaction with authors of original study
	3.3 Changes to the original experiment

	4 COMPARISON OF RESULTS WITH ORIGINAL STUDY
	4.1 RQ1: How do models selected using domain-agnostic similarity perform in a cross-project context?
	4.2 RQ2: How do HDP methods predict the defect in the system compared to WPDP methods?
	4.3 RQ3: How do the ensembles of models built from several projects perform in an HDP context?
	4.4 RQ4: How Feasible is HDP in terms of target prediction coverage?

	5 THREATS TO VALIDITY
	6 CONCLUSIONS ACROSS STUDIES
	References

	EVOKE_CASCON_2020_paper_27.pdf
	Abstract
	1 Introduction
	2 Related Work
	2.1 CNN For MPD Methods
	2.2 Particle Filter For MPT Algorithms

	3 The Proposed MPD Method
	4 The Proposed MPT-AIDMPF Tracking Algorithm
	4.1 Outline of the Algorithm
	4.2 Pedestrian Colour-based Appearance Model
	4.3 Data Association
	4.4 Adaptive information driven motion model and resampling scheme

	5 Experimental Results
	5.1 Evaluation metrics
	5.2 Results

	6 Conclusion
	7 Acknowledgments
	References

	EVOKE_CASCON_2020_paper_29.pdf
	Abstract
	1 Introduction
	2 Background
	2.1 Elliptic Curve Cryptography

	3 Scheduling
	3.1 Table Generation
	3.2 Main Computation
	3.3 Split Without Table

	4 Performance Estimates and Recommendations
	4.1 Simulated Implementation in Haskell
	4.2 Parallel Implementation in Haskell

	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

	EVOKE_CASCON_2020_paper_51.pdf
	Abstract
	1 Introduction
	2 FFNN and RNN background
	3 Data Collection
	4 Overview Of Our Framework
	4.1 Generate Word Embeddings for Queries
	4.2 Architecture of Neural Networks
	4.3 Generating The Different Datasets
	4.4 The Benchmark Process
	4.5 Caching Decision for the Different Mechanisms

	5 Results
	5.1 RQ1: How accurate are the cost estimation and the prefetching functions?
	5.2 RQ2: What mechanisms exceed in terms of the cache hit ratio in the different benchmark scenarios?
	5.3 RQ3: What is the percentage of improvement of our framework over the traditional mechanisms?

	6 Threats To Validity
	7 Related Work
	7.1 Reactive Caching
	7.2 Proactive Caching

	8 Conclusion
	References

	EVOKE_CASCON_2020_paper_45.pdf
	Abstract
	1 Introduction
	2 Background
	2.1 Defect Prediction using Machine Learning

	3 Data Modeling
	3.1 Raw Data Model
	3.2 Post-Processed Data Model
	3.3 Explanation of the Features

	4 Machine Learning Framework
	4.1 Machine Learning Models Considered
	4.2 Commit Tagging
	4.3 File Tagging
	4.4 Training and Test Set Data and Bias
	4.5 Evaluation and Performance metrics

	5 Evaluation Studies
	5.1 Study 1: Identification of Best Classifiers
	5.2 Study 2: Identification of Best Features
	5.3 Study 3: Comparison of Process and Source Code Metrics
	5.4 Study 4: Cross Project Validation

	6 Discussion
	6.1 General Observations
	6.2 Detailed Observations
	6.3 Threats to Validity

	7 Conclusion
	References

	EVOKE_CASCON_2020_paper_57.pdf
	Abstract
	1 Introduction
	2 Background
	2.1 Hardware variability
	2.2 Software variability

	3 Related Work
	4 Hypotheses & Research Objectives
	5 Surveying Parallelism in Node.js
	6 Evaluating Node.js Parallelism
	6.1 Module Characteristics & Variabilities
	6.2 Benchmark suite
	6.3 Experimental Design & Metrics

	7 Experimental Evaluation
	7.1 Overhead
	7.2 Task execution
	7.3 Sharing Information
	7.4 Communication Cost

	8 Discussion
	9 Conclusion and Future Work
	Acknowledgments
	References

	EVOKE_CASCON_2020_paper_37.pdf
	Abstract
	1 Introduction
	2 Background
	2.1 Graph Theory Essentials
	2.2 Network Theory Essentials

	3 Related Work
	4 Architectural Pattern Inspection
	4.1 Dataset
	4.2 Microservice Degree Distribution
	4.3 Service Degree Distribution Analysis

	5 Architectural Patterns Modeling
	5.1 Structural Models Identification
	5.2 Structural Model Generation

	6 Discussion
	6.1 Implications of the Microservice Applications Structure
	6.2 Application Structure towards assuring Software Quality Attributes

	7 Conclusion and Future Work
	Acknowledgments
	References

	EVOKE_CASCON_2020_paper_70.pdf
	Abstract
	1 Introduction
	2 Literature review
	3 Problem description
	3.1 Probabilistic forecasting problem
	3.2 Time series sampling problem

	4 Methodology
	4.1 Models
	4.2 Sampling methods
	4.3 Data
	4.4 Experimental setup
	4.5 Performance Evaluation

	5 Results
	5.1 Performance of the forecasting models
	5.2 Distance and correlation-based sampling
	5.3 Other sampling strategies

	6 Conclusion and future directions
	References

	EVOKE_CASCON_2020_paper_40.pdf
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Heart, ECG, and Arrhythmias
	2.2 Related Work

	3 Methodology
	3.1 Dataset
	3.2 Data Preparation
	3.3 Dimensionality Reduction
	3.4 Class Imbalance
	3.5 Training and Testing Classification Models
	3.6 SHAP Value Explanations for Classification Models
	3.7 Finding ‘Bellwether’ Training Set to Improve Classification Models
	3.8 Evaluation of Classification Models

	4 Results
	4.1 Feature Subsets
	4.2 Evaluation of Classification Models
	4.3 SHAP Value Explanations for Classification Models
	4.4 Evaluation of Improved Classification Models Using ‘Bellwether’ Training Instances

	5 Threats to Validity
	6 Conclusion and Future Work
	References

	EVOKE_CASCON_2020_paper_30.pdf
	Abstract
	1 Introduction
	2 Related Work
	2.1 Mathematical Programming vs Heuristics
	2.2 DRL-based schedulers

	3 Background
	3.1 Reinforcement Learning
	3.2 Policy Gradients

	4 Proposed Method
	4.1 Problem statement
	4.2 Topology Awareness
	4.3 State representation
	4.4 Actions and Rewards
	4.5 Policy Function Design and Training
	4.6 Simulation Environment

	5 Evaluation
	5.1 Experimental Setup
	5.2 Performance Measures
	5.3 Evaluation baselines
	5.4 Performance Results

	6 Discussion
	7 Conclusion and Future Work
	References
	A Input Calibration

	EVOKE_CASCON_2020_paper_39.pdf
	Abstract
	1 introduction
	2 related work
	3 proposed methodology
	3.1 Data Acquisition
	3.2 Data cleaning and preprocessing
	3.3 Feature Extraction
	3.4 Dimensionality reduction
	3.5 Classification Task

	4 Evaluation Metrics
	4.1 Accuracy Score
	4.2 ROC-AUC score
	4.3 Matthews Correlation Coefficient

	5 Experiment Results
	5.1 Results without dimensionality reduction
	5.2 Results with Forward Feature Selection
	5.3 Results with Autoencoder

	6 conclusions and future work
	References

	EVOKE_CASCON_2020_paper_15.pdf
	Abstract
	1 Introduction
	2 Related Work
	3 Dataset
	3.1 Creation of the Dataset
	3.2 Dark Web Forums Used
	3.3 Features

	4 Methodology
	4.1 Preparations
	4.2 Final Setup of the Analysis

	5 Results
	5.1 Time-based Features
	5.2 Stylometric-based Features
	5.3 Lexical-based Features
	5.4 Language Model-based Features
	5.5 Voting

	6 Conclusions
	6.1 Future Work

	References

	EVOKE_CASCON_2020_submission_110.pdf
	Abstract
	1 Introduction
	2 Workshop Topic Areas
	2.1 Modeling of Big IT Data
	2.2 Proactive Issue Identification
	2.3 Intelligent Issue Resolution
	2.4 Issue Impact and Risk Determination
	2.5 Compliance Analysis

	3 Key Take-Aways
	References

	EVOKE_CASCON_2020_submission_139.pdf
	Abstract
	1 Scientific Scope
	2 Rationale
	3 Workshop Format
	4 Target Audience and Expected Outcomes
	5 Organizers
	References

	EVOKE_CASCON_2020_submission_90.pdf
	Abstract
	1 Rationale
	2 Workshop format

	EVOKE_CASCON_2020_submission_122.pdf
	EVOKE_CASCON_2020_submnisson_122.pdf
	Abstract
	1 Background and Rationale
	2 Workshop Format
	3 Organizers and Participants
	4 Outcomes
	References

	Abstract
	1 Background and Rationale
	2 Workshop Format
	3 Organizers and Participants
	4 Outcomes
	References

	EVOKE_CASCON_2020_submission_161.pdf
	Abstract
	1 Introduction
	2 Methods
	2.1 morPOP agent-based simulation model
	2.2 School mitigation policies

	3 Results
	4 Conclusion
	References

	EVOKE_CASCON_2020_submission_113.pdf
	Abstract
	1 Presentations
	2 Bios
	Acknowledgments

	EVOKE_CASCON_2020_submission_126.pdf
	Abstract
	1 Introduction
	2 Existing and emerging quantum ecosystem across Canada
	3 Toward Practical Quantum Applications using Hybrid Problem Solving Techniques
	4 A vibrant quantum startup ecosystem
	5 Conclusions
	Acknowledgments
	References

	EVOKE_CASCON_2020_paper_27.pdf
	Abstract
	1 Introduction
	2 Related Work
	2.1 CNN For MPD Methods
	2.2 Particle Filter For MPT Algorithms

	3 The Proposed MPD Method
	4 The Proposed MPT-AIDMPF Tracking Algorithm
	4.1 Outline of the Algorithm
	4.2 Pedestrian Colour-based Appearance Model
	4.3 Data Association
	4.4 Adaptive information driven motion model and resampling scheme

	5 Experimental Results
	5.1 Evaluation metrics
	5.2 Results

	6 Conclusion
	7 Acknowledgments
	References

	EVOKE_CASCON_2020_paper_39.pdf
	Abstract
	1 introduction
	2 related work
	3 proposed methodology
	3.1 Data Acquisition
	3.2 Data cleaning and preprocessing
	3.3 Feature Extraction
	3.4 Dimensionality reduction
	3.5 Classification Task

	4 Evaluation Metrics
	4.1 Accuracy Score
	4.2 ROC-AUC score
	4.3 Matthews Correlation Coefficient

	5 Experiment Results
	5.1 Results without dimensionality reduction
	5.2 Results with Forward Feature Selection
	5.3 Results with Autoencoder

	6 conclusions and future work
	References

	EVOKE_CASCON_2020_paper_40.pdf
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Heart, ECG, and Arrhythmias
	2.2 Related Work

	3 Methodology
	3.1 Dataset
	3.2 Data Preparation
	3.3 Dimensionality Reduction
	3.4 Class Imbalance
	3.5 Training and Testing Classification Models
	3.6 SHAP Value Explanations for Classification Models
	3.7 Finding ‘Bellwether’ Training Set to Improve Classification Models
	3.8 Evaluation of Classification Models

	4 Results
	4.1 Feature Subsets
	4.2 Evaluation of Classification Models
	4.3 SHAP Value Explanations for Classification Models
	4.4 Evaluation of Improved Classification Models Using ‘Bellwether’ Training Instances

	5 Threats to Validity
	6 Conclusion and Future Work
	References

	EVOKE_CASCON_2020_paper_43.pdf
	Abstract
	1 Introduction
	2 Portfolio Risk Analytics
	3 Related Work
	3.1 Reinsurance Analytics
	3.2 Graph Modelling Frameworks

	4 Reinsurance Portfolio as a Graph
	5 Cloud-Based System forLocation-Level Risk Analytics
	5.1 Occurrence Processor
	5.2 Graph Optimizer
	5.3 Scalability, Elasticity, and Fault Tolerance

	6 Evaluation
	6.1 Test Portfolio
	6.2 Graph Layout, Single-Trial Memory Usage and Processing Time
	6.3 Evaluation as a Distributed System
	6.4 Comparison Against a Commercial System

	7 Conclusion
	Acknowledgments
	References

	EVOKE_CASCON_2020_paper_12.pdf
	Abstract
	1 Introduction
	1.1 Objectives
	1.2 Paper Organization

	2 Background
	2.1 VPN
	2.2 Tor
	2.3 Machine Learning
	2.4 Related Work

	3 Approach
	3.1 Dataset
	3.2 Machine Learning

	4 Realization
	4.1 Setup for the Dataset
	4.2 Extraction of Flows
	4.3 Machine Learning

	5 Analysis
	5.1 Feature Selection
	5.2 Machine Learning Classifiers

	6 Conclusion
	7 Future Work
	8 Acknowledgements
	References

	EVOKE_CASCON_2020_paper_54.pdf
	Abstract
	1 Introduction
	2 Background
	2.1 The Intrusion Detection System
	2.2 The ATC Simulation
	2.3 The ATC Ontology
	2.4 IDS and the ATC Simulator Extensions

	3 Threat Scenarios
	4 Transformation Process
	5 Transformation Example
	5.1 Violation of Physical Law

	6 Evaluation and Results
	6.1 Evaluation of SPARQL
	6.2 Evaluation of IDS

	7 Related Work
	7.1 Redundancy Checking
	7.2 Related IDS
	7.3 Threats and Attacks

	8 Conclusions and Future work
	9 Acknowledgments
	References

	EVOKE_CASCON_2020_paper_18.pdf
	Abstract
	1 Introduction
	2 Background
	2.1 Blockchain
	2.2 Ethereum and Smart Contracts
	2.3 Cryptography

	3 Related Work
	4 Method
	4.1 Design Considerations
	4.2 Ethereum
	4.3 Go Ethereum Client
	4.4 Contract Design
	4.5 Devices
	4.6 Cryptography

	5 Results
	6 Discussion
	7 Conclusions and Future Work
	References

	EVOKE_CASCON_2020_paper_64.pdf
	Abstract
	1 Introduction
	2 Background
	2.1 Blockchain Technology (BT)
	2.2 NIST Bugs Framework
	2.3 Analysis Methodologies

	3 Related Work
	4 Vulnerabilities
	4.1 Reentrancy
	4.2 Out-of-Gas exception
	4.3 Call to the unknown
	4.4 Typecasts
	4.5 Mishandled Exceptions
	4.6 Weak Field Modifiers
	4.7 Integer Underflow/Overflow Vulnerability
	4.8 DoS By An External Call Vulnerability

	5 Research Analysis and Insights
	6 Conclusion
	References

	EVOKE_CASCON_2020_paper_30.pdf
	Abstract
	1 Introduction
	2 Related Work
	2.1 Mathematical Programming vs Heuristics
	2.2 DRL-based schedulers

	3 Background
	3.1 Reinforcement Learning
	3.2 Policy Gradients

	4 Proposed Method
	4.1 Problem statement
	4.2 Topology Awareness
	4.3 State representation
	4.4 Actions and Rewards
	4.5 Policy Function Design and Training
	4.6 Simulation Environment

	5 Evaluation
	5.1 Experimental Setup
	5.2 Performance Measures
	5.3 Evaluation baselines
	5.4 Performance Results

	6 Discussion
	7 Conclusion and Future Work
	References
	A Input Calibration

	EVOKE_CASCON_2020_paper_51.pdf
	Abstract
	1 Introduction
	2 FFNN and RNN background
	3 Data Collection
	4 Overview Of Our Framework
	4.1 Generate Word Embeddings for Queries
	4.2 Architecture of Neural Networks
	4.3 Generating The Different Datasets
	4.4 The Benchmark Process
	4.5 Caching Decision for the Different Mechanisms

	5 Results
	5.1 RQ1: How accurate are the cost estimation and the prefetching functions?
	5.2 RQ2: What mechanisms exceed in terms of the cache hit ratio in the different benchmark scenarios?
	5.3 RQ3: What is the percentage of improvement of our framework over the traditional mechanisms?

	6 Threats To Validity
	7 Related Work
	7.1 Reactive Caching
	7.2 Proactive Caching

	8 Conclusion
	References

	EVOKE_CASCON_2020_paper_57.pdf
	Abstract
	1 Introduction
	2 Background
	2.1 Hardware variability
	2.2 Software variability

	3 Related Work
	4 Hypotheses & Research Objectives
	5 Surveying Parallelism in Node.js
	6 Evaluating Node.js Parallelism
	6.1 Module Characteristics & Variabilities
	6.2 Benchmark suite
	6.3 Experimental Design & Metrics

	7 Experimental Evaluation
	7.1 Overhead
	7.2 Task execution
	7.3 Sharing Information
	7.4 Communication Cost

	8 Discussion
	9 Conclusion and Future Work
	Acknowledgments
	References

	EVOKE_CASCON_2020_paper_37.pdf
	Abstract
	1 Introduction
	2 Background
	2.1 Graph Theory Essentials
	2.2 Network Theory Essentials

	3 Related Work
	4 Architectural Pattern Inspection
	4.1 Dataset
	4.2 Microservice Degree Distribution
	4.3 Service Degree Distribution Analysis

	5 Architectural Patterns Modeling
	5.1 Structural Models Identification
	5.2 Structural Model Generation

	6 Discussion
	6.1 Implications of the Microservice Applications Structure
	6.2 Application Structure towards assuring Software Quality Attributes

	7 Conclusion and Future Work
	Acknowledgments
	References

	EVOKE_CASCON_2020_paper_45.pdf
	Abstract
	1 Introduction
	2 Background
	2.1 Defect Prediction using Machine Learning

	3 Data Modeling
	3.1 Raw Data Model
	3.2 Post-Processed Data Model
	3.3 Explanation of the Features

	4 Machine Learning Framework
	4.1 Machine Learning Models Considered
	4.2 Commit Tagging
	4.3 File Tagging
	4.4 Training and Test Set Data and Bias
	4.5 Evaluation and Performance metrics

	5 Evaluation Studies
	5.1 Study 1: Identification of Best Classifiers
	5.2 Study 2: Identification of Best Features
	5.3 Study 3: Comparison of Process and Source Code Metrics
	5.4 Study 4: Cross Project Validation

	6 Discussion
	6.1 General Observations
	6.2 Detailed Observations
	6.3 Threats to Validity

	7 Conclusion
	References

	EVOKE_CASCON_2020_paper_65.pdf
	Abstract
	1 INTRODUCTION
	2 INFORMATION ABOUT THE ORIGINAL STUDY
	3 INFORMATION ABOUT THE REPLICATION
	3.1 Benchmark datasets
	3.2 Level of interaction with authors of original study
	3.3 Changes to the original experiment

	4 COMPARISON OF RESULTS WITH ORIGINAL STUDY
	4.1 RQ1: How do models selected using domain-agnostic similarity perform in a cross-project context?
	4.2 RQ2: How do HDP methods predict the defect in the system compared to WPDP methods?
	4.3 RQ3: How do the ensembles of models built from several projects perform in an HDP context?
	4.4 RQ4: How Feasible is HDP in terms of target prediction coverage?

	5 THREATS TO VALIDITY
	6 CONCLUSIONS ACROSS STUDIES
	References

	EVOKE_CASCON_2020_paper_70.pdf
	Abstract
	1 Introduction
	2 Literature review
	3 Problem description
	3.1 Probabilistic forecasting problem
	3.2 Time series sampling problem

	4 Methodology
	4.1 Models
	4.2 Sampling methods
	4.3 Data
	4.4 Experimental setup
	4.5 Performance Evaluation

	5 Results
	5.1 Performance of the forecasting models
	5.2 Distance and correlation-based sampling
	5.3 Other sampling strategies

	6 Conclusion and future directions
	References

	EVOKE_CASCON_2020_paper_25.pdf
	Abstract
	1 Introduction
	2 Background
	3 Related work
	4 Compilation at runtime
	4.1 WebAssembly JavaScript Interface
	4.2 Performance of generated code

	5 Code caching
	5.1 Code extraction and insertion
	5.2 Compiler performance
	5.3 Module identification

	6 Shared code cache
	6.1 Design and Implementation
	6.2 Evaluation

	7 Future Work
	8 Conclusion
	9 Acknowledgments
	References

	EVOKE_CASCON_2020_paper_26.pdf
	Abstract
	1 Introduction
	2 ELF Object Overview
	2.1 Shared Libraries
	2.2 Sections and Metadata
	2.3 ELF Characteristics

	3 Related Work
	3.1 Eclipse OpenJ9
	3.2 Mono Runtime
	3.3 Oracle HotSpot

	4 AOT compilation in Eclipse OMR
	4.1 Eclipse OMR ELF Infrastructure

	5 Proposed Solution
	5.1 Challenges
	5.2 Portability

	6 Conclusion
	Acknowledgments
	References

	EVOKE_CASCON_2020_paper_31.pdf
	Abstract
	1 Introduction
	2 Background
	2.1 Java Virtual Machine
	2.2 Just-in-Time Compilation
	2.3 Eclipse OpenJ9
	2.4 Constrained Devices

	3 Related Work
	4 Design
	4.1 Integrating MicroJIT and Eclipse OpenJ9
	4.2 Architecture
	4.3 Bytecodes

	5 Results
	6 Future Work
	7 Summary
	Acknowledgments
	References

	EVOKE_CASCON_2020_paper_19.pdf
	Abstract
	1 Introduction
	2 Implementation
	2.1 Extended-Range Fused Multiply-Add
	2.2 Lookup Functions

	3 Simulation
	3.1 Performance

	4 Alternatives
	5 Conclusion
	Acknowledgments
	References

	EVOKE_CASCON_2020_paper_66.pdf
	Abstract
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Dataset
	3.2 Models
	3.3 Performance evaluation

	4 Results
	4.1 Exploratory analysis and augmentation
	4.2 Text classification
	4.3 Sentiment classification

	5 Threats to Validity
	6 Conclusion
	References

	EVOKE_CASCON_2020_paper_15.pdf
	Abstract
	1 Introduction
	2 Related Work
	3 Dataset
	3.1 Creation of the Dataset
	3.2 Dark Web Forums Used
	3.3 Features

	4 Methodology
	4.1 Preparations
	4.2 Final Setup of the Analysis

	5 Results
	5.1 Time-based Features
	5.2 Stylometric-based Features
	5.3 Lexical-based Features
	5.4 Language Model-based Features
	5.5 Voting

	6 Conclusions
	6.1 Future Work

	References

	EVOKE_CASCON_2020_paper_48-2.pdf
	Abstract
	1 Introduction
	2 Related work
	2.1 Integration of IoT and Blockchain
	2.2 Integration of Blockchain and Self-Adaptive Systems

	3 Background
	3.1 Consensus in Blockchain

	4 Study Methodology and Experimental Setup
	5 Self-Adaptive System Design
	6 Experimental Results
	6.1 Performance Evaluation of consensus protocols in Hyperledger Sawtooth
	6.2 Evaluation of the Self-Adaptive mechanism

	7 Threads to Validity
	8 Conclusion
	References

	EVOKE_CASCON_2020_paper_29.pdf
	Abstract
	1 Introduction
	2 Background
	2.1 Elliptic Curve Cryptography

	3 Scheduling
	3.1 Table Generation
	3.2 Main Computation
	3.3 Split Without Table

	4 Performance Estimates and Recommendations
	4.1 Simulated Implementation in Haskell
	4.2 Parallel Implementation in Haskell

	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

	EVOKE_CASCON_2020_paper_73.pdf
	Abstract
	1 Introduction
	2 The Hybrid Quantum Toolkit
	3 Designing Hybrid Algorithms
	4 Hybrid Quantum Machine Learning
	5 Hybrid Variational Algorithms
	6 Conclusions
	References

