
VTR 8: High Performance CAD and Customizable FPGA
Architecture Modelling

KEVIN E. MURRAY, University of Toronto, Canada

OLEG PETELIN*, University of Toronto, Canada

SHENG ZHONG�, University of Toronto, Canada

JIA MIN WANG, University of Toronto, Canada

MOHAMED ELDAFRAWY, University of Toronto, Canada

JEAN-PHILIPPE LEGAULT, University of New Brunswick, Canada

EUGENE SHA�, University of Toronto, Canada

AARON G. GRAHAM, University of New Brunswick, Canada

JEAN WU, University of Toronto, Canada

MATTHEW J. P. WALKER, University of Toronto, Canada

HANQING ZENG§, University of Toronto, Canada

PANAGIOTIS PATROS, University of New Brunswick, Canada

JASON LUU, Intel Programmable Solutions Group, Canada

KENNETH B. KENT, University of New Brunswick, Canada

VAUGHN BETZ, University of Toronto, Canada

Developing Field Programmable Gate Array (FPGA) architectures is challenging due to the
competing requirements of various application domains, and changing manufacturing process
technology. This is compounded by the difficulty of fairly evaluating FPGA architectural choices,
which requires sophisticated high-quality Computer Aided Design (CAD) tools to target each
potential architecture. This article describes version 8.0 of the open source Verilog To Routing

*Currently with Intel Programmable Solutions Group, Toronto, Canada
�Currently with the University of Michigan
�Currently with Intel Programmable Solutions Group, Toronto, Canada
§Currently with University of Southern Californa, Los Angeles, USA zengh@usc.edu

Authors’ addresses: Kevin E. Murray, University of Toronto, Toronto, Ontario, Canada, kmurray@ece.
utoronto.ca; Oleg Petelin, University of Toronto, Toronto, Ontario, Canada; Sheng Zhong, University of

Toronto, Toronto, Ontario, Canada; Jia Min Wang, University of Toronto, Toronto, Ontario, Canada;
Mohamed Eldafrawy, University of Toronto, Toronto, Ontario, Canada; Jean-Philippe Legault, University

of New Brunswick, Fredericton, New Brunswick, Canada; Eugene Sha, University of Toronto, Toronto,
Ontario, Canada; Aaron G. Graham, University of New Brunswick, Fredericton, New Brunswick, Canada;
Jean Wu, University of Toronto, Toronto, Ontario, Canada; Matthew J. P. Walker, University of Toronto,

Toronto, Ontario, Canada; Hanqing Zeng, University of Toronto, Toronto, Ontario, Canada; Panagiotis

Patros, University of New Brunswick, Fredericton, New Brunswick, Canada; Jason Luu, Intel Programmable
Solutions Group, Toronto, Ontario, Canada; Kenneth B. Kent, University of New Brunswick, Fredericton,

New Brunswick, Canada; Vaughn Betz, University of Toronto, Ontario, Canada.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted

without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.

© 0 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing

Machinery.
1936-7406/2020/0-ART0 $15.00
https://doi.org/

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

https://doi.org/

0:2 K. E. Murray et al.

(VTR) project, which provides such a design flow. VTR 8 expands the scope of FPGA architectures
which can be modelled, allowing VTR to target and model many details of both commercial
and proposed FPGA architectures. The VTR design flow also serves as a baseline for evaluating
new CAD algorithms. It is therefore important, for both CAD algorithm comparisons and the
validity of architectural conclusions, that VTR produce high-quality circuit implementations. VTR 8
significantly improves optimization quality (reductions of 15% minimum routable channel width, 41%
wirelength, and 12% critical path delay), run-time (5.3× faster) and memory footprint (3.3× lower).
Finally, we demonstrate VTR is run-time and memory footprint efficient, while producing circuit
implementations of reasonable quality compared to highly-tuned architecture-specific industrial
tools – showing that architecture generality, good implementation quality and run-time efficiency
are not mutually exclusive goals.

CCS Concepts: � Hardware � Reconfigurable logic and FPGAs; Physical design (EDA);
Software tools for EDA; Logic synthesis;

Additional Key Words and Phrases: Computer Aided Design (CAD), Electronic Design Automation

(EDA), Field Programmable Gate Array (FPGA), Packing, Placement, Routing, Verilog To Routing

(VTR), Versatile Place and Route (VPR)

ACM Reference Format:
Kevin E. Murray, Oleg Petelin, Sheng Zhong, Jia Min Wang, Mohamed Eldafrawy, Jean-Philippe
Legault, Eugene Sha, Aaron G. Graham, Jean Wu, Matthew J. P. Walker, Hanqing Zeng, Panagiotis
Patros, Jason Luu, Kenneth B. Kent, and Vaughn Betz. 2020. VTR 8: High Performance CAD and
Customizable FPGA Architecture Modelling. ACM Trans. Reconfig. Technol. Syst. 0, 0, Article 0
(2020), 60 pages. https://doi.org/

1 INTRODUCTION

Field Programmable Gate Arrays (FPGAs) have compelling advantages as a computational
platform, offering the potential for high performance and power efficiency while remaining
flexible and re-programmable [94]. This has led to FPGAs being used in a wide range
of application domains including telecommunications, high performance computing and
machine learning [30, 93].
The application domains targeting FPGAs and the underlying manufacturing process

technology used to build FPGAs both evolve rapidly. As a result FPGA architectures can not
remain static – they must evolve to optimize their efficiency for the target process technology,
and both legacy and emerging application domains. Furthermore novel architectural ideas
are constantly being proposed. Being able to quantitatively compare different architectural
ideas is key to developing a high quality FPGA architecture.
However performing these comparisons is challenging, as it requires well optimized im-

plementations for a suite of representative benchmark circuits across many architectural
variations, along with accurate area, delay and power estimates. This requires a full high
quality automated design flow to target each architecture. Since creating such optimization
algorithms for a specific FPGA architecture is itself a complex research problem [22], it is
impractical to develop unique optimization algorithms for every architectural variant. Simi-
larly, accurately estimating the delay, area and power of a completed design implementation
on an FPGA also requires sophisticated algorithms and tools [28, 44, 63, 81].

The approach pioneered by Versatile Place and Route (VPR) [15, 77] and the Verilog To
Routing (VTR) project [76, 95]1 is to build highly flexible Computer Aided Design (CAD)
tools and optimization algorithms which can target and adapt to a wide variety of FPGA

1In this work we use VPR to refer to the architecture modelling and place & route tool, and VTR to refer

to the design flow including ODIN, ABC and VPR (Section 3).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

https://doi.org/

VTR 8 0:3

architectures. This allows FPGA architects to efficiently evaluate different architectural
choices while ensuring well optimized implementations are produced for each benchmark
circuit. This facilitates fair comparisons across architectures.

In this work we introduce version 8.0 of the open-source Verilog To Routing project.2 The
main contributions of this work include:
∙ Extending VTR’s FPGA architecture modelling capabilities to capture a broader range
of FPGA architectures,
∙ An improved capture of the Intel Stratix IV FPGA architecture,
∙ Enhancing VTR’s interoperability with other tools and design flows,
∙ More complete and flexible timing analysis,
∙ Significant improvements to optimization quality (41% wirelength, 12% critical path
delay, and 15% minimum routeable channel width reductions on the VTR benchmarks),
robustness (completes 9 more large Titan benchmarks), run-time (5.3× faster on the
VTR benchmarks, reducing average run-time on the large VTR designs from over 35
minutes to less than 7 minutes, and from 3.4 hours to less than 40 minutes on the
larger Titan benchmarks) and memory usage (3.3× lower on the VTR benchmarks),
and
∙ A detailed evaluation comparing VPR to Intel’s commercial Quartus CAD flow which
shows, despite its flexibility, VPR 8 is competitive in run-time and reasonable in
optimization quality compared to a highly-optimized architecture-specific tool.3

In combination, these enhancements mean a wider range of architectures can be explored
with both more detailed analysis and higher quality optimization, which increase confidence
in the resulting architectural conclusions. VTR 8’s more flexible architectural representation
also means it can model and target commercial FPGA devices, and program them through
architecture specific bitstream generators which translate VTR’s implementation results
into bitstreams [6, 73].
This paper is organized into two main parts. The first part focuses on the overall VTR

CAD flow and its architecture modelling features:
∙ Section 2 presents related work,
∙ Section 3 introduces the VTR CAD flow and its extensions,
∙ Section 4 describes enhancements to VTR’s architecture modelling capabilities, and
∙ Section 5 illustrates how these features enable an improved capture of Stratix IV
FPGAs.

The second part focuses on algorithmic and engineering improvements to the CAD flow:
∙ Section 6 discusses improvements to logic optimization and technology mapping,
∙ Section 7 studies improvements to packing,
∙ Section 8 explores improvements to placement,
∙ Section 9 investigates improvements to routing,
∙ Section 10 presents improvements to timing analysis,
∙ Section 11 addresses software engineering concerns, and
∙ Section 12 performs a detailed evaluation of the VTR 8 CAD flow.

Finally, Sections 13 and 14 present our conclusions and outline future work.

2VTR 8 can be downloaded from verilogtorouting.org, corresponding to source code revision v8.0.0

(fd69801f1).
3Note that since VTR 7 [76], the VTR and VPR version numbers have been aligned. Therefore VPR 8 refers
to the version of VPR used with VTR 8, and VPR 7 to the version used in VTR 7.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

verilogtorouting.org

0:4 K. E. Murray et al.

2 RELATED WORK

Related work falls into two broad categories: FPGA CAD and architecture exploration
frameworks, and research which builds upon and compares to VTR.

2.1 FPGA CAD & Architecture Exploration Frameworks

There have been a variety of FPGA related-frameworks produced which target different
aspects of the design implementation and architecture exploration space.
Commercial FPGA vendors have internal tools which they use to develop and architect

their next generation devices. For instance, Intel/Altera use their FPGA Modelling Toolkit,
originally based on a heavily modified version of VPR, to explore new FPGA architectures
[70]. However these tools are closed-source and proprietary – making them unavailable to
other researchers.
Torc [104] and RapidSmith [46, 68] provide infrastructure for manipulating the design

implementation of commercial Xilinx FPGAs, but both rely on the XDL interface provided
by Xilinx’s legacy ISE tools. More recently, RapidWright has enabled low-level access to
the design implementation of more recent Xilinx FPGAs [67]. However these tools can only
target fixed devices from a single manufacturer, making it impractical to perform architecture
research within these frameworks. Furthermore, while these tools provide the infrastructure
to build CAD tools targeting these devices, they provide simple proof-of-concept algorithms
for optimization stages like placement and routing (e.g. non-timing driven, conflict unaware)
– making them unsuitable for architecture evaluation and as baselines for comparing CAD
algorithms.
Independence [99] is a very general placement and routing tool for evaluating FPGA

architectures, but it runs more than 4 orders of magnitude slower than VPR – too slow to
allow broad exploration of architectures with large-scale benchmarks.

2.2 Research Using VTR

VTR is commonly used as a baseline upon which other tools and research build. These works
broadly fall into three categories: FPGA Architecture, CAD algorithms and hybrid design
flows.
VTR’s ability to target a wide range of novel FPGA architectures, combined with its

adaptive optimization algorithms make it a common choice for exploring and evaluating
FPGA architectural ideas. Some examples include:
∙ Introducing new hard blocks to accelerate dynamic memory access [88],
∙ Evaluating the trade-offs between Look-up Table (LUT) size and logic block size [130],
and LUT fracturablitity and logic block routing connectivity [125].
∙ Exploring new logic elements such as AND-Inverter Cones [89, 131], NAND-NOR
Cones [52], dedicated Muxes [29], and reduced flexibility LUTs [10, 36]
∙ Optimizing logic blocks for arithmetic operations [78, 83],
∙ Developing routing architectures which exploit mixtures of routing wire lengths and
complex switch block patterns [92],
∙ Quantifying the impact of 3D stacking [102] and interposer [87] technologies,
∙ Investigating the efficiency of different RAM block architectures [61], and implementa-
tion technologies [126],
∙ Exploring the impact of different semiconductor technologies including DRAM [42],
threshold logic [65], and non-volatile technologies like MTJ, [51], PCM [117] and
RRAM [110],

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

VTR 8 0:5

∙ Evaluating power reduction methods like charge recycling [53], power gating [97] and
dynamic voltage scaling [11], and
∙ Developing uncloneable & secure FPGAs [37].

VTR’s CAD algorithms are robust and produce high quality results while still being
performant. This makes VTR a common infrastructure for exploring and evaluating new CAD
algorithms and optimization techniques. These include new or enhanced algorithms which
aim to improve run-time/quality trade offs during packing [27, 114], placement [26, 27, 82,
113, 129], and also include cross-stage techniques like multi-clock timing optimization [116]
and CAD parameter auto-tuning [123]. Other approaches include reducing run-time through
parallel processing during packing [114], placement [14, 39, 43], routing [49, 50, 100, 105]
and timing analysis [81]. VTR has also been used to explore novel CAD techniques like
device-aging aware routing [62] and the insertion of debug logic into unused resources [56].
Machine Learning enhanced CAD techniques have also been explored within VTR such as,
the estimation of routing congestion early in the design flow [127], and the creation more
efficient and adaptive optimization algorithms with Reinforcement Learning [82].

In addition to architecture and CAD research, VTR has also been used to create various
hybrid flows which often involve targeting or modelling fabricated FPGA devices and often
mix commercial and open-source tools. Some examples include:
∙ Interfacing with Intel/Altera tools for front-end HDL synthesis [84, 85],
∙ Programming Xilinx FPGAs by interfacing with Xilinx’s tools [54, 55],
∙ Automatically generating standard cell realizations of VTR generated FPGA architec-
tures [21, 45, 64, 73, 111], and
∙ Programming fabricated FPGAs using device-specific bitstream generators (which
translate VTR’s circuit implementation into bitstreams) targeting: realizations of VTR
generated FPGA architectures [21, 33, 37, 45, 64, 66, 74, 111, 128], non-VTR generated
FPGA architectures [73, 112], and commercial Xilinx & Lattice FPGAs [6].

The VTR code base has also been used by commercial companies such as Intel/Altera and
Texas Instruments, as well as numerous FPGA start-up companies – often forming the basis
of their internal place and route tools.
Given the many uses of VTR, improving the flexibility of the tool flow, the quality of

its results and the software engineering of its code base is very important. Previous work
[54, 85] has shown significant gaps in quality and run-time between commercial and open-
source/academic FPGA design flows. In addition FPGA sizes continue to grow, putting
increasing pressure on CAD flow run-time to allow efficient design of large-scale systems.
This has led some to question whether architecture-flexible tools (like VTR) can be

adapted to target commercial devices while generating high quality implementations in
reasonable run-time – or whether specialized device-specific tools (either commercial [31, 32]
or open-source [1, 98]) are required. In this paper we aim to show that architecture generality,
good implementation quality and efficient run-times are not mutually exclusive goals.

3 DESIGN FLOW

The VTR design flow and several of its variants are shown in Figure 1. It provides a full
design implementation flow which maps an application onto a target FPGA architecture.
Importantly, and unlike commercial FPGA CAD flows, the VTR design flow is flexible
and can target a wide range of FPGA architectures. This makes it a useful design flow for
evaluating and comparing different FPGA architectures.

The VTR flow takes two primary inputs:
∙ a human-readable FPGA architecture description, and

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

0:6 K. E. Murray et al.

∙ an application benchmark described in behavioural Hardware Description Language
(HDL).

The design flow will build a model of the specified FPGA architecture and map the given
application onto it.

The design flow proceeds in several stages. First, the behavioural HDL is elaborated and
synthesized into a circuit consisting of soft logic and FPGA architectural primitives (e.g. FFs,
multipliers, adders) using Odin II [60]. Second, the circuit logic is passed to ABC [18, 109]
which performs technology independent combinational and sequential logic optimizations,
and then technology maps the soft logic to LUTs. Third, the resulting technology-mapped
circuit netlist is then passed to VPR which generates the physical implementation of the
circuit on the target FPGA architecture.4

VPR first builds a detailed model of the target FPGA device based on the FPGA
architecture description. VPR then [17]:
∙ Packs the circuit netlist into the blocks available on the FPGA device (e.g. Logic/
DSP/RAM Blocks).
∙ Places the clustered blocks onto valid grid locations.
∙ Routes all connections in the netlist through the FPGA’s interconnect network.

At each stage VPR optimizes the implementation for area and speed. Finally, VPR analyzes
the resulting circuit implementation to produce area, speed and power results, and a
post-implementation netlist.
The tools which make up the VTR design flow can be re-used and re-combined. An

increasingly common use case is to use portions of the VTR CAD flow. These use cases
often relate to targeting fabricated FPGA devices or mixing open source and proprietary
tools. As a result, improving the ability to mix-and-match tools and increase the flexibility
of the design flow is an area we have focused on enhancing in VTR 8.
For example, the Titan Flow [84] uses Intel’s Quartus [31] FPGA CAD tool to perform

logic synthesis, optimization and technology mapping. Through the use of a conversion tool
(VQM to BLIF) it is then possible to use the resulting technology mapped netlist with VPR.
Other synthesis tools like Yosys [119] can also be used, provided they generate technology
mapped netlists with primitives matching the targeted FPGA architecture.

3.1 Design Flow Enhancements

VTR 8 extends the capabilities of the design flow compared to previous releases. These
enhancements make it more flexible, and improve interoperability with other tools.

3.1.1 Complete External Implementation State & Flexible Analysis. In addition to support
for loading a design’s packing or placement from external files, VPR 8 adds support for
also loading routing from an external file. This enables the complete design implementation
(labeled in Figure 1) to be loaded into VPR from external files. This allows individual
optimization stages to be run independently, and allows other tools to modify the design
implementation.
This facilitates a variety of alternative design flows, as shown in Figure 1. For instance,

tools other than VPR can perform some or all of the design implementation, while still
making use of VPR’s device modelling or area, timing and power analysis features. Another
use case is to re-analyze a fixed design implementation under different operating conditions
such as different supply voltages [11].

4For details on the file formats used by VTR see the documentation at docs.verilogtorouting.org.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

docs.verilogtorouting.org

VTR 8 0:7

RR-Graph
FPGA

Architecture
HDL

Odin II
Quartus
Map

Yosys

VQM to BLIF ABC

ABC

Tech. Mapped
Netlist

VPR
Pack

Packing
Other
Pack

VPR
Place

Placement
Other
Place

VPR
Route

Routing Other
Route

VPR
Analysis

Bitstream Gen.

Design Implementation

Bitstream
Timing
Metrics

Area
Metrics

Power
Metrics

Post-Impl.
Netlist

Device

Description

Design

CAD Tool

Stage

VTR Flow

Titan Flow

Standard

Optional

Fig. 1. VTR-based CAD Flow Variants

𝑎

𝑏

𝑔 ℎ

𝑚

𝑛

𝑐 𝑑

𝑒

𝑓
𝑖

𝑗
𝑘 𝑙

(a) Routing Architecture

𝑓 𝑔 𝑖

𝑐 𝑏 𝑚 𝑘

𝑑 𝑎 𝑛 𝑙

𝑒 ℎ 𝑗

(b) Corresponding Routing Resource Graph

Fig. 2. Routing Resource Graph. Dotted arrows represent switch-block switches, while dashed arrows
represent connection-block switches.

3.1.2 External Routing Resource Graph. The detailed routing architecture is a key compo-
nent of any FPGA. VPR models the detailed routing architecture using a Routing Resource
Graph (RR-Graph), which represents conductors (wires and pins) as nodes, and the switches
between them as edges. The RR-Graph is a key abstraction which allows VPR’s optimization
and analysis engines to easily target a wide variety of FPGA routing architectures. Figure 2
illustrates how a particular detailed routing architecture can be modelled by an RR-Graph.
Historically, VPR has generated RR-graphs internally from a high-level specification

provided in an FPGA architecture description file [16]. Using a parameterizable RR-Graph
generator has been very productive for FPGA research as it allows rapid exploration and
evaluation of a wide range of routing architectures. While VTR 8 significantly extends the
capabilities of VPR’s RR-Graph generator (Section 4.2), this approach has limitations when
targeting pre-fabricated FPGA devices.
To address these limitations VPR 8 adds support for loading the targeted device’s RR-

Graph from an external file.5 This yields several advantages:

5The RR-Graph is a low-level detailed description. This makes it highly flexible, but generally not practical

to create by hand. Typically it would be created by another program or a layout extractor. To aid in this
process, VPR can generate an RR-Graph file from its internal RR-graph representation.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

0:8 K. E. Murray et al.

∙ First, it enables an RR-Graph to be loaded which exactly matches a fabricated device.
This is crucial, as any disagreement between the CAD tool’s internal device model and
the physical device may result in invalid or functionally incorrect bitstreams.
∙ Second, it allows VPR to target routing architectures with features which are either
difficult to specify, or not supported by VPR’s RR-Graph generator. Provided an
RR-Graph describing such an architecture can be generated (e.g. by another tool) it
can be targeted by VPR.
∙ Third, it decouples the RR-Graph targeted by VPR from VPR’s RR-Graph generation
algorithm. The routing architecture specification provided to the RR-Graph generator
is under-specified, and hence does not uniquely describe a particular architecture.
This is highly beneficial since it is easy for the architect to specify, but means the
RR-Graph generator has significant freedom to choose how it constructs the routing
architecture. As a consequence, the generated routing architecture is dependent on the
exact RR-Graph generation algorithm used, and changes to this algorithm (e.g. to add
support for new features, or improve the quality of the generated architecture) may
change the resulting routing architecture.
∙ Fourth, the RR-Graph becomes an interchange format describing the FPGA’s routing
architecture. When committing a VPR generated routing architecture to silicon, the
RR-Graph becomes the specification the physical layout must implement. Alternately,
an RR-Graph produced from a physical layout becomes the device specification CAD
tools (e.g. VPR or other tools like bitstream generators) target.

Support for external RR-Graphs improves VPR’s interoperability with other tools, and
helps to decouple VPR’s device model generation, optimization and analysis stages. For
instance, the Symbiflow [6] and PRGA [73] projects generate RR-Graphs in order to target
their architectures with VPR.

3.1.3 Post-Implementation Netlist & Verification. VPR supports generating a post-implementation
netlist which structurally models the design after complete implementation in the FPGA.
It can also produce delay information for each primitive and interconnect element in the
FPGA. These can be used to simulate the design implementation, with realistic delays, to
check its functional correctness.
In VPR 8 this ability has been extended to enable the post-implementation netlist to

be produced in BLIF format (in addition to Verilog). This allows ABC to formally verify
(prove) the original netlist and final design implementation are logically equivalent. This
provides a strong check ensuring the tool flow correctly implements the original design.

4 ARCHITECTURE MODELLING ENHANCEMENTS

FPGA architectures continue to evolve as new application domains emerge, the underlying
process technology changes, and new architecture features are proposed. To facilitate
exploration of these changing characteristics we have extended and improved VTR’s modelling
capabilities.
In particular VTR now supports: more general device grids which are not restricted to

columns with perimeter I/O (Section 4.1), more general and flexible routing architecture
descriptions (Section 4.2), as well as a variety of area and delay modelling improvements
(Section 4.3). To illustrate the utility of these enhancements we present a more accurate
model of a commercial Intel Stratix IV FPGA architecture in Section 5.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

VTR 8 0:9
IO

Logic

RAM

(a) Traditional column-based lay-
out with perimeter I/O

PCIE

(b) Non-column based layout
with non-perimeter I/O

Router

(c) Layout with embedded Net-
work on Chip

Fig. 3. General Device Grid Examples

4.1 General Device Grid

Historical island-style FPGAs used column-based architectures (where all tiles in a column
were of the same type) with I/Os located around the device perimeter as shown in Figure 3a.
However modern FPGAs have more complex and non-uniform device grids, with I/Os
often placed in columns instead of around the perimeter [57], and other large blocks such
as hardened accelerators [9], embedded microprocessors [40, 121] and PLLs [13] located
throughout the device grid. Other architectural ideas, such as embedding a Network-on-Chip
(NoC) into the FPGA fabric (Figure 3c), may also result in non-columnar device grids
[7, 107].

To this end we have extended VTR to support arbitrary device grids – there are no longer
any location or size limitations for architectural blocks. For example Figure 3b shows a
non-perimeter IO device with logic blocks, RAMs, I/Os and a hardened PCIE accelerator.
Notably, the I/Os are not restricted to the device perimeter, and the accelerator block can
be located at an arbitrary location spanning multiple rows and columns.

Large blocks also interact with the routing network architecture, requiring enhancements
to the routing architecture generator (see Section 4.2.2). VTR 8’s placement, routing and
analysis routines (like timing and area estimation) all adapt automatically to the generated
architecture.

4.2 Flexible Routing Architectures

4.2.1 Detailed Routing Architecture. To optimize for the characteristics and availability
of different metal layers, modern FPGA routing architectures make use of wire types with
different lengths, electrical characteristics and connectivity [92]. For instance long wires,
which are usually implemented in the lower resistance upper metal layers, are used to quickly
cross large distances but are relatively rare and usually have more restricted connectivity.
Previously, VTR supported only a limited number of switch blocks (Wilton [118], Sub-

set/Planar/Disjoint [59] and Universal [20]) which defined a routing architecture’s wire-to-
wire connectivity pattern. These switch block patterns were developed with unit-length wires
in mind, and do not describe different patterns between wire types, such as the hierarchical
wire type connectivity used in commercial FPGA architectures [70, 71]. Similarly, VTR
previously provided only limited control over the connectivity between block pins and
different wire types.

In VTR 8 we have extended VTR’s routing architectures generation capabilities to allow
detailed control of both the switch block (wire-to-wire), connection block (pin-to-wire) and
direct-connect (pin-to-pin) patterns. The switch block pattern is now highly customizable,
allowing detailed control of how different wire types and individual tracks interconnect
along their lengths. The connection block specification is also more flexible, allowing the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

0:10 K. E. Murray et al.

(0,1) (1,1)

(0,0) (1,0)

Vertical
Channel

Horizontal
Channel

Vertical Channel

Segment (0, 1)

Routing

Track

Block

Fig. 4. Blocks and Routing Channels

connectivity between individual block pins and wire types to be specified. Finally, support for
direct connections between block pins has also been extended to fully support connectivity
between blocks of differing sizes (as shown in Figure 10).

These extensions give the architect more flexibility to define higher quality switch patterns
which exploit different wire types [91], and more control over how the inter-block routing
network connects to block pins. This also enables more accurate modelling of commercial
routing architectures with hierarchical connectivity, as discussed in Section 5.

4.2.2 Routing Channels & Large blocks. VTR groups routing tracks which are logically
adjacent into routing channels which are associated with a particular location in the FPGA
device grid as shown in Figure 4. We refer to the wires above or to the right of a block as
channel segments.

In addition to unit-sized logic blocks (Figure 5a), most heterogeneous FPGA architectures
now include larger blocks (Figure 5b), such as large DSP blocks [9], large high-density RAM
blocks (e.g. UltraRAM [120]), or other hardened accelerators (e.g. PCI-E, Ethernet [122]).
These types of blocks are often created following different design methodologies from

the rest of the FPGA fabric. For instance, a DSP block or hardened PCI-E interface may
be designed with a standard-cell-based methodology, while RAM blocks are usually built
around a full-custom memory array. This makes integrating these blocks into the FPGA
routing fabric challenging, particularly when the blocks are large enough to contain entire
routing channels (both width and height > 1). There are several different approaches which
can be taken, all of which are now supported in VTR 8.6

The simplest approach is to forbid the FPGA routing fabric from crossing the large block,
as shown in Figure 5c. This allows the large block to be implemented independently from
the FPGA fabric, but results in large routing blockages within the FPGA fabric.
Another approach is to reserve some of the metal layers above the large block, allowing

FPGA fabric routing wires to cross over the block (Figure 5d). This has a smaller impact
on the large block implementation (since only the reserved metal layer’s can not be used
by it), but requires no routing fabric switching to be pushed down into the block’s active
layers. Since signals can cross over the block this provides some routability improvement,
but the lack of full switching capabilities between wires (switch-block) is still restrictive.
This approach can also produce longer routing wires, since the wires on either side of the
block are electrically shorted together, increasing their delay.

6Previous releases of VTR assumed all large blocks contained switch-blocks as in Figure 5b.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication
date: 2020.

VTR 8 0:11

(a) Unit-sized blocks (b) Large block with
full switch-block

(c) Large block with no
internal connections

(d) Large block with
shorted straight con-
nections

Fig. 5. Switch-block connectivity within and around a unit and 2x3 sized blocks.

Table 1. Normalized Impact of 2x3 RAM block Internal Routing Connectivity on VTR benchmarks
(> 10𝐾 primitives)

𝑊𝑚𝑖𝑛
Routing Area
(1.3 ·𝑊𝑚𝑖𝑛)

Routed WL
(1.3 ·𝑊𝑚𝑖𝑛)

Crit. Path Delay
(1.3 ·𝑊𝑚𝑖𝑛)

Route Time
(1.3 ·𝑊𝑚𝑖𝑛)

none 1.00 1.00 1.00 1.00 1.00
short 0.86 0.86 1.06 1.02 1.01
full 0.86 0.92 1.00 1.00 0.94

Area is silicon area measured in Minimum Width Transistor Areas (MWTAs).

A more complex approach is to fully integrate the routing fabric into the large block
(Figure 5b). This requires both reserving metal layers and pushing down routing fabric
switches into the active layers of the large block’s implementation. While this ensures
maximum routing flexibility and performance it is highly disruptive to the large block’s
implementation, and may not be feasible in many cases.7 As a result this approach likely
only makes sense for extremely common blocks where the other approaches would cause too
much disruption to the routing fabric.

VTR 8 supports all the above architectural options, allowing architects to specify how the
routing network is implemented within and around different block types, enabling them to
evaluate the different trade-offs between design time, area, delay, and routability.8

Table 1 shows the impact of these approaches on an architecture with length 4 wires and
large 2x3 RAM blocks. Compared to the least flexible routing approach (none, Figure 5c),
allowing wires to cross-over the block (short, Figure 5d) significantly improves routability,
with minimum routable channel width (𝑊𝑚𝑖𝑛) decreasing by 14%.9 Interestingly, allowing
full switch-blocks within the block (full, Figure 5b) does not improve minimum routable
channel width compared to short, but increases area.10 However full does improve routed
wirelength, critical path delay, and route time compared to short.11

7For instance it may be difficult or impossible to embed routing switches into a RAM block’s full-custom

memory array.
8All of these architectural choices are used in various blocks of a variety of commerical FPGA architectures.
9Critical path delay and wirelength also increase moderately. As wires crossing the large block are shorted
together in this architecture the additional loading will increase their delay. It may also increase wirelength,

since they can no longer be used independently.
10The area increases due to the additional switch-block switches; however our area estimate neglects the
likely significant area cost of disrupting the block’s layout.
11While full achieves similar wirelength and critical path delay as none it does so at substantially smaller

channel widths.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

0:12 K. E. Murray et al.

4.2.3 Non-configurable Switches. Traditionally, VTR has assumed that all switches in
the routing network are configurable – meaning they can be configured to either connect or
disconnect their input and output wires.
However some common circuit structures, such as inline non-configurable buffers along

a wire, and electrical shorts between wires do not satisfy this assumption, as they always
connect their input and output wires. To alleviate this, we added support for non-configurable
switches which can not be disconnected or turned off, but must be used if their associated
wiring is used.

This allows VTR to model structures such as wiring with inline buffers as shown in
Figure 6a (which often appear in structures like clock networks), and non-rectilinear wiring
(e.g. L, T or other shapes [103, 106]) as shown in Figure 6b which can be modelled as a
combination of horizontal and vertical wire segments connected together with an electrical
‘short’.

Section 9.3 describes the routing algorithm enhancements required to support non-
configurable edges.

(a) Wire with inline buffer. (b) Diagonal or ‘L’-shaped wire modelled as
rectilinear wires with an electrical short.

Fig. 6. Circuit Structures which can be modelled with non-configurable switches.

4.3 Area & Timing Modelling

VTR’s modelling and analysis capabilities have also been extended.

4.3.1 Area Modelling. VTR now uses the COFFE area model [28], which provides more
accurate area estimates on modern process technologies. In particular, it better captures the
effects of N-well spacing and the combined effects of increasing transistor width and adding
parallel diffusion regions.

4.3.2 Size Dependant Mux Delays. As VTR constructs an FPGA routing architecture
it builds muxes with various numbers of inputs. While the VTR area model accounts for
this, VTR 7 assumed a fixed delay regardless of mux size. VTR 8 now supports specifying a
range of size-dependent mux delays, facilitating more accurate delay estimates.

4.3.3 Internal Primitive Timing Paths. Many components of an FPGA architecture are
modelled as architectural primitives (e.g. LUTs, Flip-Flops). With increasing heterogeneity,
a wider variety of primitives are used. Internally these components can be fairly complex
and contain internal timing paths which will impact the timing behaviour of the overall
system (e.g. DSP blocks, RAM blocks, hard memory controllers).
VTR 8 now supports modelling these internal timing paths, which can occur between

a primitive’s sequential input/output pins. It also supports multi-clock primitives where
different ports are controlled by different clock domains.

Figure 7 illustrates these capabilities. The input ports we1, addr1 and data1 are sequential
inputs clocked by clk1. These are connected to the sequential output data2 (clocked by
clk2) by an internal timing path. In contrast, the input addr2 is a combinational input
which connects to data2. VTR 8 supports any collection of combinational and sequential
inputs (with multiple clocks) and internal timing edges/paths between them.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

VTR 8 0:13

clk2

data2

data1

clk1

addr1

we1

addr2

Fig. 7. Dual-Port RAM Block Internal Timing Path Example

4.3.4 Improved Delay Modelling. Traditionally, VTR has only supported the specification
of maximum delay timing models. These models are used with Static Timing Analysis
(STA) to guide implementation optimization, and report circuit critical paths and maximum
operating frequencies.12 However maximum-delay setup-time checks are not the only timing
constraints which determine correct operation. It is also important to analyze minimum-delay
timing for hold-time checks. To this end, VTR now supports the specification of minimum
(in addition to maximum) timing information on all block delays, which is used for hold-time
analysis (Section 10).

5 ARCHITECTURE ENHANCEMENTS CASE STUDY: STRATIX IV

The new architecture modelling capabilities described in Section 4 make it possible to model
a much wider variety of FPGA architectures. To illustrate their utility, we now present
improvements to the Stratix IV architecture capture used with the Titan benchmark suite
[85].13

5.1 Grid Layout

Using the generalized grid support (Section 4.1), the device grid layout was adjusted to more
accurately reflect real Stratix IV devices, as shown in Figure 8. PLLs are now placed within
the I/O periphery and the I/Os are positioned so they can access vertical and horizontal
routing regardless of where they are located. The M9K and M144K RAM blocks along with
DSP blocks (which contain multipliers and accumulators) are arranged in columns. The
remainder of the device is filled with Logic Array Blocks (LABs) consisting of Look-Up-Tables
(LUTs), adders and Flip-Flops (FFs).

5.2 Routing Network

The routing network connectivity pattern was one of the largest approximations in the
original Titan Stratix IV architecture capture from [85], since VTR 7 offered very limited
control of the generated connectivity pattern.

5.2.1 Wire Connectivity, Switch Block & Routing Mux Sizes. VTR 7 supported only a small
number of fixed switch blocks, with the Wilton switch block being the most commonly used.
However the Wilton switch block was originally designed only considering wires of the same
length. When used with multiple wirelengths the twisting pattern used by the Wilton switch
block to improve routability means long wires rarely connect to each other. This defeats one
of the primary purposes of having long wires in a routing architecture, which is to provide
fast routes across long distances (accomplished by stringing together multiple long wires).

12The delay values for an architecture can be derived from the low-level architecture component implemen-

tations using tools like COFFE [28]
13Later Stratix series devices [71, 72] are similar to Stratix IV in the architecture dimensions considered
here.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

0:14 K. E. Murray et al.

PLL

I/O

LAB

M9K M144KDSP

Fig. 8. Placement of the leon2 benchmark with the updated grid layout and block type annotations.

By leveraging VTR 8’s custom switch block support (Section 4.2.1) we can define a switch
block which better captures the characteristics of the Stratix IV routing architecture. The
characteristics modelled are summarized in Table 2. As in previous work [84, 85] we model
the routing network as a mixture of 87% L4 and 13% L16 wires with a channel width of 300
tracks through-out the device.
Using VTR 8 we can correctly model the connectivity between the different wire types

and between wires and block pins. In particular, the L16 wires are only accessible from the
L4 wires and can neither drive nor be driven by block pins.14 L16 wires also only connect to
other wires via switch blocks at every 4th grid tile, and we correctly model this restriction.15

We also take care to match the size of the wire driver muxes, something which can be
explicitly controlled with the custom switch block support in VTR 8. The L4 Driver Input
Muxes (DIMs in Intel terminology) are sized to be 12:1. We distribute the inputs to these
muxes such that 6 inputs come from block pins (determined by 𝐹𝑐), and the remaining 6
inputs come from a combination of other L4 and L16 wires. For the L16 DIMs Stratix IV
uses larger muxes to increase the number of potential paths onto the long-wire network.
Using VTR 8’s custom switch-block support we were able to specify a routing architecture
matching these characteristics.
Since the precise details of Stratix IV’s switch pattern have never been disclosed, we

experimentally evaluated a variety of routing patterns which matched the characteristics in
Table 2 to find a pattern which performed well.16

5.2.2 Pin Locations. Stratix IV uses a three-sided routing architecture where each block
can reach routing channels which are above, left or right of it [12]. By leveraging the enhanced
pin location specifications, and improved control of routing connectivity around multi-height
blocks (Section 4.2.2) this style of architecture can be accurately modelled.

In particular, for each logical pin on a block we create two physically equivalent pins: one
on the top edge of the block, and the other on either the left or right side of the block. This
allows each logical block pin to access both horizontal (above) and vertical (either left or

14Intuitively, this makes the rare L16 wires easier to use since the more numerous L4 wires serve as a feeder
network for getting on to and off of the L16 wires.
15This is done in Stratix IV to reduce the expensive deep via stacks required to access transistors from the
upper metal layers [70]
16Note these experiments, which evaluated which wires and which position along those wires were selected

to drive each mux, were not possible to perform in VTR 7 due to limited user control over the generated

switch pattern.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

VTR 8 0:15

Table 2. Summary of Modelled Stratix IV Routing Architecture Characteristics

Metric Expression Value

Channel Width 𝑊 300
L4 Wires 0.8667 ·𝑊 260
L16 Wires 0.1333 ·𝑊 40
L4 𝐹𝑐𝑖𝑛 𝐿4𝐹𝑐𝑖𝑛 0.055
L4 𝐹𝑐𝑜𝑢𝑡 𝐿4𝐹𝑐𝑜𝑢𝑡

0.075
L16 𝐹𝑐𝑖𝑛 𝐿16𝐹𝑐𝑖𝑛

0.000
L16 𝐹𝑐𝑜𝑢𝑡 𝐿16𝐹𝑐𝑜𝑢𝑡

0.000
L4 Driver Mux Size 𝐿4𝐷𝐼𝑀 12:1
L16 Driver Mux Size 𝐿16𝐷𝐼𝑀 40:1

L4 inter-switch-block distance 𝐿4𝐼𝑆𝐵𝐷 1
L16 inter-switch-block distance 𝐿16𝐼𝑆𝐵𝐷 4

Fig. 9. Three sided architecture with each pin able to access one horizontal track, and one vertical track.

Fig. 10. Direct connections between adjacent blocks shown in purple, including horizontal ‘direct-link’
connections (between all blocks) and vertical carry-chain connections (between LABs). Block colors are
the same as Figure 8.

right) routing wires, matching Stratix IV’s capability (see Figure 9). By scaling the fraction
of routing tracks to which each pin connects (𝐹𝑐) appropriately we ensure the total number
of wires connected to each logical pin remains constant.

5.2.3 Direct-Connect. We also extend the modelling of direct-link connections (which
were previously modelled only between LABs) to include connections between blocks of
differing types. In particular care was taken to ensure multi-height blocks like DSPs and
M144K RAM blocks connect correctly to adjacent blocks which may have differing heights
as shown in Figure 10.

We have also updated the architecture capture to include pack-patterns for all DSP block
modes, ensuring that complex uses of the DSP block (like multiply-accumulate) are packed

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

0:16 K. E. Murray et al.

efficiently and use the appropriate dedicated circuitry.

5.3 Timing Model

The timing model has been extended to include block internal timing paths (Section 4.3.3),
such as those between registered RAM address ports and data output ports, and within
registered DSP blocks.
A minimum delay timing model calibrated to match the component delays reported by

Quartus STA is also included to enable hold-time analysis (Section 4.3.4).

5.4 Architecture Enhancements Comparison

Table 3 shows the impact of various architectural enhancements. In this experiment the Titan
v1.1.0 benchmarks are run targeting both the original Stratix IV architecture capture (A)
from [85] (which was describable in VTR 7), and several variants of the enhanced architecture
with the custom switch-block and various DIM sizes (describable in VTR 8). The same
version and configuration of VPR 8 is used in all cases.

Compared to the baseline architecture (A), the enhanced architecture (E) improves routing
area (silicon area used for routing) by 11% and critical path delay by 8%. The critical path
delay improvement is achieved in part by appropriately modelling the hierarchical long
and short wire connectivity of Stratix IV. This ensures long wires always connect to each
other, allowing critical signals to quickly traverse large distances by staying on the long-wire
network.17 The area reduction results from using smaller wire driver muxes than in the
baseline architecture. Finally, the enhanced architecture is also easier to route, reducing
route-time by 28%.
We also explored several other routing architecture variants, which tweak the size of

the wire driver muxes. Note these experiments can not be performed in VTR 7, as the
driver mux sizes can not be directly controlled. Compared to the baseline architecture (A),
moving to the customized switch-block with hierarchical wire connectivity and fixed 12:1
driver muxes (B) reduces routing area by 13% and improves critical path delay by 5% while
decreasing route time by 22%, at the cost of a small 3% increase in wirelength. Increasing
the L16 driver muxes to 72:1 (C) makes it easier for critical connections to reach the fast
long wires, further reducing critical path delay. While these muxes are much larger, there
are relatively few L16 wires, so the overall area impact is less significant, but does reduce
the area improvement to 8%. Increasing the much more common L4 driver muxes to 16:1
(D) reduces wirelength by 4% and critical path delay by 10% compared to the baseline, but
at the cost of 9% higher area than (C) (1% higher area than the baseline). Interestingly, we
found that decreasing the L16 driver mux size to 40:1 (like Stratix IV) had no significant
impact on wirelength or delay, but reclaims some area compared to using 72:1 muxes.

6 LOGIC OPTIMIZATION & TECHNOLOGY MAPPING

VTR uses ABC to perform logic optimization and technology mapping. The version of ABC
included with VTR 8 has been updated from an older 2012 version to a newer 2018 version
[109]. We have also re-written our synthesis scripts to make use of ABC’s new capabilities.
The first three rows of Table 4 show the impact of these changes on the large (> 10𝐾

primitive) VTR benchmarks. Note that in these results only ABC is being modified; all
other parts of the flow remain constant. Compared to using the old version of ABC (2012)

17This is not the case with the Wilton switch-block used in the legacy architecture, as it shuffles tracks in a

manner which makes it unlikely the relatively few long wires will connect to other long wires.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

VTR 8 0:17

Table 3. Geometric Mean Normalized Impact of Architecture Variants on the Titan Benchmarks

Switch-block 𝐿4𝐷𝐼𝑀 𝐿16𝐷𝐼𝑀
Routing Area

Per-Tile
Routed
WL

Crit. Path
Delay

Route
Time

A wilton 1.00 1.00 1.00 1.00
B custom 12:1 12:1 0.87 1.03 0.95 0.78
C custom 12:1 72:1 0.92 0.99 0.92 0.76
D custom 16:1 72:1 1.01 0.96 0.90 0.79
E custom 12:1 40:1 0.89 1.00 0.92 0.72

Area is silicon area measured in Minimum Width Transistor Areas (MWTAs).

and VTR’s old synthesis script (2012), the new version of ABC (2018) produces smaller
circuits (8% fewer primitives) resulting in a 10% reduction in routed wirelength, while ABC
run-time decreases by 20%. Combining the new version of ABC (2018) with a new synthesis
script (2018) further improves results, decreasing netlist primitives by 13% and logic depth
by 10%; resulting in a 12% reduction in wirelength and 6% reduction in critical path delay.
However this substantially increases ABC’s run-time (> 9×) compared to the 2012 ABC
and script. This results in a small increase in total flow time since run-time is dominated
by the search for 𝑊𝑚𝑖𝑛. However when running an implementation flow targetting a fixed
channel width (and hence performs a single routing) ABC accounts for 35% of flow run-time
on average, increasing overall flow time by 1.5×.18

6.1 Safe Multi-Clock Optimization

Multiple clock domains are a key characteristic of modern FPGA applications [35, 58].
One of the challenges with new versions of ABC is that all clock-related information is
dropped during optimization.19 This is dangerous, since it means sequential optimizations
can occur across clock-domains, which can produce incorrect results. For instance, sequential
elements with common fan-in but controlled by different clock domains could be incorrectly
merged, or flip-flops controlled by one clock domain could be re-timed into logic related to
another clock domain. Furthermore, special care is needed to safely transfer data across
clock domains while avoiding synchronization and metastability issues [23]. Sequential
optimizations may interfere with these transfers. Since VTR supports multi-clock circuits
it is important to ensure synthesis is performed safely and all clock domain information is
correctly maintained. To address this, VTR 8 adds support for several different approaches
to ensure safe multi-clock logic optimization.

The most straightforward way to accomplish this is to hide a circuit’s sequential elements
from ABC by replacing them with black-box primitives which ABC does not optimize.
However as shown in the fourth row of Table 4 black-boxing all sequential primitives
(all) substantially degrades the quality of the resulting netlist compared to performing no
black-boxing (none).

Instead VTR 8 defaults to an iterative black-boxing flow, where ABC is invoked multiple
times, with only a single clock domain exposed as sequential elements; all sequential ele-
ments in other clock domains are black boxed. ABC therefore safely performs sequential
optimizations on only one clock-domain at a time. As shown in the fifth row of Table 4 this
approach (iterative) results in Quality of Results (QoR) similar to exposing sequential

18ABC can dominate run-time on some benchmarks, for instance accounting for 74% of overall run-time on

mcml.
19Effectively ABC assumes all sequential circuit elements operate on a single shared clock domain. ABC
also ignores their initial state.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

0:18 K. E. Murray et al.

Table 4. Normalized Impact of ABC Multiclock Flows on VTR benchmarks (> 10K primitives)

ABC
Version

ABC
Script

Multi-clock
Black-box

Flow

Primitive
Blocks

Logic
Depth

𝑊𝑚𝑖𝑛
Routed WL
(1.3 ·𝑊𝑚𝑖𝑛)

Routed Crit.
Path Delay
(1.3 ·𝑊𝑚𝑖𝑛)

ABC
Time

Total
Flow Time
(find 𝑊𝑚𝑖𝑛)

Total
Flow Time
(1.3 ·𝑊𝑚𝑖𝑛)

2012 2012 none 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2018 2012 none 0.92 0.98 1.01 0.90 1.02 0.80 0.73 0.87
2018 2018 none 0.87 0.90 1.01 0.88 0.94 9.19 1.05 1.51
2018 2018 all 0.98 0.95 0.99 0.94 0.98 2.05 0.79 0.99
2018 2018 iterative 0.87 0.89 0.99 0.87 0.94 8.22 1.07 1.54

elements in all clock domains to ABC simultaneously (none) but ensures multi-clock circuits
are implemented correctly.

7 PACKING ENHANCEMENTS

VTR supports a highly general packing algorithm based on greedy bottom-up seed-based
clustering, which can target a wide variety of FPGA logic block and hard block architectures.
Seed-based clustering algorithms can achieve a very dense packing (high utilization per

cluster) which helps minimize the number of clustered blocks required to implement a circuit.
However, achieving high logic utilization has also been found to harm routability [34], and
has been identified as a potential cause of routability issues with VTR 7 [85]. To this end
we have focused on improving VPR’s packing quality to produce more natural clusters,
which better reflect the true relationships between netlist primitives. These more natural
clusters are typically less dense and less interconnected which improves routability and
overall implementation quality.

Algorithm 1 VPR 8 Packing Algorithm

Require: The target FPGA 𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒, the 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 𝑛𝑒𝑡𝑙𝑖𝑠𝑡 to be packed
Returns: The packed 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 implementing the 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 𝑛𝑒𝑡𝑙𝑖𝑠𝑡
1: function vpr pack(𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒, 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 𝑛𝑒𝑡𝑙𝑖𝑠𝑡)
2: 𝑢𝑛𝑝𝑎𝑐𝑘𝑒𝑑 𝑚𝑜𝑙𝑠← build molecules(𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒, 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 𝑛𝑒𝑡𝑙𝑖𝑠𝑡)
3: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠← ∅
4: while 𝑢𝑛𝑝𝑎𝑐𝑘𝑒𝑑 𝑚𝑜𝑙𝑠 ̸= ∅ do
5: 𝑠𝑒𝑒𝑑 𝑚𝑜𝑙← select seed(𝑢𝑛𝑝𝑎𝑐𝑘𝑒𝑑 𝑚𝑜𝑙𝑠)
6: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ← create cluster(𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒, 𝑠𝑒𝑒𝑑 𝑚𝑜𝑙)
7: 𝑢𝑛𝑡𝑟𝑖𝑒𝑑 𝑚𝑜𝑙𝑠← 𝑢𝑛𝑝𝑎𝑐𝑘𝑒𝑑 𝑚𝑜𝑙𝑠
8: while space remains(𝑐𝑙𝑢𝑠𝑡𝑒𝑟) do
9: 𝑛𝑒𝑥𝑡 𝑚𝑜𝑙← pick next molecule(𝑐𝑙𝑢𝑠𝑡𝑒𝑟, 𝑢𝑛𝑡𝑟𝑖𝑒𝑑 𝑚𝑜𝑙𝑠)

10: if 𝑛𝑒𝑥𝑡 𝑚𝑜𝑙 = ∅ then
11: break ◁ Nothing productive to add

12: if try add molecule to cluster(𝑐𝑙𝑢𝑠𝑡𝑒𝑟, 𝑛𝑒𝑥𝑡 𝑚𝑜𝑙) then
13: 𝑢𝑛𝑝𝑎𝑐𝑘𝑒𝑑 𝑚𝑜𝑙𝑠← 𝑢𝑛𝑝𝑎𝑐𝑘𝑒𝑑 𝑚𝑜𝑙𝑠 ∖ 𝑛𝑒𝑥𝑡 𝑚𝑜𝑙 ◁ Molecule is now packed

14: 𝑢𝑛𝑡𝑟𝑖𝑒𝑑 𝑚𝑜𝑙𝑠← 𝑢𝑛𝑡𝑟𝑖𝑒𝑑 𝑚𝑜𝑙𝑠 ∖ 𝑛𝑒𝑥𝑡 𝑚𝑜𝑙 ◁ Do not retry molecule

15: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠← 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ∪ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ◁ Commit cluster
16: return 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠

Algorithm 1 shows the key features of VPR 8’s packing algorithm. Given a target archi-
tecture and primitive netlist to cluster, the packer groups primitives into molecules (Line 2),
which are groups of primitives which must be packed together.20 Next a seed molecule is

20An example of a multi-primitive molecule is a carry-chain. Each adder in the chain must be packed together
to use a logic block’s dedicated carry logic.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

VTR 8 0:19

Seed

Low
Fanout

Trans.

Fanout

High

Fanout

Unrelated

LUT1

FF1

FF2

RAM1

FF4

RAM2

RAM3

FF5

FF6

FF7

FF8 FF9

(a) Connectivity before clustering

RAM Block

LUT1

FF1

FF2

RAM1

FF4

RAM2

RAM3

FF5

FF6

FF7

FF8 FF9

(b) Connectivity after RAM block clustered

RAM Block
Logic Block

LUT1

FF1

FF2

RAM1

FF4

RAM2

RAM3

FF5

FF6

FF7

FF8 FF9

(c) After Packing Prioritizing Large Net Connec-
tivity

RAM Block
Logic Block

LUT1

FF1

FF2

RAM1

FF4

RAM2

RAM3

FF5

FF6

FF7

FF8 FF9

(d) After Packing Prioritizing Transitive Connec-
tivity

Fig. 11. Packing example with 𝜁 = 4.

selected (Line 5, described in Section 7.1) and used to create a new open cluster (Line 6).
The cluster is then grown by selecting an unpacked molecule ‘related’ to the current cluster
(Line 9, described in Section 7.2). The algorithm then attempts to add this candidate
molecule into the cluster (Line 12). This continues until either the cluster is deemed to be
sufficiently full (Line 8, described in Section 7.3), or no more ‘related’ molecules can be
found (Line 10). At that point the current open cluster is closed (Line 15), and a new seed
is selected from the remaining unpacked molecules (Line 5). This repeats until all molecules
have been packed into clusters (Line 4). For more details on the generality of VPR’s packing
algorithm and how legality is ensured see [75, 79].
Some FPGA clustering approaches have bypassed bottom-up clustering [8, 24, 38, 114]

using either partitioning or flat placement. However these techniques often relax legality
constraints, are architecture specific, or still use bottom-up clustering as the final legalization
step. The VPR packer faces unique constraints as it must support many different FPGA
architectures which include different heterogeneous block types (e.g. DSP, RAM and custom
blocks, in addition to logic blocks) with arbitrary internal connectivity (e.g. depopulated
crossbars) and legality constraints (e.g. external/internal pin limits, special structures like
carry-chains). Focusing on a bottom-up clustering approach makes it feasible to continue
supporting this flexibility. Consistent with [101] we found that avoiding high-density clusters
was important for improving routability and wirelength.

7.1 Where to Start?

Selecting a good seed primitive to start a cluster is an important consideration, since it
impacts the order in which different parts of the netlist will be clustered. This is particularly
important when transitive connectivity is used to determine relatedness.

This is illustrated in Figure 11, which shows the different types of connectivity the packer
considers from the perspective of the seed primitive LUT1. Initially (Figure 11a) only FF4

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication
date: 2020.

0:20 K. E. Murray et al.

is considered to be transitively related to LUT1 (since both LUT1 and FF4 connect to
RAM1). However, after the RAM slices (RAM1, RAM2, RAM3) have been packed into a
RAM block (Figure 11b), the packer gains additional information as it sees that FF5 and
FF6 are also transitively related to LUT1 (via the RAM block). It is therefore beneficial
to pack large blocks like RAMs and DSPs early during packing, so the packer has more
complete transitive connectivity information.21

However, we found that VPR 7 did not always pack such blocks early. As a result we
changed the seed selection criteria for timing-driven clustering to prefer this behaviour. This
was accomplished by using a different criteria to rank potential seed molecules:

𝑔𝑎𝑖𝑛 = 0.5 · 𝑛𝑜𝑟𝑚 𝑖𝑛𝑝𝑢𝑡 𝑝𝑖𝑛𝑠

+ 0.2 · 𝑛𝑜𝑟𝑚 𝑢𝑠𝑒𝑑 𝑖𝑛𝑝𝑢𝑡 𝑝𝑖𝑛𝑠

+ 0.2 · 𝑛𝑜𝑟𝑚 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑠 𝑖𝑛 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒

+ 0.1 · 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦

(1)

Where 𝑛𝑜𝑟𝑚 𝑖𝑛𝑝𝑢𝑡 𝑝𝑖𝑛𝑠, 𝑛𝑜𝑟𝑚 𝑢𝑠𝑒𝑑 𝑖𝑛𝑝𝑢𝑡 𝑝𝑖𝑛𝑠, 𝑛𝑜𝑟𝑚 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑠 𝑖𝑛 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 and 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒
𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦 are respectively: the number of input pins on the primitive (normalized to the
primitive type with the most pins), the number of connected input pins (normalized to the
primitive type’s number of input pins), the number of primitives in the molecule (normalized
to the largest molecule in the circuit), and primitive timing criticality.

The new gain function favours selecting primitives with a larger number of pins (such as
DSPs and RAMs), ensuring they are clustered early in the packing process. In the case of a
tie, the gain function favours blocks with more used inputs (i.e. which are connected in the
circuit), and primitives which form parts of large multi-block molecules like carry-chains.
Timing criticality is used as a final tie-breaker.

7.2 What to Pack Next?

After a seed molecule has been selected and a new cluster opened, the packer searches for
unclustered molecules to add. This process is guided by attraction functions which estimate
the gain (benefit) of adding an unclustered molecule to the current open cluster. We observed
that VPR 7’s attraction functions tend to produce somewhat unnatural clusters, with a
mixture of related, loosely related, and unrelated logic. To address this we have made several
enhancements to the attraction functions in VPR 8.

7.2.1 Prioritization of Connectivity Types. The packer considers three types of connectivity
when selecting molecules to try adding to the current cluster.

Small net connectivity considers molecules connected to the current cluster via low-fanout
nets, those with fanout below the high-fanout net threshold 𝜁 (in VTR 7 𝜁 = 256). In
Figure 11a the connections between FF1, FF2, RAM1 and LUT1 are examples of this type
of connectivity. Selecting candidate molecules connected by small nets is beneficial as it
encourages nets to become completely absorbed within a cluster, reducing the number of
inter-block connections which must be routed through the inter-block routing network [17].

Large net connectivity considers molecules connected to the current cluster via high-fanout
nets (fanout ≥ 𝜁). In Figure 11a the connections from FF7 are examples of this type of
connectivity. Large high-fanout nets are less beneficial for guiding packing than small nets,
as they can rarely be well localized (e.g. absorbed into a single cluster).

21RAMs and DSPs usually have less packing flexibility and so benefit less from transitive connectivity

information.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

VTR 8 0:21

Transitive connectivity considers molecules which are connected to the current cluster
indirectly through another molecule or cluster. In Figure 11b the connections from FF4, FF5,
and FF6 are transitively connected to LUT1 through the RAM block. Transitive connectivity
can be beneficial since it helps keep logic which is indirectly related together.22

VPR 7 prioritized small net connectivity first, followed by large net connectivity, and
finally transitive connectivity. Since many molecules connect to at least one high-fanout
net this meant VPR 7 only occasionally exploited transitive connectivity information. As a
result, molecules which were only weakly related through high-fanout connectivity were often
packed together – even when they were strongly related (e.g. via low-fanout connectivity) to
other logic which had yet to be packed. The clusters which resulted often ended-up with
split personalities: some portion of the logic was strongly related, but other parts were only
weakly interconnected with the rest of the cluster (and may have had stronger connectivity
to logic which ended up in other clusters).

This is illustrated in Figure 11c and Figure 11d. In Figure 11c, from the seed LUT1 small
nets connectivity guides the packer to pack FF1 and FF2 into the cluster. Then, following
large net connectivity, the only loosely related FF7, FF8 and FF9 are added to the cluster.
In contrast Figure 11d follows the same small net connectivity to pack FF1 and FF2, but
then follows transitive connectivity to select FF4, FF5 and FF6. This results in a more
natural clustering.
In VPR 8 we have de-emphasized the importance of large net connectivity through two

techniques. First, we prioritize transitive connectivity over large net connectivity. This
ensures transitively related molecules are added to a cluster before those connected to high
fanout nets. Second, we have lowered the threshold for high fanout nets (𝜁) from 256 to 32
for logic blocks and 128 for all other block types.23

7.2.2 Unrelated Logic. As VPR packs a cluster it may be unable to find any unpacked
molecules which are related to the current cluster. In VPR 7 the packer will continue to
try filling up the cluster by finding unrelated molecules which will fit. While this minimizes
the number of clusters created (by maximizing the utilization of each cluster) it can be
detrimental to quality.
Consider the unclustered netlist in Figure 12a, which has a clear structure and can be

naturally clustered as shown in Figure 12b by placing only related logic in each cluster.
Allowing unrelated logic as in Figure 12c may result in fewer clusters but they are typically
much more strongly interconnected; in this case leading to two highly connected clusters
connected to other logic on opposite sides of the device.
Since the packer operates on a single open cluster at a time, ‘unrelated’ logic is only

unrelated from the viewpoint of the current cluster and may be strongly related to other
yet-to-be-packed parts of the netlist. As a result unrelated logic packing tends to scatter
connected logic (which may have otherwise formed new more natural clusters) across many
clusters. The resulting clusters are then coupled together through the unrelated logic making
them more difficult to place and route. In VPR 8, unrelated logic packing is disabled unless
too many clusters are produced to fit on a fixed-size device.

The impact of these changes on the des90 benchmark is illustrated in Figures 13 and 14,
which correspond to VTR 7-style and VTR 8-style packings respectively. In Figure 13
unrelated logic packing is enabled, producing fewer logic blocks which are more tightly

22For instance the FFs in a register bank may drive related logic but have no direct connectivity between

themselves.
23A lower threshold treats more nets as high-fanout, further focusing the packer on small net connectivity.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

0:22 K. E. Murray et al.

(a) Unclustered (b) Naturally Clustered (c) Clustered with unrelated logic

Fig. 12. Unrelated Clustering Example

(a) Placement (b) Routing utilization

Fig. 13. des90 high packing density (unroutable)

(a) Placement (b) Routing utilization

Fig. 14. des90 moderate packing density (routable)

coupled together. This coupling induces the placer to produce a tighter placement at the centre
of the device to minimize wirelength (Figure 13a). However as Figure 13b shows, this causes
significant routing congestion at the centre of the device, where 5066 channel segments24

use ≥ 90% of available wiring, resulting in an unroutable implementation. In contrast, with
unrelated logic packing disabled (Figure 14a) the clusters are less interconnected and the
placer is able to spatially localize the circuit’s connectivity resulting in a more spread-out
and natural placement. As Figure 14b shows, this significantly reduces routing congestion,
and the design routes easily – with routing utilization ≥ 90% in only two channel segments.

7.3 When is a Cluster Full?

Determining when a cluster should have no additional logic packed into it is also important
for producing natural clusters.
When attempting to fill each cluster as full as possible (as VTR 7 does) some clusters

may end up using all (or nearly all) of their external routing ports (i.e. cluster pins which

24A channel segment is all the wires in either a vertical or horizontal routing channel which overlap a

particular grid tile, as illusrated in Figure 4.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

VTR 8 0:23

connect to inter-block routing). While this high density packing may be beneficial from a
utilization perspective (minimizing the number of logic blocks), it can make routing more
difficult. Clusters with a large number of external routing connections will put additional
stress on their adjacent routing channels – potentially inducing congestion.

7.3.1 Clustered Block Pin Utilization Targets. To avoid this behaviour we have modified
the packer to consider the open cluster’s pin utilization as part of the criteria for deciding
when it should be closed. If the current open cluster exceeds its pin utilization targets it
is considered full and is closed. These targets bias the packer away from creating difficult
to route high pin utilization clusters. Importantly, these targets are treated as soft (rather
than hard) constraints, which ensures netlist structure which may legitimately require more
pins than the utilization target (e.g. large carry-chains) can still be packed.

VPR 8 now sets the default input pin utilization target of the logic block type to 80% of
the available pins. All other blocks default to a 100% pin utilization target. This serves to
guide the packer away from producing unnecessary high pin utilization logic blocks.

7.4 Adapting to Available Device Resources

While VPR is often allowed to dynamically re-size the device grid based on the benchmark
circuit, it also supports targetting fixed-size devices. When targeting fixed-size devices it is
possible for the packer to produce more blocks of a particular resource than are available
on the device. In VTR 8 we have enhanced the packer to be resource aware and adapt to
the resource mix of the targeted device. Together these changes ensure VTR produces a
higher quality natural packing when there is sufficient space, and a denser clustering only if
required.

7.4.1 Resource Balancing. The packer can optionally attempt to balance the resource
utilization of different block types to better match the resources available on the device. For
instance, if a netlist primitive can map to multiple block types (e.g. RAMs of two different
sizes), the packer will attempt to produce a packing which balances the usage of the different
block types in proportion to their quantity on the device.

On the Titan benchmarks (Section 12.2) this results in more RAMs being implemented as
larger M144Ks (which are typically underutilized), instead of the more common M9Ks. This
decreased the average device size needed to implement RAM limited circuits by 10%.

7.4.2 Adaptive Re-packing. The packer initially focuses on producing a natural packing,
with unrelated logic packing disabled (Section 7.2.2) and reasonable pin utilization targets
(Section 7.3.1). If this packing uses more resources than are available, the design is re-packed
at a higher density with unrelated logic packing and resource balancing enabled.

7.5 Packing QoR Evaluation

Table 5 shows the cumulative impact of these modifications on the Titan benchmarks
(Section 12.2),25 where baseline corresponds to a VTR 7 style packing. Turning off unrelated
logic packing (no-unrel.) had the largest impact reducing routed wirelength by 16%,
decreasing router run-time by > 2×, and allowing seven additional benchmarks to complete,
at the (small) cost of 4% more logic blocks. Using the new seed formulation (seed) and an
80% input pin utilization target on logic blocks (pin util.) had limited effect. However,
prioritizing transitive connectivity (prioritize transitive) further reduced (compared to

25The VTR benchmarks showed similar trends but smaller improvements.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

0:24 K. E. Murray et al.

Table 5. Cumulative Normalized Impact of Packing Changes on Titan benchmarks

Circuits
Completed

LABs DSPs M9Ks M144Ks
Routed
WL

Crit. Path
Delay

Pack
Time

Place
Time

Route
Time

Total
Time

baseline 13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
no-unrel. 20 1.04 1.00 1.00 1.00 0.84 0.99 0.83 1.04 0.44 0.78

seed 20 1.05 1.00 1.00 1.00 0.84 0.98 0.86 1.04 0.42 0.78
pin util. 20 1.05 1.00 1.00 1.00 0.84 0.99 0.86 1.08 0.44 0.80

prioritize transitive 22 1.05 1.00 1.00 1.00 0.81 0.97 0.86 1.07 0.43 0.80

Normalized values are the geometric means over the common set of benchmark circuits which completed for all tool
parameters

Table 6. Normalized Impact of Packer High Fanout Threshold on Titan benchmarks

Circuits
Completed

LABs DSPs M9Ks M144Ks
Routed
WL

Crit. Path
Delay

Pack
Time

Place
Time

Route
Time

Total
Time

256 22 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
64 22 1.01 1.00 1.00 1.08 0.96 0.99 0.97 0.98 0.90 0.97
48 23 1.01 1.00 1.14 1.21 0.98 0.98 0.88 0.85 0.85 0.89
32 23 1.03 1.01 1.19 1.22 0.97 0.99 0.93 0.97 0.85 0.97

128 LAB:64 22 1.01 1.00 1.00 1.00 0.97 0.99 0.87 0.89 0.89 0.90
128 LAB:32 23 1.03 1.00 1.00 1.00 0.95 0.98 0.83 0.87 0.85 0.87
128 LAB:16 23 1.07 1.00 1.00 1.00 0.94 0.99 0.80 0.91 0.78 0.88

Normalized values are the geometric means over the common set of benchmark circuits which completed for all
tool parameters

the baseline) wirelength by 19% and improved critical path delay by 3%, while also enabling
two more benchmarks to complete.
Table 6 shows the impact of modifying the packer’s high-fanout net threshold (𝜁) with

other parameters set to those of the last row of Table 5. Decreasing the threshold from 256 to
64 improves wirelength by 4% and reduces route time by 10% while increasing the number of
M144K RAM blocks by 8%. Further decreasing the threshold to 48 or 64 allows the largest
Titan benchmark (gaussianblur) to complete, but further increases the number of RAM
blocks. These results indicate that high-fanout net connectivity is useful for densely packing
coarser blocks like RAMs and DSPs but can hurt the routability of the more fine-grained
logic blocks. Decreasing the LAB high-fanout threshold to 32 while leaving the threshold at
128 for other block types (128 LAB:32) achieves the same routability improvement without
increasing the number of DSP and RAM blocks. This validates the use of these values as
the VTR 8 default.

8 PLACEMENT ENHANCEMENTS

VPR’s Simulated Annealing (SA) based placer iteratively makes a perturbation to the
current placement (called a move) which is then evaluated and either accepted or rejected
[15].
A desirable property for any move generator used in SA-based placement is that all

possible configurations (i.e. placements) should be reachable through some (hopefully short)
sequence of moves. Failure to ensure this means some parts of the placement solution space
will either be impossible or very difficult for the placer to reach, potentially excluding higher
quality placements. In VPR 8 we have made enhancements to the move generator to improve
robustness and optimization quality.

8.1 Placement Macro Move Generator

VPR’s placer supports placement macros which enforce relative placement constraints
between specific blocks in the packed netlist. This is primarily motivated by architectural
features such as fast dedicated routing for carry chains which require the connected blocks
to have specific relative placements.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

VTR 8 0:25

=⇒

𝑎1

𝑎2 𝑏1

𝑎3 𝑏2

𝑏3

𝑏1

𝑏2 𝑎1

𝑏3 𝑎2

𝑎3

(a) Simple independent macro-
macro swap.

=⇒

𝑎1

𝑎2

𝑎3

𝑏

𝑐

𝑏

𝑐

𝑎1

𝑎2

𝑎3

(b) Self-overlapping macro
swap (shift).

=⇒

𝑎1

𝑐 𝑎2

𝑏1 𝑑1

𝑏2 𝑑2

𝑏3

𝑐

𝑎1 𝑏1

𝑎2 𝑏2

𝑑1 𝑏3

𝑑2

(c) Overlapping macro-macro swap.
Moving macro 𝑎 overlaps macro 𝑏,
which when swapped also overlaps
macro 𝑑.

Fig. 15. Macro swap examples.

As noted in [48], VPR 7’s move generator had limited support for moves involving
placement macros, and immediately aborted (gave up on) any moves involving two or more
placement macros. This meant the placement of carry chains was not always well optimized
as the placer required longer sequences of indirect moves to change the placement of two
macros.26

In VPR 8 we have extended the placer’s move generator to support moving two or more
macros simultaneously. Table 7 shows the cumulative impact of supporting different types
of increasingly complex moves involving multiple placement macros. Compared to the VPR
7-style baseline placer (baseline, which does not support moves involving more than one
macro), supporting moves with two macros (macro swap, Figure 15a) improves routed
wirelength by 2% and reduces route-time by 4%.27 This more complex move generator
increases placement time by only 1%.
We observed that despite this, many moves involving macros were still being aborted;

particularly late during the anneal. This occurred because VPR’s region limit28 is reduced
as placement progresses and as a result moves involving macros often either overlapped
themselves or overlapped multiple nearby macros. For example, a move could propose
shifting a carry chain by a distance shorter than the carry chain’s length resulting in it
overlapping its previous position (Figure 15b). Furthermore circuit structures like adder trees
may cause carry chains to be placed close together, and as a result moving one carry chain
may require shifting multiple carry chains to avoid overlaps (Figure 15c). Adding support for
these types of overlapping macro moves (overlapping macros in Table 7) produces similar
average QoR to macro swap, but enables the large carry-chain heavy bitcoin miner design
to successfully route.29 On that design many proposed macro moves result in overlaps, so
supporting such moves is key to allowing the placer to fine-tune the placement of carry
chains.

8.2 Compressed Move Grid

When proposing moves, VPR 7 uses a region limit to control the distance between the
involved blocks. Figure 16a shows the region limit around a selected block; the block can
only be swapped with blocks within the region limit. As placement progresses the region

26This was particularly problematic on designs with many carry-chains, as proposed moves are more likely

to involve multiple carry-chains in such cases. For instance in the Titan bitcoin miner design 44% of logic
blocks are part of a carry chain, and as a result > 49% of proposed moves were aborted.
27On bitcion miner the move abort rate was reduced to 22.8%.
28The region limit controls how far apart the blocks involved in a move are allowed to be.
29The abort rate was further reduced to 0.6%.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

0:26 K. E. Murray et al.

Table 7. Cummulative Normalized Impact of Placement Move Generation Changes on Titan benchmarks

Completed
Benchmarks

Placed
WL

Placed
CPD

Routed
WL

Routed CPD
(geomean)

Place
Time

Route
Time

Total
Time

baseline 21 1.00 1.00 1.00 1.00 1.00 1.00 1.00
macro swap 21 0.97 0.98 0.99 1.00 1.01 0.96 0.98

overlapping macros 22 0.97 1.00 0.99 1.01 1.01 0.94 0.99
compressed move grid 22 0.92 0.98 0.94 1.02 1.01 0.86 0.97

QoR and run-time metrics are normalized geomeans over mutually completed benchmarks

2 3 5 6 71 4 8

(a) VTR 7 move region limit for a common
block.

2 3 5 6 71 4 8

(b) VTR 7 move region limit preventing a sparse
block from moving between columns.

2 3 5 6 7

(c) VTR 8 move region limit for a block type in
a compressed grid space. Common blocks can
move across columns of other block types.

1 4 8

(d) VTR 8 move region limit for a sparse block
in a compressed grid space. Sparse blocks can
move between columns even at low range limits.

Fig. 16. Region Limit Examples

limit is decreased; focusing the placer on smaller, less disruptive changes which help fine-tune
the placement.
One challenge with this approach is that it can prematurely lock down blocks which are

relatively sparse within the FPGA device grid, as shown in Figure 16b. Once the region limit
shrinks below the inter-column distance of a particular block type, those blocks become
stuck within their current column and will never be able to move to another column. If this
happens too early in the anneal such blocks may be prematurely locked down in sub-optimal
positions.
To counteract this, VTR 8 does not apply the region limit directly to the FPGA grid.

Instead, it constructs a compressed grid space for each block type to which the region
limit is applied. This ensures blocks of a particular type in the FPGA grid which are
logically adjacent to each other are considered as such during move generation. As shown in
Figures 16c and 16d this prevents the range limit from artificially restricting the movement
of some block types. Using these compressed grid spaces also ensures VPR can always quickly
find adjacent blocks of the same type.30

The results of this change are listed as compressed move grid in Table 7. Using com-
pressed move grids further improves routed wirelength and route-time by 6% and 14%

30Previously in VTR 7 the placer would abort some moves if it was unable to quickly find another block of
the correct type.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication
date: 2020.

VTR 8 0:27

respectively. While routed critical path is shown to increase by 2%, this excludes the improve-
ments on benchmarks like bitcoin miner which did not complete in the baseline. However
the post-placement estimated critical path delay (which includes all benchmarks) improves
by 2%.

9 ROUTING ENHANCEMENTS

VPR’s routing algorithm is based upon the Pathfinder negotiated congestion algorithm [80],
which repeatedly rips-up and re-routes nets while modifying routing resource costs based
on occupancy and previous congestion. Routing consumes a large portion of the CAD flow
run-time [85] and can scale poorly to very large designs due to the difficulty of resolving
congestion and routing high-fanout nets. As a result we have implemented a number of
enhancements which both improve the quality and run-time of the VPR 8 router.
VPR 8’s netlist routing algorithm, AIR [86], is outlined in Algorithm 2. The algorithm

operates over multiple routing iterations (Line 4). During each iteration, connections are
routed between each net’s driver and sinks (Lines 6 and 7). Importantly, each connection is
allowed to use routing resources already used by other nets. Such overused routing resources
are said to be congested. Once all nets have been routed (Line 5), the routing resource costs
are selectively increased (Line 16) with the aim of reducing congestion during subsequent
routing iterations. This process repeats until a legal routing is found (Lines 8 and 11), or
the design is deemed unroutable by either: prediction (Line 14) or hitting the maximum
iteration limit (Line 4). Finally, the best legal routing found (if any) is returned (Line 20).
We describe enhancements to the core routing algorithm in Sections 9.1 and 9.2, and

extensions to support non-configurable switches in Section 9.3. Improvements to minimum
channel width search are described in Section 9.4, and Section 9.5 evaluates the enhanced
router.

9.1 A Fast but Lazy Router

9.1.1 Incremental Routing. In a traditional pathfinder-based routing algorithm all nets are
ripped-up and re-routed each routing iteration. However in practise many nets (or portions
of nets) may have been legally routed. In such cases it is not strictly necessary to re-route
previously legal connections.

In VTR 8 net connections are routed incrementally to avoid this redundant work. First, a
net’s route-tree from the previous iteration is walked from the root to identify any congested
sub-trees as shown in Figure 17a. The illegal sub-trees are then pruned away leaving only
the legal portion of the previous routing (Algorithm 2 Line 18) as shown in Figure 17b. Next,
the net sinks which were pruned are re-routed during the next routing iteration (Algorithm 2
Line 6), using the existing legal routing as the starting point.

The work in [115] proposed decomposing nets into independent connections, which allowed
the creation of a routing algorithm with reduced run-time. Unlike [115] our approach does not
strictly decompose the routing problem into connections and maintains its natural net-based
structure. This allows partial routing from previous connections to be re-used which reduces
the amount of graph exploration required and enables further net-based optimizations such
as high-fanout routing (Section 9.1.2).

While incremental routing is primarily a run-time optimization it is important to consider
whether failing to rip-up legal connections can have any impact on QoR. In particular, since
Pathfinder uses a present congestion cost factor, not ripping up all connections may result
in some timing critical nets taking more indirect routes to avoid present congestion. During
experiments we found that in some instances this could degrade critical path delay. To

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

0:28 K. E. Murray et al.

Algorithm 2 VPR 8 Netlist Routing

Require: The 𝑛𝑒𝑡𝑠 to route, 𝛼 the maximum number of routing convergences
Returns: The 𝑏𝑒𝑠𝑡 routing found
1: function vpr route(𝑛𝑒𝑡𝑠, 𝛼)
2: 𝑏𝑒𝑠𝑡← ∅, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡← ∅ ◁ Best and current route trees for each net
3: 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑠← 0 ◁ How many times a legal routing has been found
4: for 𝑖𝑡𝑒𝑟 ∈ 1 . . .𝑚𝑎𝑥 𝑖𝑡𝑒𝑟𝑠 do
5: for 𝑛𝑒𝑡 ∈ 𝑛𝑒𝑡𝑠 do
6: for 𝑠𝑖𝑛𝑘 ∈ unrouted sinks(𝑛𝑒𝑡, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡[𝑛𝑒𝑡]) do ◁ Incrementally route
7: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡[𝑛𝑒𝑡]← vpr route connection(𝑛𝑒𝑡, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡[𝑛𝑒𝑡], 𝑠𝑖𝑛𝑘)

8: if is legal(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) then
9: 𝑏𝑒𝑠𝑡← best routing(𝑏𝑒𝑠𝑡, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ◁ Keep best routing so far

10: 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑠← 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑠+ 1
11: if 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑠 = 𝛼 then ◁ Convergence limit reached
12: break
13: reset pres fac() ◁ Reduce present congestion cost to focus on delay

14: if predict unroutable() then ◁ Early abort
15: break
16: update costs() ◁ Update pathfinder costs
17: for 𝑛𝑒𝑡 ∈ 𝑛𝑒𝑡𝑠 do ◁ Prepare for incremental re-routing
18: ripup illegal connections(𝑐𝑢𝑟𝑟𝑒𝑛𝑡[𝑛𝑒𝑡])
19: ripup delay degraded connections(𝑐𝑢𝑟𝑟𝑒𝑛𝑡[𝑛𝑒𝑡])

20: return 𝑏𝑒𝑠𝑡

Algorithm 3 VPR 8 Connection Routing

Require: The 𝑛𝑒𝑡 to route, its existing 𝑟𝑜𝑢𝑡𝑒 𝑡𝑟𝑒𝑒, the target 𝑠𝑖𝑛𝑘 to be added
Returns: The updated 𝑟𝑜𝑢𝑡𝑒 𝑡𝑟𝑒𝑒 with a branch connecting to 𝑠𝑖𝑛𝑘
1: function vpr route connection(𝑛𝑒𝑡, 𝑟𝑜𝑢𝑡𝑒 𝑡𝑟𝑒𝑒, 𝑠𝑖𝑛𝑘)
2: 𝑝𝑎𝑡ℎ← ∅
3: if fanout(𝑛𝑒𝑡) ≥ 𝛽 and criticality(𝑠𝑖𝑛𝑘) < 𝛾 then
4: ℎ𝑒𝑎𝑝← initialize nearby routing(𝑟𝑜𝑢𝑡𝑒 𝑡𝑟𝑒𝑒, 𝑠𝑖𝑛𝑘) ◁ High-fanout opt.
5: 𝑝𝑎𝑡ℎ← find path from heap(ℎ𝑒𝑎𝑝, 𝑠𝑖𝑛𝑘)

6: if 𝑝𝑎𝑡ℎ = ∅ then
7: ℎ𝑒𝑎𝑝← initialize full route tree(𝑟𝑜𝑢𝑡𝑒 𝑡𝑟𝑒𝑒)
8: 𝑝𝑎𝑡ℎ← find path from heap(ℎ𝑒𝑎𝑝, 𝑠𝑖𝑛𝑘)

9: update route tree(𝑟𝑜𝑢𝑡𝑒 𝑡𝑟𝑒𝑒, 𝑝𝑎𝑡ℎ)
10: return 𝑟𝑜𝑢𝑡𝑒 𝑡𝑟𝑒𝑒

alleviate this behaviour we also perform delay-based rip-up (Algorithm 2 Line 19), which
will force critical connections whose delay has degraded (compared to previous results) to
be re-routed even if they have a legal routing.

While this technique can save significant work for large nets, on small low-fanout nets the
work performed pruning the route tree is comparable to the work required to re-route the
net. As a result we apply incremental net re-routing only for nets beyond a certain fanout
threshold.

Tables 8 and 9 compare incremental routing at various fanout thresholds to the Baseline
method (where nets are always ripped up) on the VTR and Titan benchmarks respectively,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

VTR 8 0:29

𝐴

𝐵

𝐶 𝐷

𝐸 𝐹 𝐺

𝐻 𝐼

✗

(a) Route tree from 𝐴 to {𝐸,𝐻, 𝐼,𝐺}. Node
𝐹 is illegal (also used by another net).

𝐴

𝐵

𝐶 𝐷

𝐸 𝐺

𝐻 𝐼

(b) Pruned legal partial route tree. Only
sinks 𝐻 and 𝐼 must be re-routed. Any of
{𝐴,𝐵,𝐶,𝐷,𝐸,𝐺} could be new branch points.

Fig. 17. Route tree pruning example.

Table 8. Normalized Impact of Incremental Routing on VTR benchmarks (> 10K Primitives)

𝑊𝑚𝑖𝑛
Routed WL
(1.3 ·𝑊𝑚𝑖𝑛)

Crit. Path Delay
(1.3 ·𝑊𝑚𝑖𝑛)

Route Time
(find 𝑊𝑚𝑖𝑛)

Route Time
(1.3 ·𝑊𝑚𝑖𝑛)

Peak
Memory

Total Flow
Time

Baseline 1.00 1.00 1.00 1.00 1.00 1.00 1.00
8 1.01 0.99 1.01 0.63 0.77 1.01 0.72
16 1.01 0.98 1.03 0.66 0.77 1.01 0.76
32 1.02 0.99 1.00 0.75 0.81 1.01 0.84
64 1.01 0.99 1.01 0.82 0.90 1.01 0.86
128 1.00 0.99 1.01 0.82 0.97 1.00 0.90

Table 9. Normalized Impact of Incremental Routing on Titan benchmarks

Routed WL Crit. Path Delay Route Time
Peak

Memory
Total Flow

Time

Baseline 1.00 1.00 1.00 1.00 1.00
8 0.98 1.00 0.85 1.00 0.93
16 0.99 1.00 0.81 1.00 0.87
32 0.99 1.00 0.85 1.00 0.87
64 1.00 1.00 0.85 1.00 0.88
128 1.00 1.00 0.87 1.00 0.91

Excluding: directrf, gaussianblur, dart

with all other routing optimizations enabled. The results show that incremental routing has
effectively no impact on quality of results (minimum routable channel width, wirelength, or
critical path delay), while reducing the run-time of the router. For the VTR benchmarks
(Table 8) and Titan benchmarks (Table 9) fixed channel width route-time is minimized at a
fanout threshold of 16, reducing average route-time by 23% and 19% respectively. Importantly,
the impact of incremental routing is more significant on larger circuits (run-time reduction
of 56% on directrf), which shows it improves scalability.

9.1.2 High-Fanout Nets. VPR routes each net one connection at a time (Algorithm 2
Line 7) using Algorithm 3. To avoid wasting large amounts of wiring, any existing routing
(from a net’s previously routed connections) is added to the heap with zero cost, allowing it
to be re-used as a branch-point for subsequent connections (Algorithm 3 Line 7).

Most designs have a relatively small number of high-fanout nets which span a large portion
of the device. On a subset of the Titan benchmarks we found VPR spent 12-34% run-time

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication
date: 2020.

0:30 K. E. Murray et al.

(a) Traditional approach (b) Spatial approach

Fig. 18. Routing resources explored (colored by cost to reach the current target sink) while routing a
high-fanout net (∼ 3500 terminals) on the neuron benchmark circuit. The target sink is located near
the centre of the device.

routing these few high-fanout nets.
For a net with 𝑘 sinks, putting the entire route tree into the heap means the time

complexity to route the net grows quickly. For a single sink, pushing the net’s 𝑂(𝑘) route
tree into the heap has a time complexity31 of:

𝑂(𝑘 log 𝑘). (2)

Since this is done for each of the 𝑘 sinks, the overall time complexity to route a net grows as:

𝑂(𝑘2 log 𝑘). (3)

The 𝑂(𝑘2) component of Equation (3) is problematic, as it leads to very high route-time for
high-fanout nets.
To avoid this VTR 8 uses an approach based on [108]. Rather than putting the entire

route-tree into the heap, only routing resources which are spatially near the target sink
are added (Algorithm 3 Line 4). Since the number of such resources is bounded by a small
constant this reduces the 𝑂(𝑘 log 𝑘) component of Equation (3) to 𝑂(1), and the complexity
of routing a net falls to:

𝑂(𝑘), (4)

which is much more scalable.
Figure 18 illustrates the differences between these approaches, by showing the routing

resources examined by the router when routing to a particular high fanout net sink located
near the center of the device. Figure 18a shows the traditional approach looks at a large
number of routing resources (i.e. considers the entirety of the large route tree), many of
which will not lead to the target sink (since they are far from it). In contrast, Figure 18b
shows the spatial approach is much more efficient, with the router only examining a few
routing resources which are near the target sink.

However, we found that on some FPGA architectures this technique was not robust, and
no path could be found from the spatially nearby previous routing and the target sink.
This can occur in routing architectures which have sparse connectivity to certain routing
resources such as long wires. In such cases we fall back to placing the full route tree onto the

31Assuming a binary heap with 𝑂(log 𝑘) insertions.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

VTR 8 0:31

Table 10. Normalized Impact of High Fanout Routing on Titan benchmarks

Routed WL Crit. Path Delay Route Time

off 1.00 1.00 1.00
𝛽 = 32 𝛾 = 1.0 1.00 1.03 0.84
𝛽 = 64 𝛾 = 1.0 1.00 1.03 0.86
𝛽 = 64 𝛾 = 0.9 1.00 1.00 0.77

Table 11. Normalized Impact of OPIN Lockdown on Titan benchmarks

Routed WL Crit. Path Delay Route Time Peak Memory

on 1.00 1.00 1.00 1.00
off 0.98 1.01 0.94 1.00

heap (Algorithm 3 Lines 6 to 8). Since such instances are rare, this maintains the speed-up
of spatially aware high-fanout routing while ensuring robustness.
Furthermore, we observed that this high-fanout routing technique can also degrade

timing performance, since high-fanout timing-critical connections will have less flexibility
to find potentially faster routes. To alleviate this we route all timing critical high-fanout
connections32 using the full previous route tree (Algorithm 3 Line 3).
While these optimizations had no significant effect on the VTR benchmarks, they do

impact the larger Titan benchmarks. Table 10 show the results for several fanout (𝛽) and
criticality (𝛾) thresholds (Algorithm 3 Line 3), with all other routing optimizations enabled.
While high-fanout routing reduces run-time the best result occurs with a fanout threshold
of 64 and criticality threshold of 0.9, where route time is reduced by 23% with no impact
on wirelength or critical path delay. Notably, setting an active criticality threshold (𝛾 < 1)
improves route time since it likely avoids having to rip-up and re-route otherwise delay
sub-optimal high-fanout connections.

9.1.3 Output-pin Lockdown. To facilitate faster routing convergence, the VPR 7 router
locks-down output pins after a fixed number of routing iterations, with the aim of preventing
signals from oscillating between different logically equivalent output pins as congestion is
resolved. As shown in Table 11 (with all other routing optimizations enabled), disabling
this feature reduces both wirelength and route-time on the Titan benchmarks. VPR 8’s
incremental re-routing enhancement (Section 9.1.1) avoids unnecessarily ripping up and
re-routing uncongested output pins, naturally avoiding the scenario output pin lockdown
tried to address in VPR 7. As a result output pin lockdown has been removed in VPR 8.

9.2 Improving Quality & Robustness

9.2.1 Router Lookahead. VPR’s connection-based router makes use of a predictive looka-
head, to estimates the cost (delay and congestion) of reaching the target sink through the
node being expanded (Algorithm 5 Lines 10 and 11). This lookahead is used to quickly guide
the router to find a low cost path to the target.33 The lookahead used by prior versions of
VPR, which we call the classic router lookahead, makes a variety of simplifying assumptions
which may not hold true on modern FPGA architectures. In particular, it assumes different
wire types do not interconnect, and all wire types connect to block pins. As a result, the
classic lookahead can mislead the router on modern architectures (where its assumptions
typically do not hold), harming delay and wirelength.

32For the first routing iteration we treat all connections as timing critical. For later iterations the criticality

is determined based on the delays of the previous routing iteration.
33This is an approximate variant of the A* algorithm [47].

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

0:32 K. E. Murray et al.

Table 12. Normalized Impact of Router Lookahead and Base Costs on Titan benchmarks

Routed WL Crit. Path Delay Route Time Peak Memory

classic 1.00 1.00 1.00 1.00
map 0.98 0.91 5.94 1.00

classic length 0.93 0.99 0.76 1.00
map length 0.92 0.91 0.89 1.00

Values are normalized geomeans over mutually completed benchmarks

As a result VPR 8 includes a new lookahead based on an enhanced version of [92]. Unlike
the classic lookahead, which made fixed assumptions about the FPGA routing network
structure, the new lookahead adapts to the routing architecture used. This is accomplished
by profiling the routing network with sample routes to build a ‘map’ of the delay and
congestion costs through the routing network. To keep the creation time and memory
footprint reasonable, the map lookahead makes the common assumption that the FPGA
routing network is translationally invariant, and only differences in position need to be
considered. The map lookahead stores a different delay/congestion cost map for each source
wire type (e.g. wire length) and orientation (vertical or horizontal).

Table 12 shows the impact of the different lookaheads on the Titan benchmarks, with all
other router optimizations enabled. First, compared to the VPR 7-style lookahead (classic),
the new map lookahead (map) achieves much better result quality; reducing critical path
delay by 9% and wirelength by 2%, but at the cost of increasing route-time by nearly 6× (the
high run-time will be alleviated by adjusting the base costs as described in Section 9.2.2). The
map lookahead improves critical path delay since it understands the hierarchical structure of
Stratix IV’s routing network, where the high-speed long wire sub-network is only accessible
from a subset of the more plentiful short wires (Section 5.2.1). This is illustrated in Figure 19
which shows the delay estimates for various distances starting from a short wire for both
lookaheads. In Figure 19a the classic lookahead assumes all connections use the same type of
short wire, leading to delay rapidly increasing with distance. In contrast, Figure 19b shows
the map lookahead’s delay estimate, which increases much slower, particularly for longer
distances. The map lookahead understands the interconnections between the different wire
types, so it knows it is possible to get onto the faster long wire network even when starting
from a short wire. As a result its delay estimate increases slower at longer distances since it
knows the faster long wire network can be used.

These differences guide the router to make different choices for timing critical long distance
connections. With the classic lookahead, the router immediately starts driving towards the
target using the short-wire network, since it does not understand faster paths may exist.
It will only use the long wire network if it happens to encounter it during its directed
exploration. The map lookahead instead guides the router to search the short-wire network
more thoroughly to find a way onto the faster long wire network. Getting onto the long wire
network early significantly improves the delay of long distance connections.

9.2.2 Routing Resource Base Costs. The lookaheads also provide congestion/resource cost
estimates to guide the router’s search process. Figure 20 shows the congestion cost estimates.
Figures 20a and 20b show the classic lookahead’s congestion cost estimates when starting
from short or long wires. Interestingly, this shows it is much cheaper to travel an equivalent
distance using the long rather than short wires – even though the long wires are much larger
and rarer routing resources.34 This cost difference biases the router to prefer using the long

34This is derived from the original VPR formulation [17], which used a single base cost for all wire lengths.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

VTR 8 0:33

60 40 20 0 20 40 60
x

40

20

0

20

40

y

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1e 9

(a) Classic L4

60 40 20 0 20 40 60
x

40

20

0

20

40

y

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1e 9

(b) Map L4

Fig. 19. Lookahead Delay Estimates

60 40 20 0 20 40 60
x

40

20

0

20

40

y

0

2

4

6

8

1e 10

(a) Classic L4

60 40 20 0 20 40 60
x

40

20

0

20

40

y

0

2

4

6

8

1e 10

(b) Classic L16

60 40 20 0 20 40 60
x

40

20

0

20

40

y

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.01e 9

(c) Map Length L16

Fig. 20. Lookahead Congestion Estimates

wire network even for non-timing-critical connections.
The original map lookahead suffers from the same bias. Since the map lookahead also

has a stronger preference for using long wires for timing-critical connections this led to
significant congestion in the long wire network. While this congestion would eventually be
resolved through congestion negotiation, that is a very slow process, requiring connections
to be repeatedly ripped-up and re-routed over many routing iterations.
To address this issue we adjusted the wire base costs to be proportional to each wire’s

length. The resulting congestion cost estimates for long wires with the map lookahead
are shown in Figure 20c. These costs make long wires more expensive than short wires,
particularly when using a long wire to travel distances shorter than their length.35 This
guides short distance and non-timing-critical connections to use the more plentiful short
wires. As a result, wirelength improves, and run-time decreases (as congestion is resolved
quickly).

This is illustrated in Figure 21 which compares how base costs effect congestion resolution
and route-time. For non-length-scaled base costs (Figure 21a) both the L4 and L16 wires are
initially heavily congested. However the L16 wires are proportionally much more congested
than the L4 wires.36 Congestion in both wire lengths then resolves very slowly over many
routing iterations. In contrast, for length-scaled base costs (Figure 21b) congestion in both
wire lengths resolves quickly. This is particularly true of the L16s, which are congestion
free much earlier (6𝑡ℎ iteration) than with unit base costs (11𝑡ℎ iteration). As a result the

35For instance, with the previous uniform base costs using an L16 wire to move 8 units was half the cost of
using 2 L4 wires. Using length-scaled base costs the L16 wire would be twice as expensive as using 2 L4s,
which is intuitively consistent as half the L16 wire would be unused.
36There are ∼ 26× fewer L16 than L4 wires (Table 2), but initially only 5× fewer congested L16s in Figure 21.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

0:34 K. E. Murray et al.

2 4 6 8 10 12
Routing Iteration

100

101

102

103

104

Co
ng

es
te

d
Ro

ut
in

g
Re

so
ur

ce
s

L16 Cong.
L4 Cong.
Pin Cong.

0

10

20

30

40

50

60

70

80

90

Cu
m

m
ul

at
iv

e
Ro

ut
e

Ti
m

e
(s

ec
)

Le
ga

l

Route Time

(a) Unit base costs.

2 4 6 8 10 12
Routing Iteration

100

101

102

103

104

Co
ng

es
te

d
Ro

ut
in

g
Re

so
ur

ce
s

L16 Cong.
L4 Cong.
Pin Cong.

0

10

20

30

40

50

60

70

80

90

Cu
m

m
ul

at
iv

e
Ro

ut
e

Ti
m

e
(s

ec
)

Le
ga

l

Route Time

(b) Length-scaled base costs.

Fig. 21. Comparison of routing congestion by resource type and router run-time for different base costs
on the neuron benchmark circuit with the map lookahead.

router converges in fewer routing iterations, and requires significantly less run-time (80 vs
50 seconds).37

The impact of using length-scaled base costs with the two lookaheads is also shown
in Table 12. With length-scaled base costs the map lookahead (map length) significantly
improves route-time, so it is 11% faster than the classic lookahead. They also improve the
classic lookahead’s run-time (classic length), but the relative improvement is smaller. For
both lookaheads the length-scaled base costs reduce routed wirelength by 7-8%.38

9.2.3 Multi-convergence Routing. During negotiated congestion routing, the router at-
tempts to resolve congestion while minimizing the impact on critical path delay. However in
highly congested designs congestion costs can end-up dominating timing costs, and critical
connections may be detoured degrading the critical path delay. As a result the achieved
critical path delay can be somewhat chaotic in the presence of significant routing congestion.
Multi-convergence routing aims to address this by continuing to improve the routing of

timing critical connections after the first legal routing solution is found. In particular, the
router will continue re-routing timing critical connections with the aim of improving their
delay. This allows the router to fix up timing issues it neglected while focusing on resolving
routing congestion. When the routing next converges to a legal congestion-free solution the
routing with the best QoR is kept.
The pseudo-code for multi-convergence routing is shown in Algorithm 2. When a legal

routing is found (Algorithm 2 Line 8), the best routing is updated39 (Algorithm 2 Line 9).
In preparation for the rip-up and re-routing of delay sub-optimal connections the present
congestion cost factor (𝑝𝑟𝑒𝑠𝑓𝑎𝑐) is reset to its initial value (default zero) (Algorithm 2
Line 13). This allows timing critical connections to focus on finding faster routes instead of
avoiding congestion. Incremental re-routing (Section 9.1.1) then rips-up delay sub-optimal
connections (Algorithm 2 Line 19). It is worth noting that once re-routing is ‘kicked-off’ in

37Re-routing in the presence of congestion requires the router to repeatedly search more and more of the RR

graph to find uncongested paths. As a result, the run-time benefits of reducing congestion tend to improve

with the larger RR graphs needed for bigger designs.
38This likely indicates long wires were previously sub-optimally used by connections traversing short distances.

This was also independently identified and fixed by [115].
39Provided the new routing is better, defined as having lower critical path delay, with wirelength used as a
tie-breaker.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

VTR 8 0:35

0.96

0.97

0.98

0.99

1.00

No
rm

al
ize

d
Ge

om
ea

n
Cr

iti
ca

l P
at

h
De

la
y

1.00 Wmin
1.05 Wmin

1.10 Wmin
1.30 Wmin

1 2 3 4 5
Routing Convergence Count

0.90

0.92

0.94

0.96

0.98

1.00

No
rm

al
ize

d
Ge

om
ea

n
W

ire
le

ng
th

1 2 3 4 5
Routing Convergence Count

0.6

0.8

1.0

1.2

1.4

1.6

1.8

No
rm

al
ize

d
Ge

om
ea

n
Ro

ut
e

Ti
m

e

1.00 Wmin
1.05 Wmin
1.10 Wmin
1.30 Wmin

Fig. 22. QoR Impact of multiple routing convergence on the VTR Benchmarks (> 10𝐾 primitives)

this manner any resulting congestion is naturally handled by incremental re-routing, and
less critical (but newly congested) connections will be detoured away to resolve congestion.
Figure 22 shows the impact of multi-convergent routing on the large VTR benchmarks

at various levels of routing stress, and with all other router optimizations enabled. We can
make several interesting observations.

Firstly, independent of multi-convergence routing, increasing channel width improves both
delay and wirelength, and reduces route-time. The additional routing resources mean the
router does not need to detour as drastically to resolve congestion.
Secondly, multi-convergence routing improves critical path delay and wirelength in high

stress settings at or near the minimum routable channel width. For instance, compared to
only a single convergence, allowing two convergences reduces critical path delay at minimum
channel width by 2.3%. However these gains diminish as channel width increases. Allowing
more than two routing convergences offers minimal quality benefit.
Thirdly, multi-convergence routing is run-time efficient, with subsequent convergences

increasing run-time by far less time than the initial convergence (which routed the entire
netlist). For instance at minimum channel width the second convergence only increased
overall route-time by 30%. The run-time overhead of multi-convergence routing also decreases
in less stressful routing conditions (where it offers less benefit). The connection-based re-route
and high fanout optimizations greatly reduce work when a routing is almost legal, which
keeps the run-time overhead for multi-convergent routing low.

It is interesting to note that multi-convergent routing with delay-based rip-up accomplishes
many of the same goals as the delay-targeted routing approach proposed in [96]. In particular,
reducing the often chaotic impact of routing congestion on critical path delay at narrow
channel widths. Multi-convergent routing should be more run-time efficient as it only re-
routes the relevant connections in the netlist. In contrast delay-targeted routing requires the
full netlist to be re-routed multiple times in search of an appropriate delay target. Finally,
multi-convergent routing naturally extends to multi-clock designs where there is no longer a
single delay target.

9.2.4 Adapting to Congestion.

Dynamic Router Bounding Boxes. To reduce router run-time the VPR router has historically
restricted each net to route within a fixed region derived from the bounding box of the net’s

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

0:36 K. E. Murray et al.

Table 13. Normalized Impact of Dynamic Router Bounding Boxes on VTR benchmarks (> 10𝐾
primitives)

𝑊𝑚𝑖𝑛
Route Time
(find 𝑊𝑚𝑖𝑛)

Routed WL
(Fixed 𝑊)

Crit. Path Delay
(Fixed 𝑊)

Route Time
(Fixed 𝑊)

static 1.00 1.00 1.00 1.00 1.00
dynamic 0.98 1.11 1.00 1.00 0.98

Table 14. Normalized Impact of Congestion Mode Threshold on VTR benchmarks (> 10𝐾)

𝑊𝑚𝑖𝑛
Routed WL
(1.3 ·𝑊𝑚𝑖𝑛)

Crit. Path Delay
(1.3 ·𝑊𝑚𝑖𝑛)

Route Time
(find 𝑊𝑚𝑖𝑛)

Route Time
(1.3 ·𝑊𝑚𝑖𝑛)

VPR
Memory

Total Flow
Time

1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.8 0.99 1.01 1.00 1.08 1.00 1.00 1.01
0.5 0.98 1.01 1.00 1.57 1.00 1.00 1.23

driver and sink locations.40 While this limiting of the router’s search space saves run-time,
it can make it more difficult to resolve congestion. In particular, the fixed bounding box
limits how far a net can ‘move away’ from a congested region (as it is restricted to remain
inside the bounding box).
To avoid this case, the router will now dynamically expand a net’s bounding box at the

end of each routing iteration, provided the net uses a routing resource which is adjacent
to an edge of the bounding box. This means if a net is routed to the edge of its bounding
box (e.g. to avoid congestion) the next iteration will use a larger bounding box enabling it
to move further out of the way. This ensures, in highly congested designs, there is no hard
limit restricting how far non-critical nets can move out of the way to alleviate congestion.

Table 13 shows the impact of dynamic bounding boxes with all other routing optimizations
enabled. Dynamic bounding boxes improve minimum routable channel width by 2% on the
VTR benchmarks, and reduces run-time in the less congested fixed channel width (1.3 ·𝑊𝑚𝑖𝑛)
case by 2%. While the minimum channel width search time increases moderately this is not
significant, as minimum channel width run-time is sensitive to small changes in routability
(which may cause binary search to explore a different sequence of channel widths which
may be more challenging to route). Given that both the minimum routable channel width
and route time at fixed channel are improved we believe this indicates an overall routability
improvement.

Congestion Mode. If the number of routing iterations is approaching the maximum allowed,
VPR 8 will enter a high-effort congestion mode. This mode disables delay-driven incremental
re-routing (so the router only rips-up congested connections) and also increases net bounding
box sizes, giving the router more freedom to find alternative (less congested) routes.

Table 14 shows the impact of different congestion thresholds on the VTR benchmarks, with
all routing optimizations enabled. Decreasing the iteration congestion threshold increases
router effort in hard-to-route instances. With thresholds of 80% and 50% of maximum
routing iterations respectively the minimum routable channel width decreases by 1% and
2%, while minimum channel width route time increases by 8% and 57% respectively. There
is no run-time impact at relaxed channel widths since congestion is less severe.

9.3 Routing with Non-Configurable Switches

As described in Section 4.2.3, VPR 8 supports non-configurable connections between routing
resources (i.e. connections which must always be used and can not be disabled), such as

40The default router bounding box is the net’s bounding box expanded by 3 routing channels on each side.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

VTR 8 0:37

non-tristate-able buffers (which are common in clock networks and can be useful for long
wires) and electrical shorts. Using non-configurable switches to create electrical shorts allows
the modeling of a broader range of wires such as more complex ‘L’ and ‘T’ shaped wires,
while allowing the fundamental RR node data structure to remain a simple one dimensional
wire. This ensures RR nodes can be described using compact and efficient data structures.
This is very important as the RR node data structures form the largest component of VPR’s
peak memory footprint, and keeps the far more common case of a linear wire efficient.
The VPR router has traditionally assumed each switch, modelled as an edge in the

Routing Resource (RR) graph, was configurable – meaning it could be enabled/disabled to
connect/disconnect two routing resources. Supporting non-configurable switches required
modifications to the router’s path finding algorithm.
Algorithm 4 VPR 8 Path Finding

Require: The ℎ𝑒𝑎𝑝 containing start locations, the 𝑡𝑎𝑟𝑔𝑒𝑡 node to be found
Returns: A low-cost path to 𝑡𝑎𝑟𝑔𝑒𝑡 from elements initially in ℎ𝑒𝑎𝑝
1: function find path from heap(ℎ𝑒𝑎𝑝, 𝑡𝑎𝑟𝑔𝑒𝑡)
2: while not empty(ℎ𝑒𝑎𝑝) do
3: 𝑒𝑙𝑒𝑚← pop smallest(ℎ𝑒𝑎𝑝)
4: if 𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑒𝑙𝑒𝑚.𝑛𝑜𝑑𝑒 then
5: return traceback path(𝑒𝑙𝑒𝑚) ◁ Found path to target

6: for 𝑒𝑑𝑔𝑒 ∈ outgoing edges(𝑒𝑙𝑒𝑚.𝑛𝑜𝑑𝑒) do ◁ Explore Neighbours
7: 𝑛𝑒𝑥𝑡 𝑒𝑙𝑒𝑚← expand node(𝑒𝑙𝑒𝑚, sink node(𝑒𝑑𝑔𝑒), 𝑡𝑎𝑟𝑔𝑒𝑡)
8: push(ℎ𝑒𝑎𝑝, 𝑛𝑒𝑥𝑡 𝑒𝑙𝑒𝑚)

9: return ∅ ◁ No path to target

Algorithm 5 VPR 8 Node Expansion

Require: The 𝑝𝑟𝑒𝑣ious element used to reach the current 𝑛𝑜𝑑𝑒, the 𝑡𝑎𝑟𝑔𝑒𝑡 node to be found
Returns: An element to be placed on the heap with the costs of using 𝑛𝑜𝑑𝑒 to reach 𝑡𝑎𝑟𝑔𝑒𝑡
1: function expand node(𝑝𝑟𝑒𝑣, 𝑛𝑜𝑑𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡)
2: if reached by configurable edge(𝑝𝑟𝑒𝑣, 𝑛𝑜𝑑𝑒) then
3: 𝑛𝑜𝑑𝑒𝑠 = nonconfig connected nodes(𝑛𝑜𝑑𝑒) ◁ Includes 𝑛𝑜𝑑𝑒
4: 𝑛𝑜𝑑𝑒 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 = sum congestion(𝑛𝑜𝑑𝑒𝑠) ◁ All non-config. connected nodes
5: else ◁ Part of previously reached non-config. node set
6: 𝑛𝑜𝑑𝑒 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 = 0 ◁ Already included in non-config. connected node set

7: 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 = 𝑝𝑟𝑒𝑣.𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛+ 𝑛𝑜𝑑𝑒 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛
8: 𝑑𝑒𝑙𝑎𝑦 = 𝑝𝑟𝑒𝑣.𝑑𝑒𝑙𝑎𝑦 + delay(𝑝𝑟𝑒𝑣.𝑛𝑜𝑑𝑒, 𝑛𝑜𝑑𝑒) ◁ Only delay of current node
9: 𝛾 = criticality(𝑡𝑎𝑟𝑔𝑒𝑡)

10: 𝑐𝑜𝑠𝑡 = (1− 𝛾) · (𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛+ expected congestion(𝑛𝑜𝑑𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡))
11: + 𝛾 · (𝑑𝑒𝑙𝑎𝑦 + expected delay(𝑛𝑜𝑑𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡))
12: return element(𝑛𝑜𝑑𝑒, 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛, 𝑑𝑒𝑙𝑎𝑦, 𝑐𝑜𝑠𝑡)

Algorithm 4 details VPR’s algorithm for finding paths for each net connection through
the RR-graph. Like a standard Djikstra/A*-based path finding algorithm VPR maintains
a heap of currently explored nodes in the graph. The lowest cost node is popped off the
heap (Line 3), and its neighbours are explored and added to the heap (Lines 6 to 8). This
continues until either the target is found and the resulting path returned (Lines 4 and 5), or
the heap is emptied (Line 2) indicating no path exists (Line 9).

There are several challenges to supporting non-configurable edges. First, the router must
ensure all non-configurably connected nodes are always used together. This is achieved by

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

0:38 K. E. Murray et al.

𝑠

𝑡

𝑎 𝑏

𝑐𝑑1

𝑑2𝑑3

(a) Example routing resource graph with source 𝑠 and target 𝑡.
Dashed edges are configurable, solid edges are non-configurable.

Node Cong. Delay
Est. Delay

to 𝑡

𝑠 0 0 7
𝑎 1 2 5
𝑏 2 4 3
𝑐 3 6 1
𝑑1 4 4 2
𝑑2 4 5 1
𝑑3 4 5 5

(b) Path costs from 𝑠.

Fig. 23. Non-configurable routing example. Assumes unit congestion cost and delay for wires, unit delay
for configurable switches, and zero delay for non-configurable switches.

pre-processing the RR-graph to identify any sets of non-configurably connected nodes in
the graph, and by updating the path traceback routine (Algorithm 4 Line 5) to add all
non-configurably connected nodes to the route tree when a path is found. Second, it is crucial
to cost such nodes appropriately so the router effectively optimizes their use. In particular,
the router must:
∙ see the full congestion cost impact of using any node in a non-configurably connected
set (since choosing to use at least one node from the set implies using all nodes in the
set), and
∙ account for the delay impact of choosing particular nodes to form the routing path
(since the individual nodes selected determine the delay).

Algorithm 5 shows how this is done in VPR 8. Whenever a node is explored via a
configurable edge the relevant nodes are identified (Algorithm 5 Line 3)41 and their congestion
costs summed (Algorithm 5 Line 4).42 When a node is expanded via a non-configurable
edge (Algorithm 5 Line 6), by definition it is part of a non-configurably connected node set,
whose congestion cost is already included (it was added to the previous congestion when the
current partial path first encountered the set), so no additional incremental congestion cost
is added. The remainder of the cost calculations proceed as usual, weighting the delay and
congestion costs by target criticality, and including the expected congestion and delay costs
to the target (Algorithm 5 Lines 9 to 11).

Figure 23 illustrates how non-configurable switches affect costing. As the router explores
from the source 𝑠 in Figure 23a it may expand to node 𝑑1 which is a member of the non-
configurably connected node set 𝒟 = {𝑑1, 𝑑2, 𝑑3}. As shown in Figure 23b, the congestion
cost to reach 𝑑1 includes the cost of using all members of the set, but its delay cost only
reflects the delay to reach 𝑑1. When expanding from 𝑎 to 𝑑1 the router pushes only 𝑑1 onto
the heap (not all of 𝒟), but costs it to reflect the full congestion cost of using 𝒟. This
ensures the router does not under estimate the cost to use 𝑑1 (since choosing to use 𝑑1
actually requires using all of 𝒟). If the router later pops 𝑑1 off the heap the other members
of 𝒟 (i.e. 𝑑2, 𝑑3) will be expanded, accounting for their individual timing impact, but with
no additional congestion cost.
It is important that each member of 𝒟 is tracked separately in the heap, since each

member may have different expected congestion/delay costs to reach the target. Tracking

41With pre-processing this can be done in constant time.
42For regular nodes this is just the individual node’s congestion costs, while for a node in a non-configurably
connected set this is the total congestion cost of all the nodes in the set.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

VTR 8 0:39

10 20 30 40 50
Routing Iteration

100

101

102

103

104

105

Co
ng

es
te

d
Ro

ut
in

g
Re

so
ur

ce
s

Routable
Unroutable

Fig. 24. Routing Congestion Trend on LU32PEEng at routable and unroutable channel widths

each node separately ensures the router can prioritize exploring promising nodes which
move it closer to the target (e.g. expanding 𝑑2 before 𝑑3). This is particularly important for
large non-configurably connected node sets which may fanout to a large number of nodes
which may not be relevant for reaching a particular target. With this formulation the router
correctly determines the path 𝑎→ 𝑏→ 𝑐 is better for non-timing critical connections (lower
congestion cost), while 𝑎→ 𝑑1 → 𝑑2 is better for timing-critical connections (lower delay).

9.4 Speeding-Up Minimum Channel Width Search

To find the minimum routable channel width (𝑊𝑚𝑖𝑛), VPR invokes the router at various fixed
channel widths as part of a binary search. As a result, all enhancements to the router also
benefit the minimum channel width search. However VPR 8 includes several enhancements
targeted particularly at reducing the run-time of minimum channel width search.

9.4.1 Routing Failure Predictor. Router run-time is highly dependent on the amount and
difficulty of resolving congestion. In uncongested designs the router explores only a limited
portion of the routing network and runs quickly. However, in highly congested designs
the router must repeatedly explore much more of the routing network in order to find
uncongested paths, which significantly increases run-time.
For designs which are unroutable this means the router will continually explore most of

the routing network in a (futile) attempt to resolve congestion. To improve the run-time
behaviour we designed a routing predictor which will abort routing early if it is not expected
to complete successfully (Algorithm 2 Line 14). The routing predictor is beneficial when
routing at a fixed channel width, since it reduces the time to inform the user a design is
unroutable. However its largest benefit comes when an FPGA architect is attempting to
find the minimum routable channel width, since the binary search run-time is dominated by
routings which occur at unroutable channel widths.
As shown in Figure 24, congestion typically decreases exponentially over routing itera-

tions.43 The routing predictor uses this information to construct a model of congestion over
time and estimate when congestion will be resolved. We use a simple linear regression model

43A linear trend on a log-linear plot such as Figure 24.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

0:40 K. E. Murray et al.

Table 15. Normalized Impact of Routing Predictor on VTR benchmarks (> 10𝐾 primitives)

𝑊𝑚𝑖𝑛
Routed WL
(1.3 ·𝑊𝑚𝑖𝑛)

Crit. Path Delay
(1.3 ·𝑊𝑚𝑖𝑛)

Route Time
(find 𝑊𝑚𝑖𝑛)

Route Time
(1.3 ·𝑊𝑚𝑖𝑛)

VPR
Memory

Total Flow
Time

off 1.00 1.00 1.00 1.00 1.00 1.00 1.00
safe 1.00 1.00 1.00 0.71 1.02 1.00 0.77

aggressive 1.00 1.00 1.00 0.52 1.05 1.00 0.64

Table 16. Normalized Impact of Minimum Channel Width Hints on VTR benchmarks

𝑊𝑚𝑖𝑛
Routed WL
(1.3 ·𝑊𝑚𝑖𝑛)

Crit. Path Delay
(1.3 ·𝑊𝑚𝑖𝑛)

Route Time
(find 𝑊𝑚𝑖𝑛)

Route Time
(1.3 ·𝑊𝑚𝑖𝑛)

Total Flow
Time

VPR
Memory

No Hints 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-30% Hint 1.02 1.00 1.00 1.10 0.97 1.05 1.00
-10% Hint 1.01 1.00 1.00 0.86 1.00 0.93 1.02

Correct Hint 1.00 1.00 1.00 0.72 0.99 0.85 1.02
+10% Hint 1.01 1.00 1.00 0.69 1.02 0.83 1.00
+30% Hint 1.02 1.00 1.00 1.09 0.98 1.04 0.99

fit using least-squares to the logarithm of the congested routing resource count.44 At the
end of each routing iteration the model is constructed using the congestion information from
the most recent 50% of previous routing iterations.45 If the estimated iteration count is
greater than 3 times (safe setting) or 1.5 times (aggressive setting) the maximum number
of allowed routing iterations, the routing is aborted.

Table 15 shows the impact of the routing predictor on routing QoR and run-time metrics
on the large circuit subset of the VTR benchmarks, with all other routing optimizations
enabled. For the safe and aggressive predictor settings there are no changes in quality metrics,
but minimum channel width route time is reduced by 29% and 48% respectively.

9.4.2 Minimum Routable Channel Width Hints. Often when performing minimum routable
channel width experiments the architect has some insight into what the expected channel
widths will be.46

VPR 8’s minimum channel width search can now take such estimates as optional ‘hints’
to the minimum channel width binary search. These hints are used as the starting point
of the binary search, and if accurate allow a large part of the search space to be quickly
eliminated. Additionally, if the hint value is found to be routable a smaller initial step (10%
channel width reduction, instead of the default 50%) is taken in hopes of quickly identifying
an unroutable channel width and pruning the number of such channel widths explored.
Table 16 shows the impact of minimum channel width hints with all other routing opti-

mizations enabled. Providing accurate hints (Correct Hint) results in the same minimum
channel width as not providing a hint (No Hint), but reduces minimum channel width
search time by 28%. It should be noted that the accuracy of the hints does not significantly
affect the resulting minimum channel width found by the binary search. Less accurate hints
can still reduce minimum channel width search time (+10% Hint, -10% Hint). Inaccurate
hints (+30% Hint, -30% Hint) only moderately increase search time since the number of
additional channel widths explored is bounded.

44Using the logarithm allows a linear model to fit an exponential trend.
45Using the most recent 50% of routing iterations means only recent history is considered, but the length of
history increases as routing proceeds. This helps minimize noise caused by the typically small number of
congested routing resources late in the routing process.
46For instance they may have an estimate based on prior experience with the same or similar architectures.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

VTR 8 0:41

Table 17. VPR Router Comparisons on Titan v1.1.0 Benchmarks

Routable
Benchmarks

Routed
WL

Routed
CPD

Route
Time

VPR8 Timing-Driven (Timing + WL) 21 1.00× 1.00× 1.00×
VPR8 Timing-Driven (WL only) 21 0.97× 1.47× 0.70×
VPR8 Breadth-First (WL only) 14 1.10× 1.66× 394.54×
VPR7+ Timing-Driven (Timing + WL) 20 1.18× 1.16× 6.16×
VPR7+ Breadth-First (WL only) 14 1.08× 1.56× 304.45×

All routers used identical packings/placements/RR graphs produced by VPR 8.
QoR is the geomean of the mutually routable subset of 14 benchmarks.

9.5 Router Algorithm Comparison

To evaluate the effect of the router enhancements, Table 17 compares the various routing
algorithms in VPR 7+ and VPR 8 under identical conditions (same netlist, packing, place-
ment, and RR graphs produced by VPR 8) on the Titan benchmarks [85]. VPR contains
two different routing algorithms the primary timing-driven router (whose enhancements
in VPR 8 are described above) which can be run to either optimize wirelength and timing
simultaneously (Timing + WL) or wirelength only (WL only), and the breadth-first router
which optimizes wirelength only and is included for historical reasons [15].

First considering the VPR 8 and VPR 7+ timing-driven routers (Timing + WL), we
observe the VPR 8 router is substantially more run-time efficient (6.2× faster) while also
improving QoR (18% wirelength and 16% critical path delay reductions). It also successfully
routes an additional benchmark compared to VPR 7+. Second, the simpler breadth-first
routers in VPR 7+ and VPR 8 both run more than two orders of magnitude slower
(> 300×) than the VPR 8 timing-driven router. They also only successfully route 14 (vs. 21)
benchmarks, while using 8 to 10% more wiring and produce 56 to 66% longer critical paths.
Third, the VPR 8 timing-driven router is very efficient at trading-off wirelength and timing.
When run with a wirelength only objective (WL only) which ignores timing, it only further
reduces wirelength by 3% and run-time by 30%. This shows that when run with a combined
timing and wirelength objective, the timing-driven router is able to effectively prioritize
the routing of timing critical signals without significantly degrading the routing of other
connections. As a result, there is little reason to running with only a wirelength objective.
These results show the VPR 8 timing-driven router is superior in both run-time and

QoR to the breadth-first routers and the VPR 7 timing-driven router. Therefore other
works building on and/or comparing to the VPR should ensure they compare to the VPR
8 timing-driven router. Choosing to compare to the non-default breadth-first router will
result in misleading conclusions. For instance, parallel routing algorithms typically report
speed-ups of 2 to 8× [105], however not all authors use the same serial baseline. While
some works have used the VPR 7 timing-driven router as a baseline, others used the VPR
7 breadth-first router which is orders of magnitude slower. This means not all published
parallel routing speed-ups are significant. Going forward, parallel routing researchers should
ensure they use a state-of-the-art serial routing algorithm as their baseline.

10 TIMING ANALYSIS

VTR 8 uses Tatum [81] as its Static Timing Analysis (STA) engine, which was designed to
be more complete, flexible and higher performance than VPR 7’s classic STA engine. Tatum
provides various new timing analysis features such as hold (min-delay) timing analysis,
support for multi-clock netlist primitives (e.g. dual port RAMs with different clocks),
additional timing constraints and exceptions, and support for paths completely contained

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

0:42 K. E. Murray et al.

Table 18. Normalized Impact of Setup & Hold STA Traversals While Routing Titan Benchmarks

STA Traversal
Time

Separate 1.00
Combined 0.70

Table 19. Comparison of Classic & Tatum STA (Setup Only) on Titan Benchmarks

Pack Time Place Time Route Time Total Time
STA
Time

Classic 1.00 1.00 1.00 1.00 1.00
Tatum serial 1.00 0.88 0.95 0.94 0.47
Tatum parallel 0.99 0.80 0.91 0.90 0.07

within primitives (such as registered block RAM read paths). As a result, VTR 8 also
supports more advanced timing reports, including detailed multi-path timing reports which
help users understand and evaluate the speed-limiting paths in their design. Furthermore,
Tatum produces the same analysis results as VPR 7 (to within floating point round-off) for
setup analysis, allowing critical path delays to be fairly compared between VPR 7 and VPR
8 when identical delay models are used.
As STA is called hundreds of times to evaluate the timing characteristics of the design

implementation and drive further optimization, it is key for STA to be fast. Tatum includes
several enhancements which improve its performance over VPR 7’s classic STA engine.
∙ Tatum performs a single traversal of the timing graph, simultaneously analyzing all
clock domains. This is more efficient than VPR 7’s classic STA engine, which traversed
the timing graph for each pair of clock domains.
∙ If both setup and hold timing analyses are required (e.g. during combined long and
short path timing optimization), Tatum can perform a combined setup and hold
analysis during the same traversal of the timing graph.
∙ Tatum supports parallel execution across multiple cores to further speed-up STA.

10.1 Combined Setup & Hold Analysis

Table 18 quantifies the effect of combining setup and hold analyses into a single traversal
(Combined) compared to performing two independent traversals (Separate) while routing
the Titan benchmarks. Performing a single set of combined traversals reduces the total STA
traversal time by 30% due to improved cache locality. With the combined traversals the
timing graph does not need to be reloaded into the cache for both setup and hold analyses.

10.2 Comparison with VPR Classic STA

Table 19 compares the run-time of using VPR’s classic timing analyzer and Tatum when
implementing the Titan benchmarks. Overall STA time in VPR is reduced by 2.1× serially
and 14.3× in parallel with 24 cores.47 As a result overall run-time is reduced by 6%
(Tatum serial) to 10% (Tatum parallel), with the largest run-time reductions occurring
in placement (12-20%) and routing (5-9%). However it is worth noting that for some designs
STA is a larger proportion of overall run-time, and the run-time reductions are larger.48

47Compared to VPR’s classic STA engine, Tatum performs best on large multi-clock designs, with circuits

like mes noc and gsm switch running 7.5-6.2× faster serially, and 59.6-48.0× faster with 24 cores.
48For example, stereo vision’s total run-time is reduced by 21% using Tatum with parallelism.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

VTR 8 0:43

11 SOFTWARE ENGINEERING

VTR is a large complex software project, and as a result requires significant software
engineering efforts. These efforts are multifaceted and include:
∙ Optimizing the implementations of key algorithms and data structures,
∙ Improving robustness and stability,
∙ Providing support and documentation for users, and
∙ Facilitating collaboration between developers.

Some of these items have a significant impact on the technical merits of the project such
as Quality of Results (QoR) and run-time, while others affect VTR’s usefulness to end-users,
and the project’s longer-term health and sustainability. This section highlights a subset of
this work.

11.1 ODIN II

11.1.1 HDL Elaboration. Odin II (developed in C/C++) has been extended to support
sequential circuits with more complex control signals (e.g. negative edge sensitive and
asynchronous). This expands the capacity of VTR 8.0 to benchmark a wider variety of
circuits. Verilog language coverage has been extended, a wide variety of bugs have been
fixed, and optimizations like constant folding have been improved.

The addition operator in Verilog can be synthesized in a number of functionally equivalent
ways. In VTR 8, Odin II supports producing a variety of adder implementations with
different power, area and delay trade-offs [69].

Odin II also has improved support for identifying and removing unused/redundant logic as
described in [83]. This is particularly import when the netlist contains blackbox primitives,
as logic optimization tools like ABC can not sweep logic related to such primitives (since
ABC has no visibility into the functionality of the blackboxes).

11.1.2 Simulator. Odin II includes a simulation tool that allows vector-based verification
of both Verilog and BLIF circuits. The user can provide a set of input and output vector
files which describe successive input signals that drive the circuit and the expected circuit
outputs.
In VTR 8 we extended the simulator to support multi-clock circuits and additional

sequential elements (asynchronous, falling edge and rising edge). The simulator can also
generate more compact test-vectors for a circuit, by using the current test coverage to guide
future vector generation [90].

11.2 VPR

VPR is developed in C/C++, and has a long development history, being continually extended
and enhanced over time. As a result it is important to improve code quality, which makes it
easier for both developers and end-users to make future enhancements and modifications
to VPR. Additionally, for a high performance CAD tool solving large-scale optimization
problems, the implementation details of various data structures and algorithms have a
significant impact on run-time and memory footprint. These enhancements are beneficial to
the research community as it makes it easier for researchers to develop and evaluate new
CAD algorithms within VPR, or customize VPR to explore new architectural features.

11.2.1 VPR Netlist. One of the significant software engineering efforts in VPR 8 was
refactoring the netlist data structures which store the technology mapped (or ‘atom’) netlist,
and the post-packing ‘clustered’ netlist.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

0:44 K. E. Murray et al.

Table 20. Normalized Impact of Atom Netlist Data Structure Refactoring on VTR Benchmarks

Pack Time Place Time
Route Time
(find 𝑊𝑚𝑖𝑛)

Route Time
(1.3 ·𝑊𝑚𝑖𝑛)

Total VPR
Time

Baseline 1.00 1.00 1.00 1.00 1.00
Refactored 0.63 1.00 0.92 0.93 0.86

These data structures have been significantly re-written in order to produce a well-defined
common API for accessing and modifying the netlist data. During this process the underlying
data layout and representation was modified to reduce indirect memory accesses (pointer-
chasing), and improve cache utilization. In particular, the data layout was changed from
an Array-of-Structs (AoS) to Struct-of-Arrays (SoA) representation, which is more cache
friendly when only a few data fields are accessed at a time.

Table 20 shows the atom netlist refactoring reduced pack-time, route-time and total VPR
run-time by 37%, 7-8% and 14% respectively.

11.2.2 Contexts. VPR has historically made use of numerous global variables to represent
the device model and design implementation state, which made it challenging to reason
about and modify the code base.
To address this we have restructured and grouped together the various data structures

representing the device model and implementation state into contexts. The device context
contains all data structures used to represent the targeted FPGA device, including block
type definitions, device grid and RR-graph. There are also contexts representing different
aspects of the implementation state such as the clustering, placement or routing. Each part
of the code base (e.g. the router) now explicitly asks for the different contexts they require,
and specifies whether read-only or read-write access is required. This helps to minimize
coupling between different parts of the code base, while making the dependencies more
explicit.

11.2.3 Redundant Work. After performing a move during placement, VPR iterates through
the affected nets to update wirelength and timing information. In VPR 7, the affected nets
would be iterated through multiple times. We have improved this in VPR 8, by ensuring
that all updates required occur during a single iteration through the affected nets. Similarly
to performing a single set of timing graph traversals (Section 10.1), this improves cache
locality by not repeatedly reloading the netlist and placement information into the cache.

11.2.4 Memory Usage Optimizations. It was previously noted that VPR 7’s peak memory
usage was substantially higher than commercial tools like Quartus [85], which required very
high memory computers to implement the largest FPGA designs. As a result we have worked
to reduce peak memory usage.

The largest data-structure in VPR is typically the RR-Graph, which can contain millions
of nodes and 10s of millions of edges. This data structure is carefully packed to minimize
the size of each node and edge (improving cache utilization), and common data is factored
out in a flyweight pattern [41].
Table 21 shows the impact of the most recent set of optimizations on the Titan neuron

benchmark. VPR’s peak memory usage typically occurs during RR-Graph construction,
as both the RR-graph and auxiliary RR-graph-sized data structures (used to build the
RR-graph) are both allocated. During RR-graph construction, exactly sizing allocations
and allocating contiguous regions of memory helped to significantly reduce memory usage
caused by fragmentation, as did flyweighting additional non-unique data. Moving to a sparse
representation of the intra-block routing within each cluster also reduced memory usage,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

VTR 8 0:45

Table 21. Cumulative Impact of VPR Peak Memory Optimizations on neuron

Code Area Peak Memory (MiB) Ratio

Baseline 9,030 1.00
Exact RR Graph alloc. RR Construction 5,874 0.65
Contiguous SB pattern RR Construction 5,423 0.60
Flyweight segment details RR Construction 4,573 0.51
Sparse Intra-block routing Packer 3,866 0.43
Contiguous RR Edge & RR Node fanin RR Construction 3,431 0.38

Table 22. Normalized Impact of Advanced Compiler Optimizations on VPR 8.0 Run-Time (Titan
Benchmarks)

Pack Time Place Time Route Time Misc. Time Total Time STA Time

Standard 1.00 1.00 1.00 1.00 1.00 1.00
IPO 1.00 0.77 0.74 0.93 0.81 0.76

IPO + PGO 0.89 0.70 0.62 0.92 0.74 0.68

STA Time is included in Pack/Place/Route/Misc. and Total Times

since much of the routing is unused in any particular cluster. These optimizations reduced
peak memory use by 2.6×. As discussed in Section 12.2 VPR’s peak memory usage is now
comparable to Quartus on the Titan benchmarks.

11.3 Compiler Settings

Modern C++ compilers support a variety of advanced optimizations such as Inter-Procedural/
Link-Time Optimization (IPO/LTO) and Profile-Guided Optimization (PGO). Table 22
shows the impact of building VPR with these optimizations enabled using GCC 8. IPO offers
significant improvements reducing place, route and STA time by 26-23% and total time by
19%. PGO (using a profile generated from a run of neuron) improves the total run-time
reduction further to 26%. Given that the run-time reductions from these compilation options
are significant it is important for future work (e.g. comparing to VTR) to ensure they
use consistent compilation settings, so as to not miss-attribute run-time improvements to
algorithmic changes when they are in fact due to compiler settings.

11.4 Regression Testing

VTR has a large code base consisting of several different tools, each of which have a large
number of features. To ensure robustness it is important to have tests which catch when
existing features are broken by code changes. Additionally, it is vital to track VTR’s Quality
of Results (QoR) to detect any quality or run-time regressions, as it is otherwise very easy
to inadvertently degrade VTR’s optimization algorithms or data structures.
The full regression test suite requires 168 hours to run serially, and covers over 370

architecture, benchmark and tool option combinations. Since each combination is independent
the run-time can be reduced to less than 40 hours with moderate parallelism (3 or 4 cores).

11.4.1 Benchmark & Architecture Coverage. VTR 8 regression tests now cover a wider
variety of architectures including: classic (soft-logic only) architectures, modern FPGA
architectures like the VTR Flagship and Titan architectures, architectures with custom
hard blocks, and architectures using a variety of different routing technologies (classic
bi-directional, uni-directional, complex custom switch patterns). We now also test a wider
variety of benchmark sets including the classic MCNC20 [124], VTR benchmarks, Titan
‘other’ and Titan23. In particular including the Titan23 ensures VTR’s QoR and scalability
are regularly evaluated on large complex benchmarks.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

0:46 K. E. Murray et al.

Table 23. VTR Code Coverage

Norm. Lines Test Coverage

VTR 7 VTR 8 VTR 7 VTR 8

odin 1.00 1.07 0.70 0.69
vpr 1.00 1.40 0.75 0.86
vpr base 1.00 1.26 0.58 0.86
vpr pack 1.00 1.25 0.85 0.86
vpr place 1.00 1.17 0.92 0.94
vpr route 1.00 2.40 0.79 0.84
vpr timing 1.00 0.75 0.68 0.87
vpr power 1.00 1.19 0.88 0.87
vpr util 1.00 1.96 0.77 0.77

libarchfpga 1.00 1.20 0.70 0.80
libvtrutil 0.80
libtatum 0.82

11.4.2 Feature Coverage. In addition to covering additional architectures and benchmarks,
VTR 8 also includes more extensive tests which verify the functionality of specific features.
While most VTR tests are integration tests that test the overall functionality of the flow or
specific tools, we have also begun including unit tests to verify the functionality of smaller
parts of the code-base.
While not a perfect metric, code-coverage quantifies how well the test suite covers the

various parts of the code-base. Table 23 compares VTR 7 & 8’s code line count and code-
coverage.49 Compared to VTR 7, the code base for Odin II has grown by 7% while VPR
has grown by 40%. The large growth in VPR is due to the additional architecture modelling
features, improved code structure, better encapsulated data structures, and enhancements
to the various optimization algorithms (particularly the router). Despite this growth VPR’s
overall code coverage has increased to 86% with the largest coverage improvements occurring
in the router and base functionality.

11.4.3 Formal Verification. In addition to integration and unit tests which measure the
functionality and QoR of VTR, in VTR 8 we have also added correctness tests. These leverage
VPR’s improved netlist writer and ABC’s formal verification capabilities (Section 3.1.3)
to formally prove the resulting implementation is equivalent to the original netlist. These
tests ensure the various tools correctly implement the design and do not change the design’s
functionality.

11.5 Error Messages & File Parsers

A common issue encountered by users of previous versions of VTR has been the limited
number of (or unhelpful) error messages. We have made significant efforts in VTR 8 to
provide more detailed, easier to interpret and actionable error messages.

A large part of this effort has involved improving the robustness of VPR’s file format parsers,
particularly those dealing with human-editable formats such as the FPGA Architecture file,
SDC constraints, and BLIF netlist. To facilitate this several of the file parsers (SDC, BLIF)
have been re-written using a formal format specification and parse generators [2, 3] which
leads to helpful error messages when invalid syntax is provided. The FPGA architecture
file has also been updated to use a robust XML parsing library [5] which removes artificial
syntax restrictions, while the logic which interprets the XML file has been improved to emit
more user-friendly error messages when invalid or unexpected values are encountered.

49Results were collected with the gcov utility [4].

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

VTR 8 0:47

Table 24. Summary VTR Flagship Architecture Characteristics

Metric Expression Value

Process Technology 40nm
LUT Size 𝐾 6 (fracturable)

BLEs per Logic Block 𝑁 10
Adder Bits per Logic Block 20

Memory Block Size 32 Kb
DSP Block Multiplier Size 36x36 (fracturable)

Switchblock Type Wilton
Wiretype Length 4

Table 25. VTR 7 & VTR 8 Comparison Summary on the VTR Benchmarks

Netlist
Primitives

ABC
Depth

CLBs 𝑊𝑚𝑖𝑛
Routed WL
(1.3 ·𝑊𝑚𝑖𝑛)

Routed CPD
(1.3 ·𝑊𝑚𝑖𝑛)

Odin
Time

ABC
Time

Pack
Time

Place
Time

Route Time
(Find 𝑊𝑚𝑖𝑛)

Route Time
(1.3 ·𝑊𝑚𝑖𝑛)

Total
Time

Peak
Memory

VTR 7: ODIN7/ABC’12/VPR7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ODIN8/ABC’12/VPR7 0.86 0.99 0.88 1.00 0.88 0.98 1.29 0.73 0.87 0.97 1.15 0.96 1.10 0.90
ODIN8/ABC’12/VPR8 0.86 0.99 1.13 0.83 0.74 0.97 1.68 0.72 0.55 0.63 0.10 0.33 0.15 0.49

VTR 8: ODIN8/ABC’18/VPR8 0.74 0.89 0.74 0.85 0.59 0.88 1.53 5.15 0.58 0.56 0.08 0.30 0.19 0.30

Values are normalized geomeans over mutually completed benchmarks

11.6 Documentation

We have also worked to improve VTR’s documentation, which is key for helping users
understand and use VTR. VTR’s documentation is now centralized and automatically
generated from the VTR source tree, ensuring it is easy to update and keep synchronized
with the source code. The documentation is now searchable and available online at docs.
verilogtorouting.org, and includes:
∙ Tutorials for common VTR use cases,
∙ Design flow documentation,
∙ Tool specific documentation,
∙ Common file-format specifications, and
∙ Developer guidelines.

The resulting VTR 8 user manual runs over 250 pages.

12 EXPERIMENTAL EVALUATION

We now evaluate the overall QoR and run-time of VTR 8. Unless otherwise noted all results
were collected on an identical system with two Intel Xeon gold 6146 CPUs (24 cores) and
768GB of RAM. VTR was compiled with GCC 8 with full optimization (-O3) with IPO
and PGO using a profile generated from single runs of the stereovision1 and neuron

benchmarks.

12.1 VTR Benchmarks

We now evaluate VTR 8’s QoR in an architecture exploration context. These results were
collected on the VTR benchmarks while targeting VTR’s flagship k6 frac N10 frac chain

mem32K 40nm architecture, whose characteristics are listed in Table 24. Each benchmark is
run through the standard VTR flow (Figure 1), starting from a behavioural Verilog netlist
which is synthesized by ODIN II and optimized by ABC. VPR then performs packing and
placement, followed by a binary search over channel width (𝑊) to find the minimum routable
channel width (𝑊𝑚𝑖𝑛). Wirelength and critical path delay are then measured after routing
at a relaxed channel width set to 1.3 ·𝑊𝑚𝑖𝑛.
Table 25 summarizes VTR 8’s achieved QoR relative to VTR 7 for benchmarks with

> 10𝐾 netlist primitives (to avoid small benchmarks skewing the results). We include results
for both the default VTR 8 (ODIN 8, ABC’18, VPR 8), VTR 7 (ODIN 7, ABC’12, VPR 7)
and hybrid flows mixing tool versions, which allow us to isolate the impact of improvements

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

docs.verilogtorouting.org
docs.verilogtorouting.org

0:48 K. E. Murray et al.

to ODIN, ABC, and VPR separately. We first evaluate the impact of enhancements to
ODIN (ODIN 8/ABC’12/VPR7), which show ODIN produces fewer netlist primitives due
to improved sweeping of unused logic and hard blocks [83]. We next compare the impact of
enhancements to VPR (ODIN8/ABC’12/VPR8), which shows significant improvements in
minimum routable channel width, wirelength and drastic improvements in pack/place/route
run-times and peak memory usage, with the overall flow completing significantly faster.
Finally we can compare the full VTR 8 (ODIN8/ABC’18/VPR8), showing overall a 15%
reduction in 𝑊𝑚𝑖𝑛, a 41% reduction in routed wirelength and a 12% reduction in critical
path delay. Additionally, the run-times of the physical optimization stages are substantially
reduced (1.7× packing, 1.8× placement, 12.5× to find 𝑊𝑚𝑖𝑛 and 3.3× routing at 1.3 ·𝑊𝑚𝑖𝑛),
reducing total flow run-time by 5.2×. Peak memory usage is also reduced by 3.3×. Notably,
while the newer ABC performs better optimizations its run-time is also substantially increased.
These results show that improvements to all stages of the CAD flow contribute to the overall
QoR and run-time improvements.

Table 27 shows VTR 8’s detailed QoR on the VTR benchmarks and the normalized results
compared to VTR 7. We again focus on the results for benchmarks with > 10𝐾 netlist
primitives.
The improved logic sweeping and optimization in VTR 8 reduces the number of netlist

primitives by 26% and logic depth by 11%. As a result, despite decreasing packing density
(Section 7) VTR 8 uses 26% fewer CLBs than VTR 7. VTR 8 produces significantly better
implementation quality than VTR 7, improving minimum routable channel width by 15%,
reducing wirelength by 41%, and reducing critical path delay by 12%.
These quality improvements are achieved while cutting the overall VTR flow run-time

by 5.2×, and peak memory consumption by 3.3×. The run-time gains come primarily from
reductions in minimum channel width search time (12.5× faster), and place time (1.8×
faster). Pack and relaxed channel width route times were also reduced by 1.7× and 3.3×
respectively.

ODIN II’s run-time increased by 1.5× but remains a very small fraction (0.6%) of overall
run-time. While the new version of ABC performs better optimizations, it runs substantially
slower (5.2×) and accounts for 39% of overall run-time in the architecture exploration flow
(find 𝑊𝑚𝑖𝑛), which is comparable to the time spent on the physical implementation (packing,
placement and routing). ABC run-time is an even larger fraction (62%) of run-time in the
design implementation (𝑊 = 1.3 ·𝑊𝑚𝑖𝑛) flow. As a result, despite significant run-time
improvements during the physical implementation, VTR 8’s run-time is comparable to VTR
7’s when targeting a fixed channel width.

12.2 Titan23 Benchmarks

To compare VTR and Intel’s commercial Quartus [31] tool we used the Titan Flow (Fig-
ure 1), where designs are synthesized and technology mapped using Quartus. The physical
implementation (packing, placement, routing) can then be performed using either Quartus
or VPR.
Unless otherwise noted, VPR was run with its default options, except the maximum

number of routing iterations was increased to 400, and the router used the new map lookahead
(Section 9.2.1) in VPR 8. For all benchmarks a 48 hour wall-clock run-time limit was imposed.
Any benchmarks exceeding the limit were classified as failures. Critical path delay is reported
as the geometric mean over all clock domains in a circuit, excluding any virtual I/O clocks.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

VTR 8 0:49

12.2.1 Comparison with VPR 7. To compare VPR 7 and 8 on the Titan benchmarks, we
used VPR 8 and VPR 7+.50 Both tools use the same Titan v1.1.0 benchmarks synthesized
with Quartus 12.1, and target the same legacy Stratix IV architecture model from [85].

Table 28 compares VPR 8 and VPR 7+ on the Titan v1.1.0 benchmarks. VPR 8 completes
5 more benchmarks than VPR 7+, showing that it is more robust and better able to handle
large complex designs. VPR 8 packs less densely, using 6% more LABs and 13% more DSPs
than VPR 7+ (Section 7.2.2). VPR 8 reduces routed wirelength by 34% and critical path
delay by 11% on the common benchmarks which completed in both tools.

From an overall run-time perspective VPR 8 runs substantially faster (5.3×) and uses much
less memory (5.0×) than VPR 7+. The largest run-time improvement came from routing
which completes 33.3× faster in VPR 8, highlighting the utility of the router enhancements
detailed in Section 9. Pack time is also reduced by 1.5× and place time by 1.1×.51

12.2.2 Comparison with Quartus 18.0. To compare VPR and Quartus on the Titan
benchmarks, we used VPR 8 and Quartus 18.0. Both VPR and Quartus used the more
recent Titan v1.3.0 benchmarks synthesized and technology mapped with Quartus 18.0.
Quartus 18.0 targeted Stratix IV, while VPR 8 targeted the Stratix IV architecture model
from Section 5 (which improves upon the model used in [85]). However the precise details
of the Stratix IV routing architecture are not publicly available, so it is not possible to
perform a perfect comparison.52 Our Stratix IV model uses a timing model calibrated to
Quartus STA’s reported component delays, and models the key characteristics of both block
and routing architectures and was validated in [85]. We believe this allows us to perform a
reasonable comparison between VPR and Quartus.

Quartus is configured to use ‘auto’ device selection which selects the smallest device with
sufficient resources to implement the design. Similarly, VPR will automatically construct
the smallest device with sufficient resources to implement the design. Since several of the
Titan designs are larger than the largest commercially available Stratix IV device Quartus
refuses to fit them, while VPR can build a sufficiently large device.
Quartus was run in STANDARD FIT mode to ensure full optimization effort. To ensure

run-times remain comparable, both Quartus and VPR were run using a single thread. VPR
was run at its default effort level and at an increased High Effort (HE) level (inner num =
2, astar fac = 1) which resulted in run-times comparable to Quartus.

Both Quartus and VPR were given equivalent timing constraints. Paths between clock
domains were cut, except for those to/from external I/Os which are constrained on a virtual
I/O clock. Each clock domain is given an aggressive 1ns clock period target. Extremely small
clock domains (those fanning out to < 0.1% of netlist primitives) were ignored to avoid
skewing the average critical path delay and focus on primary system clocks.
Table 26 summarizes the QoR comparison between various versions of VPR normalized

to Quartus. Compared to VPR 7+, VPR 8 completes significantly more circuits (23 vs. 14).
When VPR 8 is run with its default parameters it requires 38% more wire and produces
circuits which are 32% slower than Quartus 18.0, but runs nearly 2× faster and uses less
memory. Increasing VPR 8’s effort level so run-time is comparable to Quartus 18.0, and
including all 20 benchmarks which mutually complete (VPR 8 HE / Quartus 18.0) the

50VPR 7+ is the enhanced version of VPR 7 used in [85] which is compatible with the Titan v1.1.0

benchmarks.
51Miscellaneous time increases in VPR 8 since the routing graph needs to be profiled to create the map
lookahead, but remains a small fraction overall.
52We expect VPR’s automatically generated RR graph, while matching Stratix IV’s major characteristics, is

of lower quality than the extensively hand-optimized pattern used in Stratix IV.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

0:50 K. E. Murray et al.

Table 26. VPR Quartus QoR Summary on Titan Benchmarks

VPR
Benchmarks
Completed

Quartus
Benchmarks
Completed

LABs DSPs M9Ks M144Ks
Routed
WL

Routed
CPD

Pack
Time

Place
Time

Route
Time

Total
Time

Peak
Memory

VPR 7+ / Quartus 12.0 * 14 20 0.82 1.13 1.13 1.69 2.02 1.53 2.36 0.87 8.23 2.82 6.21
VPR 8 / Quartus 18.0 * 23 20 0.85 0.96 1.33 0.00 1.38 1.32 1.39 0.46 0.30 0.51 0.96

VPR 8 HE / Quartus 18.0 * 23 20 0.85 0.96 1.33 0.00 1.31 1.26 1.39 1.04 0.35 0.87 0.97

VPR 8 HE / Quartus 18.0 23 20 0.95 0.97 1.30 0.00 1.26 1.20 1.18 1.00 0.34 0.83 0.96

* QoR from common subset of 13 completed benchmarks across all tool pairs
VPR 7+/Quartus 12.0 results from [85].

wirelength and circuit speed gaps narrow to 26% wirelength and 20% critical path delay.53

VPR 8 substantially narrows the quality gap, with the wirelength and critical path delay
gaps reduced by 1.5× and 1.2× respectively compared to VPR 7+. Notably, including the
larger benchmarks which VPR 8 can now complete further narrows the gap with Quartus,
indicating the scalability of VPR’s optimizations. VPR 8’s run-time is also substantially
improved (5.5× to 3.2× faster overall compared to VPR 7+) with route-time seeing the
largest improvement (27× to 24× faster), while peak memory use is reduced by 6.5×.
Table 29 compares VPR 8 (in high effort mode) and Quartus 18.0 in detail. VPR 8

completes all 23 of 23 feasible Titan benchmarks, and Quartus completes 20 of 21 feasible
benchmarks. This shows that VPR and Quartus’ benchmark completion rates are similar.
In terms of resource utilization VPR 8 uses 5% fewer LABs and 3% fewer DSPs than

Quartus. However VPR 8 uses more M9Ks and fewer M144Ks since it uses the larger and
rarer M144Ks only when RAMs would otherwise not fit in M9Ks. Due to resource utilization
differences VPR 8’s auto-sized devices can either smaller or larger than the devices used by
Quartus, but on average they are 15% larger. As expected, those designs where VPR uses
more resource of relatively sparse types (e.g. M9K, DSPs) than Quartus tend to produce
the largest differences in device sizes.
From a run-time perspective, VPR 8 HE runs 1.2× faster than Quartus and has a 4%

smaller memory footprint. VPR 8’s packer runs 18% slower than Quartus’, but is much
more general purpose. For these large benchmarks, placement dominates run-time (78% of
total time), and VPR 8’s placer run-time is comparable to Quartus. The VPR 8 router is
more efficient and runs 2.9× faster than Quartus even in this high effort mode. Compared
to VPR 8, Quartus spends approximately 3.3× more run-time on STA.

VPR 8’s QoR and run-time improvements in VPR 8 result from two key factors:
(1) CAD algorithm enhancements, which improve the quality and robustness of VPR’s

optimizations, and
(2) Improved architecture modelling capabilities (Section 4), which allow VPR to target

a more realistic model of Stratix IV (Section 5), and in particular a more accurate
capture of Stratix IV’s routing architecture.54

This shows the benefit of simultaneously improving both architecture modelling capabilities
and CAD algorithms together.

13 CONCLUSION

We have presented version 8.0 of the open-source Verilog To Routing project. VTR 8 includes
substantial enhancements to VTR’s architecture modelling capabilities allowing VTR to
model a wider range of modern FPGA characteristics including: general device grids, highly
customizable routing architectures, and improved area and delay estimates. These features

53For multi-clock circuits geometric mean and worst critical path delay results were similar.
54However it should be noted the detailed routing pattern used by VPR is still automatically generated, and
likely remains of lower quality than the heavily hand optimized routing pattern used in Stratix IV.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

VTR 8 0:51

can be used to both facilitate new research (e.g. by allowing more control over characteristics
such as the detailed routing pattern), and to better model and target modern commercial
FPGAs with suitable bitstream generators [6].

In addition to these features we have also significantly enhanced the CAD algorithms and
tools used to implement and optimize designs in VTR. These enhancements have significantly
improved implementation quality of the VTR benchmarks (15% minimum channel width,
41% wirelength, and 12% critical path delay reductions) while also reducing tool run-time
and memory usage by 5.2× and 3.3× respectively.

On the larger industrial-scale Titan benchmarks, VPR 8 now completes a similar proportion
of mutually feasible designs as a commercial tool like Quartus. We have also reduced the
quality gap between VPR and the commercial Quartus tool to 26% wirelength and 20%
critical path delay (reductions of 1.5× and 1.2× compared to previous results), while
simultaneously running 17% faster and using similar amounts of memory.
These results show that through careful code architecture and algorithm design it is

possible for general re-targetable CAD tools like VPR to be both run-time and memory
footprint efficient, while producing circuit implementations which are of reasonable quality
compared to those produced by highly tuned architecture-specific industrial tools. Reducing
the implementation quality gap also helps ensure the architectural conclusions produced
using these tools are valid and not skewed due to poor optimization.

14 FUTURE WORK

In the future we plan to continue extending VTR’s modelling capabilities to enable the
exploration of an even broader range of FPGA architectures and to enable full modelling of
advanced features found in commercial FPGAs.

We will also continue to focus on improving the quality of VTR’s optimization algorithms.
We expect that a large portion of the remaining quality gaps result from clustering quality.
In particular, while VPR 8 produces clusters which are more natural than VPR 7, related
logic can still sometimes be scattered between different clusters, which end-up placed far
apart. The result is that such signals end-up crossing large parts of the chip and increasing
wirelength. Inspection of the resulting critical paths shows a similar trend, with timing
critical connections sometimes spanning large portions of the chip. We believe it is important
to consider cross-boundary optimizations between the traditional pack/place/route stages,
such as being able to take-apart clusters during placement [25].55 It would also be interesting
to continue exploring the application of Machine Learning [82, 127] techniques to various
stages of the CAD flow. From a run-time perspective further investigation into hierarchical
and parallel compilation techniques also seem promising.
We also plan to continue extending VPR to be an end-to-end CAD flow capable of

both targeting existing FPGA devices and facilitating the creation of physical devices
based on VTR architectures. To that end, it would be useful to extend the RR graph
file (Section 3.1.2) to become a description of the entire FPGA device (including device
grid and block architectures). Such a ‘device file’ could be generated from VTR’s higher-
level architecture file description, or through other means to model new architectures or
architectural features not currently supported by VTR’s higher-level descriptions. This would
allow VTR’s design implementation and optimization algorithms to be better decoupled from
the high-level architecture description, and be more easily re-targeted to other architectures.

55Previous measurements of Quartus [85] indicate taking apart clusters allows Quartus to reduce wirelength

and critical path delay by 9% and 10% respectively.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

0:52 K. E. Murray et al.

While we believe that VTR’s improved optimization quality allows it to make accurate
CAD and architecture conclusions, it would be interesting to verify its fidelity by, for instance
comparing the impact of different optimizations in both VTR and commercial CAD systems.

It would additionally be interesting to compare the quality of routing patterns generated
by VTR when targeting our model of Stratix IV compare to the heavily optimized actual
routing patterns used in commercial devices such as Stratix IV. It is also future work
to consider how VTR could be extended to support multi-context FPGAs, and partial
reconfiguration.

ACKNOWLEDGEMENTS

This work was supported by the NSERC/Intel Industrial Research Chair in Programmable
Silicon, Huawei, Lattice Semiconductor, the Semiconductor Research Corporation, the
Canadian Foundation for Innovation, the New Brunswick Innovation Foundation, an NSERC
CGS-D scholarship, and an Ontario Graduate Scholarship. The authors would also like to
thank Jeff Goeders, Sadegh Yazdenshenas, Maria Patrou, Alex Demmings, Mustafa Abbas,
and all those who have contributed to the VTR project by submitting patches/pull-requests
and bug reports including: Tim Ansell, Keith Rothman, Alessandro Comodi, and David
Shah. Compute resources were provided in part by Compute Canada [19].

REFERENCES

[1] 2019. Arachne-pnr. https://github.com/YosysHQ/arachne-/pnr

[2] 2019. Bison. https://www.gnu.org/software/bison/

[3] 2019. Flex: The Fast Lexical Analyzer. https://www.gnu.org/software/flex/
[4] 2019. gcov: A Test Coverage Program. https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

[5] 2019. Pugixml: Light-weight, simple and fast XML parser for C++. https://pugixml.org/

[6] 2019. SymbiFlow Project. https://symbiflow.github.io/
[7] M. S. Abdelfattah and V. Betz. 2012. Design tradeoffs for hard and soft FPGA-based Networks-on-Chip.

In Int. Conf. on Field-Programmable Technology (FPT). 95–103.

[8] Ziad Abuowaimer, Dani Maarouf, Timothy Martin, Jeremy Foxcroft, Gary Gréwal, et al. 2018.

GPlace3.0: Routability-Driven Analytic Placer for UltraScale FPGA Architectures. ACM Trans. Des.
Autom. Electron. Syst. 23, 5, Article 66 (Oct. 2018), 33 pages.

[9] Achronix Semiconductor 2019. Speedster7t FPGAs. Achronix Semiconductor. PB003 v1.0.

[10] I. Ahmadpour, B. Khaleghi, and H. Asadi. 2015. An efficient reconfigurable architecture by charac-
terizing most frequent logic functions. In Int. Conf. on Field Programmable Logic and Applications
(FPL). 1–6.

[11] Ibrahim Ahmed, Linda L. Shen, and Vaughn Betz. 2019. Becoming More Tolerant: Designing FPGAs

for Variable Supply Voltage. In Int. Conf. on Field Programmable Logic and Applications (FPL).
[12] Altera 2016. Stratix IV Device Handbook. Altera.
[13] Altera Corporation 2015. Stratix V Device Handbook. Altera Corporation. SV5V1.

[14] M. An, J. G. Steffan, and V. Betz. 2014. Speeding Up FPGA Placement: Parallel Algorithms and
Methods. In Int. Symp. on Field-Programmable Custom Computing Machines (FCCM). 178–185.

[15] V. Betz and J. Rose. 1997. VPR: A new packing, placement and routing tool for FPGA research. In
Field-Programmable Logic and Applications. 213–222.

[16] Vaughn Betz and Jonathan Rose. 2000. Automatic Generation of FPGA Routing Architectures from

High-level Descriptions. In ACM/SIGDA Int. Symp. on Field Programmable Gate Arrays (FPGA).
175–184.

[17] Vaughn Betz, Jonathan Rose, and Alexander Marquardt. 1999. Architecture and CAD for Deep-
Submicron FPGAs. Kluwer Academic Publishers.

[18] Robert Brayton and Alan Mishchenko. 2010. ABC: An Academic Industrial-Strength Verification Tool.
In Computer Aided Verification, Tayssir Touili, Byron Cook, and Paul Jackson (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 24–40.
[19] Compute Canada. 2019. www.computecanada.ca.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

https://github.com/YosysHQ/arachne-pnr
https://www.gnu.org/software/bison/
https://www.gnu.org/software/flex/
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://pugixml.org/
https://symbiflow.github.io/

Table 27. VTR 8.0: VTR Benchmarks (Relative to VTR 7)

Benchmark
Netlist

Primitives
Clocks Logic Depth IOs CLBs DSPs RAMs 𝑊𝑚𝑖𝑛

Routed Wirelength

(1.3 ·𝑊𝑚𝑖𝑛)

Routed CPD

(1.3 ·𝑊𝑚𝑖𝑛)
Odin II Time ABC Time Pack Time Place Time

Route Time

(Find 𝑊𝑚𝑖𝑛)

Route Time

(1.3 ·𝑊𝑚𝑖𝑛)

VTR Flow

Elapsed Time

VTR Flow

Elapsed Time

(excl. Find 𝑊𝑚𝑖𝑛)

Peak Memory

mcml 165,809 (0.86×) 1 27 (0.96×) 36 (1.00×) 7,196 (0.94×) 27 (0.90×) 159 (1.00×) 128 (0.98×) 1,007,246 (0.63×) 45.83 (1.03×) 24.94 (1.81×) 3,172.5 (17.49×) 204.7 (0.44×) 679.4 (0.80×) 1,321.6 (0.12×) 91.2 (0.38×) 5,597.2 (0.42×) 4,275.6 (2.33×) 1.93 (0.36×)

LU32PEEng 101,542 (0.78×) 1 99 (0.95×) 114 (1.00×) 6,919 (0.79×) 32 (1.00×) 167 (0.99×) 136 (0.96×) 1,275,909 (0.72×) 75.25 (0.94×) 29.82 (4.25×) 853.4 (13.69×) 222.5 (0.83×) 536.1 (0.79×) 1,673.7 (0.02×) 146.9 (0.56×) 3,549.4 (0.04×) 1,875.7 (1.41×) 1.66 (0.28×)

stereovision2 42,077 (0.93×) 1 3 (1.00×) 149 (1.00×) 1,703 (0.75×) 202 (0.95×) 88 (0.71×) 417,138 (0.57×) 14.25 (0.88×) 1.01 (1.09×) 6.6 (0.68×) 24.2 (0.78×) 88.7 (0.71×) 321.8 (0.03×) 11.4 (0.16×) 484.6 (0.05×) 162.8 (0.63×) 0.89 (0.49×)

LU8PEEng 31,396 (0.79×) 1 103 (0.99×) 114 (1.00×) 2,062 (0.80×) 8 (1.00×) 44 (0.98×) 94 (0.98×) 295,304 (0.69×) 77.62 (0.89×) 2.44 (1.30×) 73.5 (4.46×) 64.2 (0.90×) 68.6 (0.92×) 177.5 (0.11×) 17.9 (0.34×) 427.7 (0.23×) 250.2 (1.09×) 0.53 (0.31×)

bgm 24,865 (0.43×) 1 14 (0.52×) 257 (1.00×) 2,136 (0.54×) 11 (1.00×) 74 (0.90×) 281,735 (0.46×) 19.25 (0.62×) 9.07 (2.30×) 146.4 (6.87×) 39.5 (0.52×) 58.1 (0.33×) 101.8 (0.07×) 8.2 (0.25×) 388.3 (0.22×) 286.6 (0.88×) 0.46 (0.18×)

stereovision0 21,789 (0.70×) 1 5 (0.83×) 157 (0.93×) 704 (0.63×) 56 (0.88×) 59,060 (0.50×) 3.54 (0.79×) 0.91 (1.00×) 8.3 (1.48×) 7.6 (0.37×) 8.6 (0.33×) 11.9 (0.18×) 1.3 (0.30×) 47.5 (0.36×) 35.6 (0.54×) 0.20 (0.26×)

stereovision1 19,549 (0.71×) 1 3 (1.00×) 115 (0.86×) 702 (0.65×) 40 (1.05×) 78 (0.72×) 115,572 (0.56×) 5.44 (0.92×) 1.02 (1.01×) 40.0 (7.36×) 7.3 (0.34×) 11.1 (0.39×) 60.1 (0.07×) 3.8 (0.25×) 134.5 (0.15×) 74.4 (0.92×) 0.24 (0.33×)

arm core 18,437 1 18 133 1,034 40 116 212,114 20.97 1.11 65.6 29.6 23.0 170.7 14.4 340.5 169.8 0.36 ∘
blob merge 11,415 (0.85×) 1 5 (1.00×) 36 (1.00×) 623 (0.88×) 62 (0.74×) 68,514 (0.60×) 14.95 (1.00×) 0.30 (1.21×) 36.0 (9.09×) 14.9 (0.78×) 7.8 (0.57×) 19.4 (0.21×) 1.3 (0.31×) 86.3 (0.63×) 66.9 (1.49×) 0.14 (0.31×)

or1200 4,530 (0.82×) 1 8 (1.00×) 385 (1.00×) 255 (0.88×) 1 (1.00×) 2 (1.00×) 94 (1.15×) 45,258 (0.81×) 9.06 (1.01×) 0.24 (1.03×) 3.9 (2.52×) 6.4 (0.88×) 5.6 (0.87×) 10.2 (0.06×) 2.7 (1.23×) 32.6 (0.18×) 22.4 (1.15×) 0.09 (0.43×)

mkDelayWorker32B 4,145 (0.36×) 1 5 (0.71×) 506 (0.99×) 505 (0.99×) 44 (1.02×) 40 (0.53×) 18,099 (0.14×) 6.52 (0.86×) 0.60 (1.25×) 5.4 (1.61×) 3.0 (0.23×) 10.1 (0.60×) 6.7 (0.00×) 0.9 (0.07×) 32.1 (0.02×) 25.4 (0.52×) 0.25 (0.49×)

raygentop 2,934 (0.61×) 1 3 (0.75×) 214 (0.90×) 110 (0.53×) 8 (1.14×) (0.00×) 56 (0.74×) 20,468 (0.62×) 4.89 (0.97×) 0.19 (1.10×) 1.0 (1.20×) 1.9 (0.33×) 2.0 (0.53×) 7.0 (0.27×) 0.8 (0.44×) 14.9 (0.38×) 7.9 (0.57×) 0.06 (0.39×)

mkSMAdapter4B 2,852 (0.69×) 1 4 (0.67×) 193 (0.99×) 199 (0.99×) 5 (1.00×) 50 (0.83×) 17,952 (0.69×) 5.33 (0.93×) 0.20 (1.22×) 1.6 (1.57×) 2.7 (0.48×) 2.3 (0.73×) 5.9 (0.35×) 0.3 (0.42×) 15.0 (0.52×) 9.1 (0.76×) 0.06 (0.39×)

sha 2,744 (0.83×) 1 3 (0.60×) 38 (1.00×) 154 (0.76×) 74 (1.19×) 15,641 (0.86×) 10.13 (1.01×) 0.56 (1.74×) 245.3 (67.95×) 1.8 (0.60×) 1.5 (0.63×) 6.0 (0.19×) 0.3 (0.46×) 260.1 (6.10×) 254.1 (22.45×) 0.06 (0.43×)

spree 1,229 1 15 45 65 1 3 70 11,210 10.52 0.12 0.7 2.0 0.8 2.4 0.3 7.5 5.1 0.04 ∘
mkPktMerge 1,160 (0.88×) 1 2 (0.67×) 311 (1.00×) 29 (1.38×) 15 (1.00×) 40 (0.80×) 13,486 (0.90×) 4.51 (1.09×) 0.10 (1.11×) 0.1 (0.60×) 0.5 (0.79×) 1.5 (0.68×) 2.6 (0.08×) 0.5 (0.20×) 6.9 (0.18×) 4.3 (0.69×) 0.06 (0.69×)

boundtop 1,141 (0.20×) 1 3 (0.38×) 142 (0.52×) 94 (0.37×) (0.00×) 48 (0.89×) 3,152 (0.11×) 3.38 (0.54×) 0.25 (1.06×) 0.4 (0.28×) 0.7 (0.09×) 0.8 (0.19×) 0.9 (0.11×) 0.1 (0.08×) 4.9 (0.20×) 3.9 (0.25×) 0.04 (0.22×)

diffeq1 886 (0.87×) 1 6 (1.00×) 162 (1.00×) 32 (0.91×) 5 (1.00×) 50 (0.81×) 8,945 (0.86×) 17.02 (1.01×) 0.03 (1.24×) 0.2 (0.79×) 0.3 (0.46×) 0.7 (0.90×) 6.3 (0.62×) 0.3 (0.42×) 8.7 (0.65×) 2.4 (0.74×) 0.04 (0.91×)

diffeq2 599 (0.81×) 1 6 (1.20×) 66 (1.00×) 22 (0.85×) 5 (1.00×) 52 (0.90×) 7,411 (0.83×) 12.97 (1.02×) 0.02 (1.89×) 0.1 (0.80×) 0.4 (0.53×) 0.6 (0.76×) 2.3 (0.21×) 0.3 (0.63×) 4.5 (0.34×) 2.2 (0.87×) 0.04 (0.97×)

ch intrinsics 493 (0.55×) 1 3 (0.75×) 99 (1.00×) 64 (1.73×) 1 (1.00×) 54 (1.13×) 1,304 (0.33×) 2.58 (0.68×) 0.06 (1.58×) 0.2 (0.59×) 0.1 (0.20×) 0.3 (0.81×) 0.6 (0.64×) 0.0 (0.35×) 2.1 (0.67×) 1.5 (0.68×) 0.03 (0.91×)

stereovision3 321 (0.92×) 2 5 (1.25×) 11 (1.00×) 14 (1.08×) 30 (0.94×) 791 (1.06×) 2.65 (0.95×) 0.04 (1.28×) 0.1 (0.92×) 0.3 (1.02×) 0.1 (0.60×) 0.3 (0.98×) 0.0 (0.88×) 1.6 (1.21×) 1.3 (1.29×) 0.02 (1.30×)

GEOMEAN 5,450.6 (0.68×) 1 7.2 (0.82×) 112.1 (0.95×) 291.6 (0.82×) 10.2 (1.00×) 15.7 (1.00×) 65.7 (0.87×) 36,594.1 (0.56×) 10.25 (0.89×) 0.46 (1.39×) 5.7 (2.39×) 4.4 (0.48×) 5.8 (0.60×) 15.4 (0.13×) 1.3 (0.33×) 50.6 (0.29×) 31.3 (0.99×) 0.14 (0.44×)

GEOMEAN (> 10𝐾) 33,242.9 (0.74×) 1 13.6 (0.89×) 105 (0.97×) 1,700.5 (0.74×) 29.2 (0.98×) 82.7 (0.99×) 88.6 (0.85×) 254,151.9 (0.59×) 19.68 (0.88×) 2.58 (1.53×) 81.1 (5.15×) 34.4 (0.58×) 50.7 (0.56×) 146.2 (0.08×) 10.8 (0.30×) 406.1 (0.19×) 241.7 (1.05×) 0.49 (0.30×)

% TOTAL (> 10𝐾) 0.64% 39.1% 5.7% 13.4% 34.9% 2.7% 100.0% 64.9%

Run-time in Seconds, Memory in GiB, WL in grid tiles, CPD in ns

∘ VTR 7 error

Table 28. VPR 8.0: Titan v1.1.0 Benchmarks (Relative to VPR 7+)

Benchmark
Netlist

Primitives
Clocks IOs LABs DSPs M9Ks M144Ks

Device Grid
Tiles

Routed Wirelength
Routed CPD
(geomean)

Pack Time Place Time Route Time Misc. Time Total Time Peak Memory

gaussianblur 1,860,045 1 558 105,457 4 12 0 117,410 126.1 (0.76×) 576.8 ■ ∘
bitcoin miner 1,062,214 2 385 29,533 (1.02×) 1,668 (1.14×) 0 (0.00×) 43,139 12,604,393 1.01 12.1 (0.23×) 169.2 (1.40×) 23.8 12.3 217.4 12.28 □

directrf 934,809 2 319 58,474 252 2,535 0 73,162 23.5 217.6 ▲ ∘
sparcT1 chip2 766,880 1 1,890 29,716 (0.96×) 3 (1.00×) 580 (1.09×) 55,622 7,207,537 (0.61×) 19.93 (0.89×) 25.1 (0.47×) 88.2 (0.94×) 7.8 (0.02×) 14.3 (5.20×) 135.4 (0.23×) 11.41 (0.24×)
LU Network 630,376 19 405 31,026 112 1,175 0 35,478 11.8 86.0 ■ ∘

LU230 568,367 2 373 17,049 (1.11×) 116 (1.00×) 5,040 (1.09×) 16 (0.05×) 135,676 18,171,449 10.13 20.6 (0.51×) 62.9 20.8 32.7 137.0 19.67 ∘
mes noc 549,051 9 5 25,570 (1.03×) 800 (1.00×) 29,106 5,093,677 (0.56×) 9.90 24.8 (0.73×) 77.9 (0.85×) 9.8 (0.03×) 8.0 (3.59×) 120.5 (0.24×) 8.15 (0.21×)

gsm switch 491,989 4 138 20,827 (1.08×) 1,848 (1.15×) 0 (0.00×) 47,124 6,566,158 (0.70×) 5.59 (0.85×) 12.7 (0.50×) 39.3 (0.83×) 5.6 (0.00×) 11.8 (5.48×) 69.4 (0.02×) 9.17 (0.14×)
denoise 343,755 1 852 18,202 (1.05×) 48 (1.00×) 377 (1.03×) 21,125 3,897,065 (0.66×) 864.44 (0.93×) 8.4 (0.38×) 79.3 (1.09×) 7.5 (0.01×) 6.0 (4.10×) 101.2 (0.10×) 6.17 (0.24×)

sparcT2 core 288,458 1 451 14,215 (1.09×) 266 (1.00×) 16,280 4,604,317 (0.84×) 18.81 (1.53×) 11.2 (0.61×) 41.0 (1.29×) 6.4 (0.04×) 4.4 (4.40×) 63.0 (0.31×) 4.62 (0.25×)
cholesky bdti 256,234 1 162 9,678 (1.04×) 132 (1.00×) 600 (1.00×) 20,832 2,562,018 (0.66×) 9.34 (0.77×) 4.8 (0.61×) 14.2 (0.74×) 4.5 (0.04×) 5.1 (4.55×) 28.6 (0.20×) 5.02 (0.20×)

minres 252,687 2 229 7,693 (1.07×) 149 (1.17×) 1,458 (1.27×) 0 (0.00×) 36,244 2,749,531 (0.61×) 6.28 (0.86×) 5.4 (0.64×) 13.5 (0.96×) 3.2 (0.03×) 8.3 (6.61×) 30.3 (0.21×) 6.61 (0.15×)
stap qrd 237,347 1 150 16,067 (1.04×) 74 (1.00×) 553 (1.31×) 0 (0.00×) 18,212 2,635,810 (0.62×) 8.06 (0.82×) 4.3 (0.56×) 25.7 (0.86×) 4.1 (0.10×) 4.7 (4.09×) 38.9 (0.47×) 4.52 (0.19×)
openCV 212,826 1 208 7,135 (1.10×) 248 (1.47×) 787 (1.01×) 40 (0.83×) 38,930 3,271,085 11.50 5.3 (0.64×) 12.1 (0.76×) 6.5 8.9 32.9 6.65 △
dart 202,439 1 69 6,898 (1.07×) 530 (1.07×) 0 (0.00×) 13,837 2,533,682 13.32 6.6 (0.79×) 11.4 (0.92×) 3.5 3.6 25.1 3.58 △

bitonic mesh 191,783 1 119 7,671 (1.12×) 169 (1.84×) 1,664 (1.07×) 0 (0.00×) 43,139 4,139,332 (0.53×) 15.33 (0.81×) 8.8 (0.78×) 17.9 (0.94×) 5.9 (0.00×) 9.9 (7.39×) 42.4 (0.03×) 7.05 (0.13×)
segmentation 168,365 1 441 8,641 (1.06×) 21 (1.00×) 488 (1.33×) 0 (0.00×) 13,500 2,060,810 (0.67×) 880.13 (0.96×) 3.8 (0.43×) 23.2 (0.98×) 3.2 (0.01×) 3.5 (4.27×) 33.7 (0.09×) 3.55 (0.20×)
SLAM spheric 125,679 1 479 6,657 (1.04×) 66 (1.06×) 87 (1.00×) 10,890 2,116,663 82.97 3.7 (0.59×) 12.6 (0.95×) 3.7 2.7 22.7 2.99 □

des90 109,928 1 117 4,252 (1.07×) 88 (1.80×) 860 (1.05×) 0 (0.00×) 21,125 2,192,517 (0.59×) 12.50 (0.80×) 4.7 (0.85×) 8.4 (0.91×) 3.6 (0.02×) 4.8 (6.03×) 21.6 (0.09×) 3.92 (0.14×)
cholesky mc 108,499 1 262 4,792 (1.05×) 58 (1.00×) 444 (1.09×) 16 (0.80×) 11,193 1,203,602 (0.78×) 8.37 (0.95×) 1.9 (0.74×) 4.4 (0.82×) 2.2 (0.11×) 2.7 (4.11×) 11.3 (0.40×) 2.75 (0.17×)

stereo vision 93,171 3 506 3,038 (1.12×) 80 (1.05×) 135 (1.00×) 12,160 702,858 (0.73×) 3.19 (0.88×) 3.7 (2.96×) 2.3 (0.67×) 1.1 (0.19×) 2.7 (5.90×) 9.8 (0.89×) 2.68 (0.29×)
sparcT1 core 91,580 1 310 3,910 (1.04×) 1 (1.00×) 131 (1.00×) 4,661 1,255,399 (0.78×) 8.50 (0.84×) 4.4 (1.02×) 4.7 (0.94×) 1.7 (0.08×) 1.3 (2.93×) 12.1 (0.40×) 1.90 (0.26×)

neuron 90,857 1 77 3,310 (1.05×) 97 (1.04×) 185 (1.00×) 14,076 873,185 (0.69×) 6.07 (0.80×) 1.6 (0.88×) 2.7 (0.80×) 1.5 (0.13×) 3.3 (7.01×) 9.1 (0.51×) 2.94 (0.29×)

GEOMEAN 286,921 1.6 236.2 12,112.4 (1.06×) 51.4 (1.13×) 530.2 (1.08×) 21.7 (0.31×) 26,191.7 3,071,830.2 (0.66×) 14.80 (0.89×) 8.1 (0.65×) 26.1 (0.92×) 4.6 (0.03×) 5.7 (4.88×) 38.5 (0.19×) 5.25 (0.20×)

Run-time in Minutes, Memory in GiB, WL in grid tiles, CPD in ns
▲ VPR 8 time-out; ■ VPR 8 unroute; △ VPR 7+ time-out; □ VPR 7+ unroute; ∘ VPR 7+ error

0:54
K
.
E
.
M
u
rray

et
al.

Table 29. VPR 8.0 High Effort: Titan v1.3.0 (Relative to Quartus 18.0)

Benchmark
Netlist

Primitives
Clocks IOs LABs DSPs M9Ks M144Ks Device Grid Tiles

Limiting

Resource
Routed Wirelength

Routed CPD

(geomean)
Pack Time Place Time Route Time Misc. Time Total Time STA Time Peak Memory

gaussianblur 1,859,014 1 558 (0.81×) 103,802 (1.12×) 2 12 (1.00×) 116,718 LAB 30,738,160 929.24 126.7 1,200.7 77.1 33.5 1,438.0 22.6 27.07 �
bitcoin miner 1,087,537 1 385 (0.71×) 32,382 (1.00×) 1,331 (1.02×) 37,184 (1.03×) LAB 10,238,973 (1.06×) 8.38 (0.93×) 12.3 (0.31×) 428.3 (0.97×) 10.0 (0.09×) 11.0 (0.24×) 461.6 (0.73×) 9.8 (0.44×) 11.39 (0.78×)

directrf 930,989 2 319 (0.98×) 60,824 (1.75×) 240 2,535 (1.23×) 0 (0.00×) 74,495 M9K 12,269,002 9.71 17.3 418.3 84.2 20.9 540.7 10.9 16.95 �
sparcT1 chip2 760,412 21 1,891 (1.70×) 33,405 (4.73×) 3 (1.00×) 506 (1.00×) 57,753 (1.59×) IO 7,706,606 5.00 27.2 (0.53×) 221.9 (0.85×) 6.2 15.9 271.2 6.9 11.22 �
LU Network 630,079 4 411 (2.04×) 31,050 (1.47×) 112 (1.00×) 1,175 (1.26×) 0 (0.00×) 35,860 (1.50×) LAB 5,652,344 (1.19×) 5.05 (0.92×) 12.9 (0.69×) 188.9 (1.37×) 6.1 (0.20×) 10.3 (0.36×) 218.2 (1.01×) 8.1 (0.22×) 10.03 (0.96×)

LU230 568,001 2 373 (1.00×) 16,619 (0.51×) 116 (1.00×) 5,040 (4.05×) 16 (1.00×) 137,170 (3.78×) M9K 15,448,573 (1.45×) 10.02 (1.03×) 21.6 (0.75×) 200.4 (1.07×) 183.4 (0.67×) 33.9 (0.64×) 439.3 (0.81×) 8.1 (0.25×) 17.10 (1.22×)

mes noc 547,568 9 5 (1.00×) 24,167 (0.81×) 800 (1.19×) 27,936 (0.77×) LAB 4,942,841 (1.03×) 8.38 (1.16×) 23.2 (1.51×) 158.1 (0.87×) 7.7 (0.26×) 8.1 (0.28×) 197.1 (0.77×) 6.1 (0.21×) 7.79 (0.88×)

gsm switch 490,070 3 138 (1.01×) 21,534 (0.72×) 1,848 (1.15×) 0 (0.00×) 48,195 (1.33×) M9K 5,314,814 (0.95×) 6.10 (1.25×) 12.7 (1.16×) 110.9 (0.64×) 17.1 (0.35×) 12.2 (0.49×) 152.9 (0.59×) 4.3 (0.27×) 8.76 (1.01×)
sparcT2 core 300,220 1 451 (0.95×) 14,663 (1.04×) 260 (1.00×) 17,176 (0.72×) LAB 4,562,316 (1.06×) 10.83 (1.09×) 11.7 (1.89×) 83.3 (1.44×) 6.3 (0.18×) 4.8 (0.36×) 106.1 (0.94×) 3.4 (0.33×) 4.68 (0.88×)

denoise 274,786 1 852 (0.87×) 14,434 (0.79×) 24 (0.73×) 359 (2.74×) 16,912 (0.47×) LAB 3,067,873 (1.10×) 851.00 (0.90×) 6.6 (1.13×) 115.3 (0.65×) 4.5 (0.19×) 4.7 (0.43×) 131.2 (0.60×) 3.6 (0.53×) 5.24 (0.88×)

minres 257,480 2 229 (0.67×) 8,030 (0.63×) 78 (0.93×) 1,458 (1.31×) 37,184 (1.56×) M9K 2,708,510 (1.46×) 4.16 (1.12×) 6.0 (1.03×) 54.6 (1.32×) 3.2 (0.38×) 9.2 (0.67×) 73.0 (1.05×) 2.5 (0.22×) 6.38 (1.12×)
cholesky bdti 255,478 1 162 (1.00×) 9,725 (1.09×) 132 (1.00×) 600 (1.00×) 21,125 (1.85×) DSP 2,572,119 (1.48×) 9.09 (1.68×) 4.7 (0.97×) 41.1 (0.91×) 8.2 (1.01×) 5.7 (0.55×) 59.8 (0.87×) 2.3 (0.22×) 5.19 (1.09×)

stap qrd 234,177 1 150 (0.95×) 16,029 (1.82×) 74 (1.00×) 553 (1.00×) 18,762 (1.64×) LAB 2,595,613 (1.53×) 7.67 (2.04×) 4.5 (0.76×) 64.3 (1.65×) 5.5 (0.97×) 4.9 (0.55×) 79.3 (1.33×) 2.8 (0.39×) 4.54 (1.02×)

openCV 212,553 1 208 (0.62×) 7,128 (0.84×) 213 (1.68×) 785 (1.17×) 40 (0.83×) 32,395 (1.36×) DSP 2,997,630 (1.46×) 11.20 (1.24×) 5.3 (1.55×) 42.2 (1.17×) 6.3 (0.99×) 8.3 (0.98×) 62.1 (1.14×) 2.5 (0.38×) 5.69 (1.13×)
dart 202,402 1 69 (1.00×) 7,325 (0.83×) 530 (1.00×) 14,076 (1.23×) M9K 2,117,081 (1.02×) 11.93 (1.29×) 6.5 (1.61×) 29.4 (0.82×) 2.0 (0.14×) 3.8 (0.11×) 41.7 (0.48×) 2.2 (0.26×) 3.67 (0.89×)

bitonic mesh 190,746 1 119 (0.88×) 7,381 (0.50×) 85 (0.71×) 1,664 (1.03×) 0 (0.00×) 43,318 (1.20×) M9K 4,258,536 (0.80×) 13.74 (1.32×) 8.3 (2.28×) 68.7 (1.42×) 5.5 (0.15×) 10.8 (0.59×) 93.4 (0.88×) 3.4 (0.24×) 6.73 (1.13×)
segmentation 137,832 1 441 (0.82×) 7,093 (0.78×) 15 (0.83×) 481 (1.87×) 0 (0.00×) 13,736 (0.58×) M9K 1,704,886 (1.19×) 848.22 (0.92×) 3.2 (1.33×) 39.0 (0.66×) 2.5 (0.23×) 3.8 (0.68×) 48.5 (0.62×) 1.7 (0.52×) 3.36 (0.90×)

SLAM spheric 111,354 1 479 (0.79×) 5,607 (0.68×) 37 (0.56×) 6,984 (0.29×) LAB 1,671,905 (1.15×) 79.06 (1.11×) 3.2 (1.80×) 20.4 (0.73×) 3.1 (0.54×) 2.0 (0.38×) 28.8 (0.70×) 1.4 (0.36×) 2.55 (0.78×)

des90 110,549 1 117 (0.88×) 4,248 (0.75×) 44 (0.50×) 860 (1.00×) 21,717 (1.90×) M9K 2,147,716 (1.26×) 12.71 (1.60×) 4.5 (2.70×) 26.7 (1.33×) 2.7 (0.44×) 5.8 (0.69×) 39.6 (1.10×) 1.8 (0.25×) 3.91 (1.08×)
cholesky mc 108,592 1 262 (0.98×) 4,824 (0.88×) 59 (1.00×) 444 (1.19×) 16 (0.80×) 11,625 (1.02×) M9K 1,235,099 (1.96×) 7.26 (1.58×) 2.0 (1.15×) 13.7 (1.17×) 2.8 (0.98×) 3.1 (0.68×) 21.5 (1.04×) 1.2 (0.30×) 2.92 (0.92×)

stereo vision 94,090 2 506 (1.30×) 3,327 (0.87×) 76 (4.00×) 113 (1.00×) 12,384 (2.16×) DSP 608,530 (1.52×) 3.47 (0.96×) 1.2 (0.92×) 8.9 (0.86×) 0.6 (0.38×) 3.1 (1.07×) 13.8 (0.86×) 0.6 (0.32×) 2.47 (0.99×)

sparcT1 core 91,975 1 310 (0.94×) 3,983 (0.95×) 1 (1.00×) 128 (1.01×) 5,002 (0.87×) LAB 1,225,016 (1.00×) 8.67 (1.13×) 4.0 (3.44×) 10.0 (0.83×) 1.3 (0.20×) 1.5 (0.38×) 16.9 (0.70×) 1.0 (0.28×) 1.98 (0.80×)
neuron 86,875 1 77 (0.74×) 3,136 (0.68×) 89 (0.81×) 136 (4.00×) 0 (0.00×) 12,384 (1.08×) DSP 765,195 (2.27×) 5.56 (1.32×) 1.4 (0.98×) 8.9 (1.05×) 0.9 (0.35×) 3.2 (0.84×) 14.5 (0.88×) 0.8 (0.20×) 2.75 (0.94×)

GEOMEAN 280,371.8 1.6 236.4 (0.95×) 11,977.2 (0.95×) 39.7 (0.97×) 551.1 (1.30×) 21.7 (0.87×) 25,342.2 (1.15×) 3,427,344.9 (1.26×) 16.00 (1.20×) 7.4 (1.18×) 66.6 (1.00×) 6.0 (0.34×) 6.9 (0.49×) 91.6 (0.83×) 3.2 (0.30×) 5.86 (0.96×)

% TOTAL 7.2% 78.0% 9.8% 4.9% 100.0% 2.4%

Run-time in Minutes, Memory in GiB, WL in grid tiles, CPD in ns

STA Time is included in Pack/Place/Route/Misc. and Total Times
� Quartus device size exceeded; � Quartus unroute

A
C
M

T
ra
n
sa
ctio

n
s
o
n
R
eco

n
fi
g
u
ra
b
le

T
ech

n
o
lo
g
y
a
n
d
S
y
stem

s,
V
o
l.

0
,
N
o
.
0
,
A
rticle

0
.
P
u
b
lica

tio
n

d
a
te:

2
0
2
0
.

VTR 8 0:55

[20] Yao-Wen Chang, D. F. Wong, and C. K. Wong. 1996. Universal Switch Modules for FPGA Design.
ACM Trans. Des. Autom. Electron. Syst. 1, 1 (Jan. 1996), 80–101.

[21] Baudouin Chauviere, Aurlien Alacchi, Edouard Giacomin, Xifan Tang, and Pierre-Emmanuel Gaillardon.
2019. OpenFPGA: Complete Open Source Framework for FPGA Prototyping.

[22] Deming Chen, Jason Cong, and Peichen Pan. 2006. FPGA Design Automation: A Survey. Found.

Trends Electron. Des. Autom. 1, 3 (Jan. 2006), 139–169.

[23] Doris Chen, Deshanand Singh, Jeffrey Chromczak, David Lewis, Ryan Fung, et al. 2010. A Com-

prehensive Approach to Modeling, Characterizing and Optimizing for Metastability in FPGAs. In

ACM/SIGDA Int. Symp. on Field Programmable Gate Arrays (FPGA). 167–176.
[24] D. T. Chen, K. Vorwerk, and A. Kennings. 2007. Improving Timing-Driven FPGA Packing with

Physical Information. In Int. Conf. on Field Programmable Logic and Applications (FPL). 117–123.

[25] Gang Chen and Jason Cong. 2004. Simultaneous Timing Driven Clustering and Placement for FPGAs.
In Int. Conf. on Field Programmable Logic and Applications (FPL). 158–167.

[26] S. Chen and Y. Chang. 2015. Routing-architecture-aware analytical placement for heterogeneous
FPGAs. In ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6.

[27] Y. Chen, S. Chen, and Y. Chang. 2014. Efficient and effective packing and analytical placement for

large-scale heterogeneous FPGAs. In Int. Conf. on Computer-Aided Design (ICCAD). 647–654.

[28] C. Chiasson and V. Betz. 2013. COFFE: Fully-automated transistor sizing for FPGAs. In Int. Conf.
on Field-Programmable Technology (FPT). 34–41.

[29] S. A. Chin, J. Luu, S. Huda, and J. H. Anderson. 2016. Hybrid LUT/Multiplexer FPGA Logic
Architectures. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 24, 4 (April 2016),
1280–1292.

[30] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield, et al. 2018. Serving DNNs in Real
Time at Datacenter Scale with Project Brainwave. IEEE Micro 38, 2 (Mar 2018), 8–20.

[31] Intel Corporation. 2019. Quartus. https://www.intel.ca/content/www/ca/en/software/programmable/

quartus-/prime/overview.html

[32] Xilinx Corporation. 2019. Vivado. https://www.xilinx.com/products/design-/tools/vivado.html

[33] DARPA. 2016. Reconfigurable Imaging (ReImagine). https://www.darpa.mil/attachments/Final

Compiled ReImagineProposersDay.pdf
[34] André DeHon. 1999. Balancing Interconnect and Computation in a Reconfigurable Computing

Array (or, Why You Don’t Really Want 100% LUT Utilization). In ACM/SIGDA Int. Symp. on

Field-programmable Gate Arrays (FPGA). 69–78.
[35] C. Ebeling et al. 2016. Stratix�10 High Performance Routable Clock Networks. In Int. Symp. on

FPGAs. 64–73.
[36] Z. Ebrahimi, B. Khaleghi, and H. Asadi. 2017. PEAF: A Power-Efficient Architecture for SRAM-Based

FPGAs Using Reconfigurable Hard Logic Design in Dark Silicon Era. IEEE Trans. Comput. 66, 6

(June 2017), 982–995.
[37] B. Erbagci, N. E. Can Akkaya, C. Erbagci, and K. Mai. 2019. An Inherently Secure FPGA using PUF

Hardware-Entanglement and Side-Channel Resistant Logic in 65nm Bulk CMOS. In ESSCIRC 2019 -

IEEE 45th European Solid State Circuits Conference (ESSCIRC). 65–68. https://doi.org/10.1109/
ESSCIRC.2019.8902789

[38] Wenyi Feng, Jonathan Greene, Kristofer Vorwerk, Val Pevzner, and Arun Kundu. 2014. Rent’s Rule

Based FPGA Packing for Routability Optimization. In ACM/SIGDA Int. Symp. on Field-programmable
Gate Arrays (FPGA). 31–34.

[39] C. Fobel, G. Grewal, and D. Stacey. 2014. A scalable, serially-equivalent, high-quality parallel

placement methodology suitable for modern multicore and GPU architectures. In Int. Conf. on Field
Programmable Logic and Applications (FPL). 1–8.

[40] Brian Gaide, Dinesh Gaitonde, Chirag Ravishankar, and Trevor Bauer. 2019. Xilinx Adaptive Compute
Acceleration Platform: VersalTM Architecture. In ACM/SIGDA Int. Symp. on Field-programmable

Gate Arrays (FPGA) (FPGA ’19). 84–93.

[41] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. 1994. Design Patterns: Elements of Reusable
Object-Oriented Software. Pearson Education.

[42] Mingyu Gao, Christina Delimitrou, Dimin Niu, Krishna T. Malladi, Hongzhong Zheng, et al. 2016.

DRAF: A Low-power DRAM-based Reconfigurable Acceleration Fabric. SIGARCH Comput. Archit.
News 44, 3 (June 2016), 506–518.

[43] J. B. Goeders, G. G. F. Lemieux, and S. J. E. Wilton. 2011. Deterministic Timing-Driven Parallel

Placement by Simulated Annealing Using Half-Box Window Decomposition. In ReConFig. 41–48.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

https://www.intel.ca/content/www/ca/en/software/programmable/quartus-prime/overview.html
https://www.intel.ca/content/www/ca/en/software/programmable/quartus-prime/overview.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.darpa.mil/attachments/Final_Compiled_ReImagineProposersDay.pdf
https://www.darpa.mil/attachments/Final_Compiled_ReImagineProposersDay.pdf
https://doi.org/10.1109/ESSCIRC.2019.8902789
https://doi.org/10.1109/ESSCIRC.2019.8902789

0:56 K. E. Murray et al.

[44] J. B. Goeders and S. J. E. Wilton. 2012. VersaPower: Power estimation for diverse FPGA architectures.
In Int. Conf. on Field-Programmable Technology (FPT). 229–234.

[45] Brett Grady and Jason H. Anderson. 2018. Synthesizable Verilog Backend for the VTR FPGA
Evaluation Framework. In Int. Conf. on Field-Programmable Technology (FPT).

[46] Travis Haroldsen, Brent Nelson, and Brad Hutchings. 2015. RapidSmith 2: A Framework for BEL-level

CAD Exploration on Xilinx FPGAs. In ACM/SIGDA Int. Symp. on Field-Programmable Gate Arrays
(FPGA). 66–69.

[47] P. E. Hart, N. J. Nilsson, and B. Raphael. 1968. A Formal Basis for the Heuristic Determination

of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics 4, 2 (July 1968),
100–107.

[48] K. Honda, T. Imagawa, and H. Ochi. 2017. Placement algorithm for mixed-grained reconfigurable

architecture with dedicated carry chain. In IEEE International System-on-Chip Conference (SOCC).
80–85.

[49] Chin Hau Hoo and Akash Kumar. 2018. ParaDRo: A Parallel Deterministic Router Based on Spatial
Partitioning and Scheduling. In ACM/SIGDA Int. Symp. on Field-Programmable Gate Arrays (FPGA).
67–76.

[50] Chin Hau Hoo, A. Kumar, and Yajun Ha. 2015. ParaLaR: A parallel FPGA router based on Lagrangian
relaxation. In Int. Conf. on Field Programmable Logic and Applications (FPL). 1–6.

[51] K. Huang, R. Zhao, W. He, and Y. Lian. 2016. High-Density and High-Reliability Nonvolatile Field-

Programmable Gate Array With Stacked 1D2R RRAM Array. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 24, 1 (Jan 2016), 139–150.

[52] Zhihong Huang, Xing Wei, Grace Zgheib, Wei Li, Yu Lin, et al. 2017. NAND-NOR: A Compact, Fast,

and Delay Balanced FPGA Logic Element. In ACM/SIGDA Int. Symp. on Field-Programmable Gate
Arrays (FPGA). 135–140.

[53] S. Huda and J. H. Anderson. 2017. Leveraging Unused Resources for Energy Optimization of FPGA

Interconnect. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 25, 8 (Aug 2017),
2307–2320.

[54] E. Hung. 2015. Mind the (synthesis) gap: Examining where academic FPGA tools lag behind industry.

In nternational Conference on Field Programmable Logic and Applications (FPL). 1–4.
[55] E. Hung, F. Eslami, and S. J. E. Wilton. 2013. Escaping the Academic Sandbox: Realizing VPR

Circuits on Xilinx Devices. In Int. Symp. on Field-Programmable Custom Computing Machines
(FCCM). 45–52.

[56] E. Hung and S. J. E. Wilton. 2014. Incremental Trace-Buffer Insertion for FPGA Debug. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems 22, 4 (April 2014), 850–863.
[57] C. Huriaux, O. Sentieys, and R. Tessier. 2016. Effects of I/O routing through column interfaces in

embedded FPGA fabrics. In Int. Conf. on Field Programmable Logic and Applications (FPL). 1–9.

[58] Mike Hutton, David Karchmer, Bryan Archell, and Jason Govig. 2005. Efficient Static Timing Analysis
and Applications Using Edge Masks. In ACM/SIGDA 13th Int. Symp. on Field-programmable Gate
Arrays (FPGA). 174–183.

[59] Xilinx Inc. 1994. The Programmable Logic Data Book.
[60] P. Jamieson, K. B. Kent, F. Gharibian, and L. Shannon. 2010. Odin II - An Open-Source Verilog

HDL Synthesis Tool for CAD Research. In Int. Symp. on Field-Programmable Custom Computing

Machines (FCCM). 149–156.
[61] Edin Kadric, David Lakata, and André DeHon. 2015. Impact of Memory Architecture on FPGA

Energy Consumption. In ACM/SIGDA Int. Symp. on Field-Programmable Gate Arrays (FPGA).
146–155.

[62] B. Khaleghi, B. Omidi, H. Amrouch, J. Henkel, and H. Asadi. 2016. Stress-aware routing to mitigate

aging effects in SRAM-based FPGAs. In Int. Conf. on Field Programmable Logic and Applications
(FPL). 1–8.

[63] F. F. Khan and A. Ye. 2016. An evaluation on the accuracy of the minimum width transistor area
models in ranking the layout area of FPGA architectures. In Int. Conf. on Field Programmable Logic
and Applications (FPL). 1–11.

[64] Jin Hee Kim and Jason H. Anderson. 2017. Synthesizable Standard Cell FPGA Fabrics Targetable by

the Verilog-to-Routing CAD Flow. ACM Trans. Reconfigurable Technol. Syst. 10, 2, Article 11 (April
2017), 23 pages.

[65] N. Kulkarni, J. Yang, and S. Vrudhula. 2014. A fast, energy efficient, field programmable threshold-logic
array. In Int. Conf. on Field-Programmable Technology (FPT). 300–305.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

VTR 8 0:57

[66] MIT Lincoln Lab. 2016. Reconfigurable Integrated Circuits for ReImagine. https://www.darpa.mil/
attachments/MITLL ProposerDaySlides%20v3.pdf

[67] C. Lavin. 2019. Building domain-specific implementation tools using the RapidWright framework. In
FPGA.

[68] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, et al. 2011. RapidSmith: Do-It-Yourself

CAD Tools for Xilinx FPGAs. In Int. Conf. on Field Programmable Logic and Applications (FPL).
349–355.

[69] J. Legault, P. Patros, and K. B. Kent. 2018. Towards Trainable Synthesis for Optimized Circuit

Deployment on FPGA. In 2018 International Symposium on Rapid System Prototyping (RSP). 90–96.
https://doi.org/10.1109/RSP.2018.8631999

[70] David Lewis, Vaughn Betz, David Jefferson, Andy Lee, Chris Lane, et al. 2003. The Stratix�Routing

and Logic Architecture. In Proceedings of the 2003 ACM/SIGDA Eleventh International Symposium
on Field Programmable Gate Arrays (FPGA ’03). ACM, New York, NY, USA, 12–20. https:

//doi.org/10.1145/611817.611821

[71] David Lewis, David Cashman, Mark Chan, Jeffery Chromczak, Gary Lai, et al. 2013. Architectural
Enhancements in Stratix V�. In Proceedings of the ACM/SIGDA International Symposium on Field

Programmable Gate Arrays (FPGA ’13). ACM, New York, NY, USA, 147–156. https://doi.org/10.
1145/2435264.2435292

[72] David Lewis, Gordon Chiu, Jeffrey Chromczak, David Galloway, Ben Gamsa, et al. 2016. The

Stratix�10 Highly Pipelined FPGA Architecture. In Proceedings of the 2016 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays (FPGA ’16). ACM, New York, NY, USA,
159–168. https://doi.org/10.1145/2847263.2847267

[73] Ang Li and David Wentzlaff. 2019. PRGA: An Open-source Framework for Building and Using Custom
FPGAs. In Workshop on Open Source Design Automation.

[74] Hao Jun Liu. 2014. Archipelago - An Open Source FPGA with Toolflow Support. Master’s thesis. EECS

Department, University of California, Berkeley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/
EECS-/2014-/43.html

[75] Jason Luu. 2014. Architecture-aware Packing and CAD Infrastructure for Field-Programmable Gate
Arrays. Master’s thesis. University of Toronto. http://hdl.handle.net/1807/75854

[76] Jason Luu, Jeffrey Goeders, Michael Wainberg, Andrew Somerville, Thien Yu, et al. 2014. VTR 7.0:
Next Generation Architecture and CAD System for FPGAs. ACM Trans. Reconfigurable Technol.
Syst. 7, 2, Article 6 (July 2014), 30 pages.

[77] Jason Luu, Ian Kuon, Peter Jamieson, Ted Campbell, Andy Ye, et al. 2011. VPR 5.0: FPGA CAD
and Architecture Exploration Tools with Single-driver Routing, Heterogeneity and Process Scaling.
ACM Trans. Reconfigurable Technol. Syst. 4, 4, Article 32 (Dec. 2011), 23 pages.

[78] J. Luu, C. McCullough, S. Wang, S. Huda, B. Yan, et al. 2014. On Hard Adders and Carry Chains in
FPGAs. In Int. Symp. on Field-Programmable Custom Computing Machines (FCCM). 52–59.

[79] Jason Luu, Jonathan Rose, and Jason Anderson. 2014. Towards Interconnect-adaptive Packing for

FPGAs. In ACM/SIGDA Int. Symp. on Field-programmable Gate Arrays (FPGA). 21–30.
[80] Larry McMurchie and Carl Ebeling. 1995. PathFinder: A Negotiation-based Performance-driven Router

for FPGAs. In Int. Symp. on Field-programmable Gate Arrays (FPGA). 111–117.
[81] Kevin E. Murray and Vaughn Betz. 2018. Tatum: Parallel Timing Analysis for Faster Design Cycles

and Improved Optimization. In Int. Conf. on Field-Programmable Technology (FPT).

[82] Kevin E. Murray and Vaughn Betz. 2019. Adaptive FPGA Placement Optimization via Reinforcement
Learning. In ACM/IEE Workshop on Machine Learning for CAD (MLCAD). 1–6.

[83] Kevin. E. Murray, J. Luu, M. J. P. Walker, C. McCullough, S. Wang, et al. 2020. Optimizing FPGA

Logic Block Architectures for Arithmetic. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. (2020).
To Appear.

[84] Kevin E. Murray, Scott Whitty, Suya Liu, Jason Luu, and Vaughn Betz. 2013. Titan: Enabling

Large and Complex Benchmarks in Academic CAD. In Int. Conf. on Field Programmable Logic and
Applications (FPL).

[85] Kevin E. Murray, Scott Whitty, Suya Liu, Jason Luu, and Vaughn Betz. 2015. Timing-Driven Titan:
Enabling Large Benchmarks and Exploring the Gap Between Academic and Commercial CAD. ACM

Trans. Reconfigurable Technol. Syst. 8, 2, Article 10 (March 2015), 18 pages.
[86] Kevin. E. Murray, Sheng Zhong, and Vaughn Betz. 2020. AIR: A Fast but Lazy Timing-Driven FPGA

Router. In Asia and South Pacific Design Automation Conference (ASP-DAC). 1–7.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

https://www.darpa.mil/attachments/MITLL_ProposerDaySlides%20v3.pdf
https://www.darpa.mil/attachments/MITLL_ProposerDaySlides%20v3.pdf
https://doi.org/10.1109/RSP.2018.8631999
https://doi.org/10.1145/611817.611821
https://doi.org/10.1145/611817.611821
https://doi.org/10.1145/2435264.2435292
https://doi.org/10.1145/2435264.2435292
https://doi.org/10.1145/2847263.2847267
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-43.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-43.html
http://hdl.handle.net/1807/75854

0:58 K. E. Murray et al.

[87] E. Nasiri, J. Shaikh, A. Hahn Pereira, and V. Betz. 2016. Multiple Dice Working as One: CAD Flows
and Routing Architectures for Silicon Interposer FPGAs. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems 24, 5 (May 2016), 1821–1834.

[88] Xinyu Niu, Wayne Luk, and Yu Wang. 2015. EURECA: On-Chip Configuration Generation for
Effective Dynamic Data Access. In ACM/SIGDA Int. Symp. on Field-Programmable Gate Arrays

(FPGA). 74–83.

[89] Hadi Parandeh-Afshar, Hind Benbihi, David Novo, and Paolo Ienne. 2012. Rethinking FPGAs:

Elude the Flexibility Excess of LUTs with And-inverter Cones. In ACM/SIGDA Int. Symp. on Field

Programmable Gate Arrays (FPGA). 119–128.
[90] M. Patrou, J. P. Legault, A. Graham, and K. B. Kent. 2019. Improving Digital Circuit Simulation

with Batch-Parallel Logic Evaluation. In To appear in Euromicro Digital System Design.

[91] Oleg Petelin. 2016. CAD Tools and Architectures for Improved FPGA Interconnect. Master’s thesis.
University of Toronto. http://hdl.handle.net/1807/75854

[92] O. Petelin and V. Betz. 2016. The speed of diversity: Exploring complex FPGA routing topologies for
the global metal layer. In Int. Conf. on Field Programmable Logic and Applications (FPL). 1–10.

[93] Andrew Putnam et al. 2014. A Reconfigurable Fabric for Accelerating Large-Scale Datacenter Services.

In ACM/IEEE Int. Symp. on Comput. Architecture (ISCA). 13–24.

[94] J. Richardson et al. 2010. Comparative Analysis of HPC and Accelerator Devices: Computation,
Memory, I/O, and Power. In Int. Workshop on High-Performance Reconfigurable Comput. Technol.

and Appl. (HPRCTA). 1–10.
[95] Jonathan Rose, Jason Luu, Chi Wai Yu, Opal Densmore, Jeffrey Goeders, et al. 2012. The VTR

Project: Architecture and CAD for FPGAs from Verilog to Routing. In ACM/SIGDA Int. Symp. on

Field Programmable Gate Arrays (FPGA). 77–86.
[96] Raphael Y. Rubin and André M. DeHon. 2011. Timing-driven Pathfinder Pathology and Remediation:

Quantifying and Reducing Delay Noise in VPR-pathfinder. In ACM/SIGDA Int. Symp. on Field

Programmable Gate Arrays (FPGA). 173–176.
[97] Z. Seifoori, B. Khaleghi, and H. Asadi. 2017. A power gating switch box architecture in routing

network of SRAM-based FPGAs in dark silicon era. In Design, Automation Test in Europe Conference

Exhibition (DATE). 1342–1347.
[98] David Shah, Eddie Hung, Clifford Wolf, Serge Bazanski, Dan Gisselquist, et al. 2019. Yosys+nextpnr:

an Open Source Framework from Verilog to Bitstream for Commercial FPGAs. In Int. Symp. on
Field-Programmable Custom Computing Machines (FCCM).

[99] A. Sharma, S. Hauck, and C. Ebeling. 2005. Architecture-adaptive routability-driven placement for

FPGAs. In Int. Conf. on Field Programmable Logic and Applications (FPL). 427–432.
[100] Minghua Shen and Guojie Luo. 2017. Corolla: GPU-Accelerated FPGA Routing Based on Subgraph

Dynamic Expansion. In FPGA. 105–114.

[101] Amit Singh and Malgorzata Marek-Sadowska. 2002. Efficient Circuit Clustering for Area and Power
Reduction in FPGAs. In ACM/SIGDA Int. Symp. on Field-programmable Gate Arrays (FPGA).
59–66.

[102] K. Siozios and D. Soudris. 2016. A Customizable Framework for Application Implementation onto 3-D
FPGAs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 35, 11
(Nov 2016), 1783–1796.

[103] Satish Sivaswamy, Gang Wang, Cristinel Ababei, Kia Bazargan, Ryan Kastner, et al. 2005. HARP:
Hard-wired Routing Pattern FPGAs. In ACM/SIGDA Int. Symp. on Field-programmable Gate Arrays
(FPGA). 21–29.

[104] Neil Steiner, Aaron Wood, Hamid Shojaei, Jacob Couch, Peter Athanas, et al. 2011. Torc: Towards an

Open-source Tool Flow. In ACM/SIGDA Int. Symp. on Field Programmable Gate Arrays (FPGA).

41–44.
[105] M. Stojilovic. 2017. Parallel FPGA routing: Survey and challenges. In 2017 27th International

Conference on Field Programmable Logic and Applications (FPL). 1–8. https://doi.org/10.23919/
FPL.2017.8056782

[106] X. Sun, H. Zhou, and L. Wang. 2019. Bent Routing Pattern for FPGA. In 2019 29th International

Conference on Field Programmable Logic and Applications (FPL). 9–16. https://doi.org/10.1109/

FPL.2019.00012
[107] Ian Swarbrick, Dinesh Gaitonde, Sagheer Ahmad, Brian Gaide, and Ygal Arbel. 2019. Network-on-

Chip Programmable Platform in VersalTM ACAP Architecture. In ACM/SIGDA Int. Symp. on
Field-programmable Gate Arrays (FPGA). 212–221.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

http://hdl.handle.net/1807/75854
https://doi.org/10.23919/FPL.2017.8056782
https://doi.org/10.23919/FPL.2017.8056782
https://doi.org/10.1109/FPL.2019.00012
https://doi.org/10.1109/FPL.2019.00012

VTR 8 0:59

[108] Jordan S. Swartz, Vaughn Betz, and Jonathan Rose. 1998. A Fast Routability-driven Router for
FPGAs. In ACM/SIGDA Int. Symp. on Field Programmable Gate Arrays (FPGA). 140–149.

[109] Berkley Logic Synthesis and Verification Group. 2018. ABC: A System for Sequen-
tial Synthesis and Verification. http://www.eecs.berkeley.edu/∼alanmi/abc/ Revision
1fc200ffacabed1796639b562181051614f5fedb.

[110] X. Tang, P. Gaillardon, and G. De Micheli. 2014. A high-performance low-power near-Vt RRAM-based
FPGA. In Int. Conf. on Field-Programmable Technology (FPT). 207–214.

[111] John Teifel, Matthew E. Land, and Russel. D. Miller. 2016. Improving ASIC Reuse with Embedded

FPGA Fabrics. In Government Microcircuit Applications & Critical Technology Conference.
[112] J. Tian, G. R. Reddy, J. Wang, W. Swartz, Y. Makris, et al. 2017. A field programmable transistor

array featuring single-cycle partial/full dynamic reconfiguration. In Design, Automation Test in Europe

Conference Exhibition (DATE), 2017. 1336–1341. https://doi.org/10.23919/DATE.2017.7927200
[113] D. Vercruyce, E. Vansteenkiste, and D. Stroobandt. 2017. Liquid: High quality scalable placement for

large heterogeneous FPGAs. In Int. Conf. on Field Programmable Technology (FPT). 17–24.

[114] D. Vercruyce, E. Vansteenkiste, and D. Stroobandt. 2018. How Preserving Circuit Design Hierarchy
During FPGA Packing Leads to Better Performance. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems 37, 3 (March 2018), 629–642.

[115] Dries Vercruyce, Elias Vansteenkiste, and Dirk Stroobandt. 2019. CRoute: A Fast High-quality Timing-
driven Connection-based FPGA Router. In Int. Symp. on Field-Programmable Custom Computing

Machines (FCCM).
[116] M. Wainberg and V. Betz. 2015. Robust Optimization of Multiple Timing Constraints. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems 34, 12 (2015), 1942–1953.

[117] Chunan Wei, Ashutosh Dhar, and Deming Chen. 2015. A Scalable and High-density FPGA Architecture
with Multi-level Phase Change Memory. In Design, Automation & Test in Europe Conference &
Exhibition (DATE). 1365–1370.

[118] S. Wilton. 1997. Architectures and Algorithms for Field-Programmable Gate Arrays with Embedded
Memories. Ph.D. Dissertation. University of Toronto.

[119] Clifford Wolf. 2019. Yosys Open SYnthesis Suite. http://www.clifford.at/yosys/

[120] Xilinx Inc. 2016. UltraRAM: Breakthrough Embedded Memory Integration on UltraScale+ Devices.
Xilinx Inc. WP477 v1.0.

[121] Xilinx Inc. 2018. Zynq UltraScale+ MPSoC Data Sheet. Xilinx Inc. DS891 v1.7.

[122] Xilinx Inc. 2019. Versal Architecture and Product Data Sheet. Xilinx Inc. DS950 v1.1.
[123] Chang Xu, Gai Liu, Ritchie Zhao, Stephen Yang, Guojie Luo, et al. 2017. A Parallel Bandit-Based

Approach for Autotuning FPGA Compilation. In Int. Symp. on Field-Programmable Gate Arrays
(FPGA). 157–166.

[124] S. Yang. 1991. Logic Synthesis and Optimization Benchmarks User Guide 3.0. Technical Report.

MCNC.
[125] Sadegh Yazdanshenas and Vaughn Betz. 2019. COFFE 2: Automatic Modelling and Optimization of

Complex and Heterogeneous FPGA Architectures. ACM Trans. Reconfigurable Technol. Syst. 12, 1,

Article 3 (Jan. 2019), 27 pages.
[126] Sadegh Yazdanshenas, Kosuke Tatsumura, and Vaughn Betz. 2017. Don’t Forget the Memory:

Automatic Block RAM Modelling, Optimization, and Architecture Exploration. In ACM/SIGDA Int.

Symp. on Field-Programmable Gate Arrays (FPGA). 115–124.
[127] Cunxi Yu and Zhiru Zhang. 2019. Painting on Placement: Forecasting Routing Congestion Using

Conditional Generative Adversarial Nets. In Proceedings of the 56th Annual Design Automation
Conference 2019 (DAC 19). Association for Computing Machinery, New York, NY, USA, Article

Article 219, 6 pages. https://doi.org/10.1145/3316781.3317876

[128] G. Yu, T. Y. Cheng, B. Kettlewell, H. Liew, M. Seok, et al. 2017. FPGA with Improved Routability
and Robustness in 130nm CMOS with Open-Source CAD Targetability. ArXiv e-prints (Dec. 2017).

arXiv:1712.03411
[129] J. Yuan, L. Wang, X. Zhou, Y. Xia, and J. Hu. 2017. RBSA: Range-based simulated annealing for

FPGA placement. In Int. Conf. on Field Programmable Technology (FPT). 1–8.

[130] G. Zgheib and P. Ienne. 2017. Evaluating FPGA clusters under wide ranges of design parameters. In

Int. Conf. on Field Programmable Logic and Applications (FPL). 1–8.
[131] Grace Zgheib, Liqun Yang, Zhihong Huang, David Novo, Hadi Parandeh-Afshar, et al. 2014. Revisiting

And-inverter Cones. In ACM/SIGDA Int. Symp. on Field-programmable Gate Arrays (FPGA). 45–54.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

http://www.eecs.berkeley.edu/~alanmi/abc/
https://doi.org/10.23919/DATE.2017.7927200
http://www.clifford.at/yosys/
https://doi.org/10.1145/3316781.3317876
http://arxiv.org/abs/1712.03411

0:60 K. E. Murray et al.

Received July 2019; revised December 2019; revised January 2020; accepted March 2020.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 0, No. 0, Article 0. Publication

date: 2020.

	Abstract
	1 Introduction
	2 Related Work
	2.1 FPGA CAD & Architecture Exploration Frameworks
	2.2 Research Using VTR

	3 Design Flow
	3.1 Design Flow Enhancements

	4 Architecture Modelling Enhancements
	4.1 General Device Grid
	4.2 Flexible Routing Architectures
	4.3 Area & Timing Modelling

	5 Architecture Enhancements Case Study: Stratix IV
	5.1 Grid Layout
	5.2 Routing Network
	5.3 Timing Model
	5.4 Architecture Enhancements Comparison

	6 Logic Optimization & Technology Mapping
	6.1 Safe Multi-Clock Optimization

	7 Packing Enhancements
	7.1 Where to Start?
	7.2 What to Pack Next?
	7.3 When is a Cluster Full?
	7.4 Adapting to Available Device Resources
	7.5 Packing QoR Evaluation

	8 Placement Enhancements
	8.1 Placement Macro Move Generator
	8.2 Compressed Move Grid

	9 Routing Enhancements
	9.1 A Fast but Lazy Router
	9.2 Improving Quality & Robustness
	9.3 Routing with Non-Configurable Switches
	9.4 Speeding-Up Minimum Channel Width Search
	9.5 Router Algorithm Comparison

	10 Timing Analysis
	10.1 Combined Setup & Hold Analysis
	10.2 Comparison with VPR Classic STA

	11 Software Engineering
	11.1 ODIN II
	11.2 VPR
	11.3 Compiler Settings
	11.4 Regression Testing
	11.5 Error Messages & File Parsers
	11.6 Documentation

	12 Experimental Evaluation
	12.1 VTR Benchmarks
	12.2 Titan23 Benchmarks

	13 Conclusion
	14 Future Work
	References

